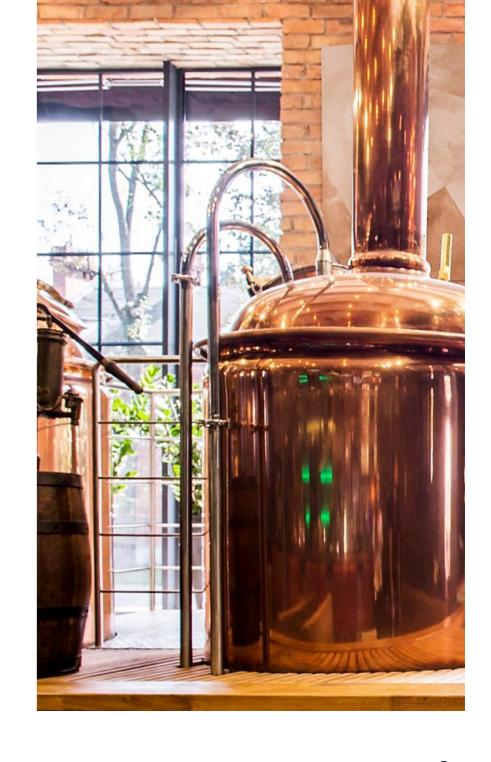
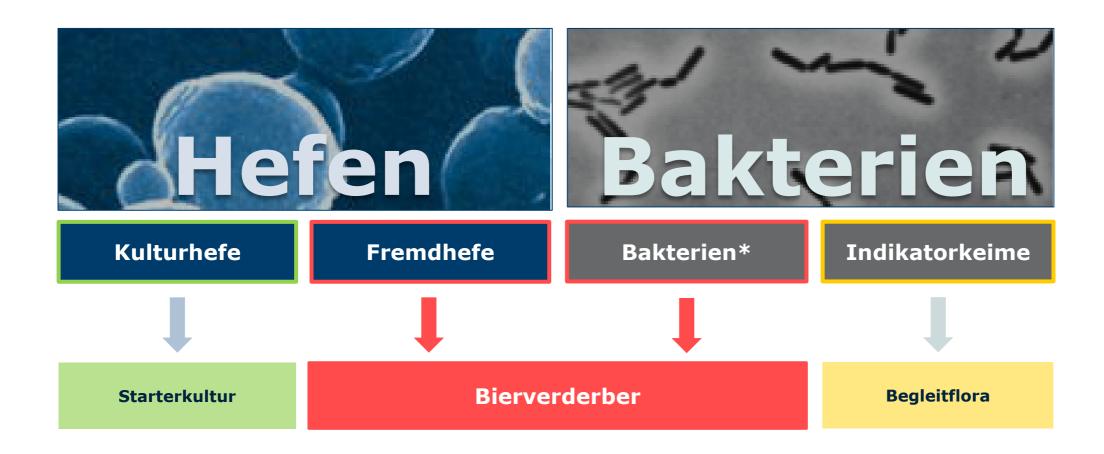
DSDMTM

Da färbt sich was Neues im Nachweis übervergärender Hefen

Agenda

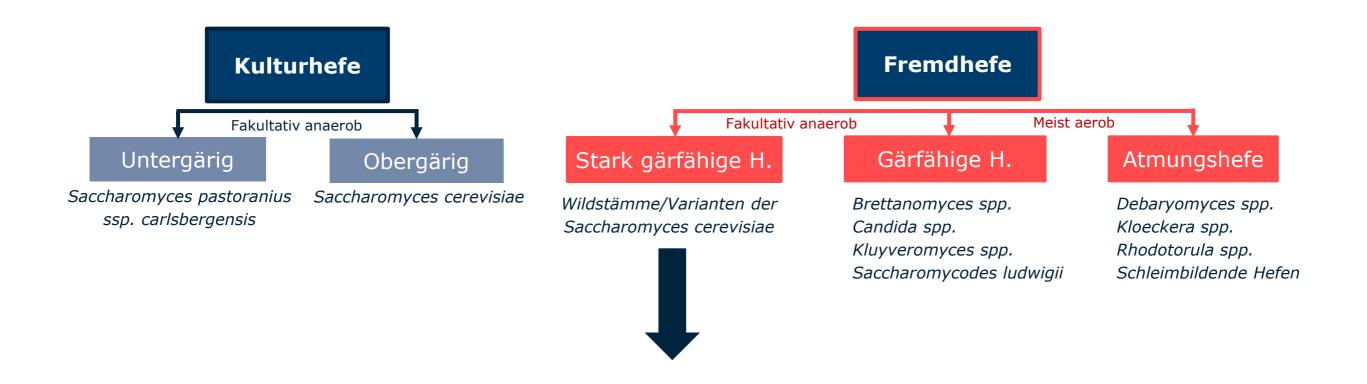

DSDM™ – Döhler's Saccharomyces Diastaticus Medium

01	Mikrobiologische Situation in Brauereien
02	Saccharomyces cerevisiae var. diastaticus
03	Hefedifferenzierung mittels kultureller Methode
04	Entwicklung und Prüfung eines selektiven Nachweismediums


01

Mikrobiologische Situation in Brauereien

Mikrobiologische Situation in Brauereien


Relevante Mikroflora in der Brauerei

*Ausnahme: Starterkulturen, z.B. für die Herstellung von Sauergut

Mikrobiologische Situation in Brauereien

Hefen in der Brauerei

DÖHLER | WE BRING IDEAS TO LIFE.

02

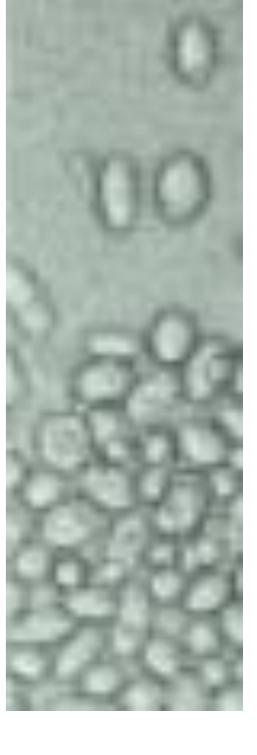
Saccharomyces cerevisiae var. diastaticus

Saccharomyces cerevisiae var. diastaticus

Profilbild

1952 entdeckt, 1965 als S. diastaticus beschrieben, seit 2019 offiziell als Variante deklariert

Taxonomie/Morphologie:


- Variante der Saccharomyces cerevisiae
- Fakultativ anaerob
- Zellgröße kleiner im Gegensatz zu S. cerevisiae
 können als kleine Zellen die Filterschichten passieren und so ins filtrierte Bier gelangen
- Fähigkeit zur Sporulation von Ascisporen bei Nährsubstratmangel

Toleranzen in der Matrix Bier:

- Teils hohe Toleranz gegen Alkohol, Hopfenbitterstoffe, tiefes pH-Milieu
- Anaerobiose und niedrige Temperaturen
- >> Wachstum in allen Biertypen, unabhängig vom Vergärungsgrad

Besondere Eigenschaft:

enthält STA-Gen, das für die Bildung des Enzyms Glucoamylase kodiert. Dieses extrazelluläre Enzym spaltet niedere und höhere Dextrine zu Zucker, der das Risiko einer anschließenden Vergärung darstellt.

Saccharomyces cerevisiae var. diastaticus

Profilbild

Schädigungsbild:

- Trübungs- und Sedimentbildung
- leerer Geschmack bis hin zu phenolischen Off-Flavor, herbere Bitternoten, kratziger Nachtrunk
- Gushing, Aufblähen bis hin zum Zerplatzen der Verpackung (Glasfasche, Dose, etc.).

Bierschädlichkeit:

KAT I (n. Prof. Back) = obligat, also höchste Stufe Ist in Deutschland meldepflichtig, da von einer Gefahr der Gesundheit ausgegangen wird.

Auftreten:

- Als Primärkontaminant im Unfiltrat
- Als Sekundärkontaminant in der Abfüllung, z.B. durch Biofilm

Einschleppung:

- Kontaminierte Hefestämme
- Produktionsschwachstellen (Toträume, etc.)
- Raumluft, Leergut-Rücklauf, Rückbier

Saccharomyces cerevisiae var. diastaticus

Physiologische Unterscheidungsmerkmale

S. Diastaticus, eine Saccharomyces cerevisiae, die zusätzlich Stärke und Dextrine verwerten kann.

	Fermentation (Gasbildung)							
S. cerevisiae var.	Dextrin	Galaktose	Maltose	Maltotriose	Melibiose	Raffinose	Saccharose	Stärke
bayanus	-	-	+	-/(+)	-	+	+	-
capensis	-	-	-	-	-	+	+	-
coreanus	-	+	-	-	+	+	+	-
cerevisiae (og BH)	-	+	+	+/(-)	-	+	+	-
cerevisiae (Molk Isolat)	-	+	-	-	-	+	+	-
cerevisiae (AfG Isolat)	-	V	V	-	-	+	+	-
cratericus	-	+	+	-	-	+	+	-
chevalieri	-	+	-	-	-	+	+	-
diastaticus	+	+	+	+	-	+	+	+
ellipsoideus	-	+	+	-	-	+	+	-
globus	-	+	-	-	-	-	-	-
logos	+	+	+	+	+	+	+	-
willianus	V	-	+	+	-	+	+	-
C mastarianus				.,				
S. pastorianus	-	+	+	V	+	+	+	-

Legende: Fermentation
positiv +
negativ variabel v
negative, selten pos. -/(+)
positiv, selten neg. +/(-)

03

Hefedifferenzierung mittels kultureller Methode

Mikrobiologische Situation in Brauereien

Hefedifferenzierung mittels kultureller Methode

Nicht-Saccharomyces-WH

Lysin- oder Kupfersulfatagar/LCSM 4 - 6 d bei 28-30°C

Saccharomyces-WH

Kristallviolettagar/LWYM 4-6 d bei 28-30°C

Obergärige Hefe, Saccharomyces-WH, Non-Saccharomyces-WH

Würzeagar oder YM Agar 2-4 d bei 37°C

Übervergärende Hefe (Saccharomyces diastaticus)

Stärkeagarplatten oder in endvergorenem Bier 37° C mit Einsatrz von Durhamröhrchen

Hefedifferenzierung mittels Molekulardiagnostik: PCR beschränkt sich derzeit auf STA 1/2/3 Gen (teilweise fehlenden Promotorregion)

04

Entwicklung und Prüfung eines selektiven Nachweismediums

Anforderungen

Zuverlässig

Hohe Spezifität, Sensitivität und Reproduzierbarkeit

Selektiv

Auf den Zielkeim zugeschnittene Rohstoffe und Inkubationsparameter Hemmung konkurrierender Flora

Einfach

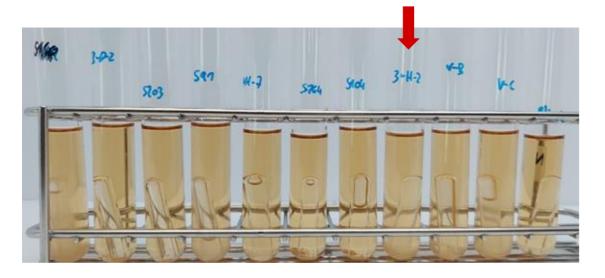
Gebrauchsfertiges Pulver für maximale Flexibilität Farbumschlag als Indikation eines Positivbefundes

Auswahl der Keime

Zielkeime (*S. diastaticus*)

	Stamm	Stammname
	TUM S160 TUM 3-D-2	Saccharomyces cerevisiae var. diastaticus Saccharomyces cerevisiae var. diastaticus
	TUM 203	Saccharomyces cerevisiae var. diastaticus
	TUM S91	Saccharomyces cerevisiae var. diastaticus
	TUM 1-H-7	Saccharomyces cerevisiae var. diastaticus
	TUM S264	Saccharomyces cerevisiae var. diastaticus
	TUM S104	Saccharomyces cerevisiae var. diastaticus
	TUM 3-H-2	Saccharomyces cerevisiae var. diastaticus
	Praxisisolat II	Saccharomyces cerevisiae var. diastaticus
S. diastaticus	Praxisisolat III	Saccharomyces cerevisiae var. diastaticus
tati	TUM S228	Saccharomyces cerevisiae var. diastaticus
lias	TUM S71	Saccharomyces cerevisiae var. diastaticus
S. c	TUM S72	Saccharomyces cerevisiae var. diastaticus
	TUM S263	Saccharomyces cerevisiae var. diastaticus
	PIBB 121	Saccharomyces cerevisiae var. diastaticus
	TUM 1-B-8	Saccharomyces cerevisiae var. diastaticus
	BRY 402	Saccharomyces cerevisiae var. diastaticus
	SY1	Saccharomyces cerevisiae var. diastaticus
	PIBA 109	Saccharomyces cerevisiae var. diastaticus
	TUM 541	Saccharomyces cerevisiae var. diastaticus
	Praxisisolat IV	Saccharomyces cerevisiae var. diastaticus
	Praxisisolat I	Saccharomyces cerevisiae var. diastaticus

Selektivkeime (ug/og BH)


	Stamm	Stammname
	TUM S81	Saccharomyces cerevisiae
	TUM S23	Saccharomyces pastorianus ssp. carlsbergensis
	BRY 420	Saccharomyces cerevisiae
ے	BRY 96	Saccharomyces cerevisiae
efe	TUM S21	Saccharomyces cerevisiae (Altbier)
ř	TUM S123	Saccharomyces cerevisiae
Kulturhefen	W68	Saccharomyces cerevisiae
	W34-70	Saccharomyces pastorianus ssp. carlsbergensis
	US 05	Saccharomyces cerevisiae
	TUM S107	Saccharomyces cerevisiae
	TUM S250	Saccharomyces cerevisiae (Altbier)

Nicht-Saccharomyces Hefen

	Stamm	Stammname
	TUM C49	Candida boidinii
	TUM C53 DSM 5422	Candida boidinii Kluyveromyces marxianus
en	TUM C21	Canida intermedia
Wildhefen	TUM C57	Candida sake
i i	DSM 70001	Dekkera bruxellensis
}	TUM H4	Hansenula anomala
	TUM D7	Debaryomyces hansenii
	TUM P19	Pichia anomala
	TUM P24	Pichia anomala

Testreihen und Ergebnisse

BIERSCHÄDLICHKEITSTEST

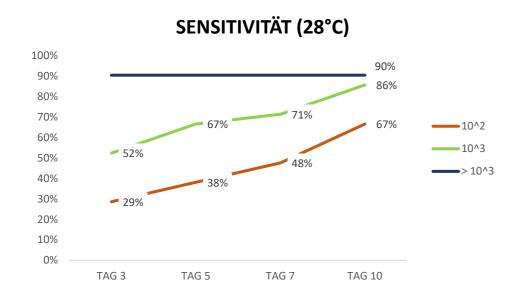
Ziel:

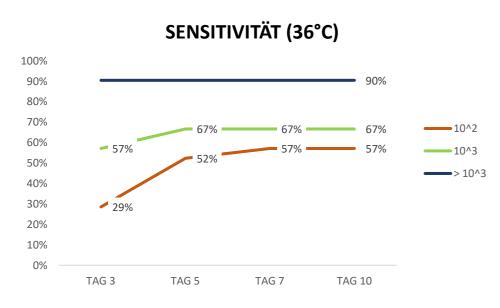
Testung der Diastaticus Stämme auf Bierschädlichkeit

Versuchsaufbau:

21 Target-Keime in der Verdünnungsstufe 10⁵ in entkohlensäuerten und endvergorenen Bier gespikt

Inkubationsparameter:


30°C aerob mit Einsatz von Durham Röhrchen, 10d


Ergebnis:

Mit Ausnahme von Stamm 3-H-S, zeigten alle Stämme CO₂ Bildung

3-H-S zeigte keine CO2 Bildung, obwohl STA Gen vorhanden.

Testreihen und Ergebnisse Focus Farbumschlag

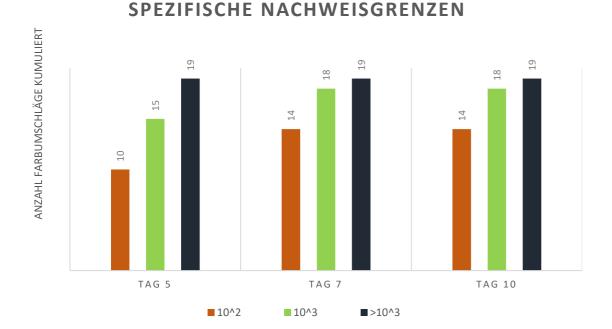
Ziel:

Sensitivitätsgrenzen von 10³ bis 10⁴ KBE/ml

Versuchsaufbau:

21 Target-Keime in den Verdünnungsstufen 10² bis >10³

Inkubationsparameter:


28°C und 36°C, aerob

Ergebnis:

an Tag 7 wurden 71% aller Stämme bei 28°C und einer Keimzahl von 10³ mit Farbumschlag detektiert

Die Bebrütung bei 36°C zeigt nur anfangs bessere Ergebnisse

Testreihen und Ergebnisse Focus Farbumschlag

KBE/ml	Tag 5		Tag 7		Tag 10	
10^0	2	10%	3	14%	3	14%
10^1	6	29%	6	29%	6	29%
10^2	10	48%	14	67%	14	67%
10^3	15	71%	18	86%	18	86%
>10^3	19	90%	19	90%	19	90%

Ziel:

Spezifitätsgrenzen von 10³ bis 10⁴ KBE/ml

Versuchsaufbau:

21 Target-Keime in den Verdünnungsstufen 10² bis >10³ in jeweils 10⁸ Zellen drei verschiedener Kulturhefen (US-05, S23, 34/70) gespikt

Inkubationsparameter:

28°C, aerob

Ergebnis:

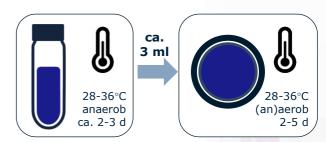
Nach nur 7 Tagen wurden 18 von 21 Keimen bei einer Keimzahl von 10³ durch Farbumschlag detektiert

DSDM™ - Methodenbeschreibung

Flüssige Voranreicherung

1 ml Probe in die Bouillon geben

Inkubation

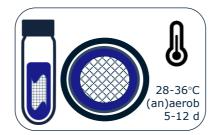

Einsatz Durham Röhrchen empfohlen

Positivbefund

Alternativ FVA + PG*

Flüssige Voranreicherung Plattengußverfahren * FVA:

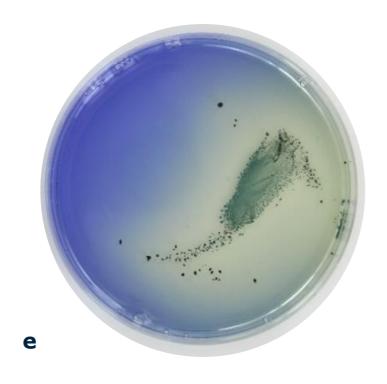
Membranfiltration

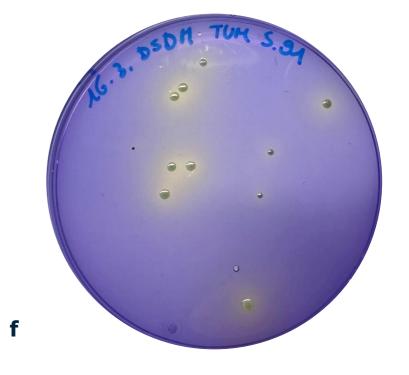

100-150 ml Probe filtrieren

Filter in Bouillon oder auf Agar legen

Austrichplatte

0,1-0,2 ml Probe auf verfestigten Agar verteilen





DSDM™ – Döhler Saccharomyces Diastaticus Medium

Bilder von Positivbefunden

a Negativkontrolle

b S. diastaticus, Hefeprobe, Anreicherung

- **c** S. diastaticus, direkt inokuliert
- **d** S. diastaticus, Bierprobe, Membranfilter

e S. diastaticus, direkt inokuliert)

f S. diastaticus Einzelkolonien (FVA + PG)

Siebel Kulturmedien – Partnerschaft mit Döhler

Seit 2019 Döhler produziert und vertreibt die weltweit bekannten Kulturmedien vom Siebel Institute of Technology für die mikrobiologische Analyse. DSDM™ ist die erste Portfolioerweiterung.

weltweit bekanntes amerikanisches Institut und Anbieter von Ausbildung, Produkten und Service für die Brauereiindustrie

DÖHLER | WE BRING IDEAS TO LIFE.

20

Alles für die mikrobiologische Hefe- und Bieranalyse

Vertrauen Sie auf unsere bewährten Lösungen für alle MiBi Analysen in der Brauerei!

Bierverderbende Bakterien

NBB®-B Hefeanalyse

NBB®-C Unfiltratanalyse

NBB®-A Filtratanalyse

NBB®-PCR fPCR Anreicherung

BQC Kit Für Kleinlabore

LMDA | HLP

DSDM | LCSM | LWYM

Bei den bierschädlichen Mikroorganismen handelt es sich neben der wilden Hefe hauptsächlich um fakultativ oder obligat anaerobe Milchsäurebakterien mit einer spezifischen Alkohol- und Hopfentoleranz, z. B. Lactobacillus brevis, L. lindneri oder Pediococci usw.. Sie können bereits in Rohstoffen wie Wasser oder Anstellhefe und im Produktionsprozess vom Sudhaus bis zur Abfüllung, vom unfiltrierten bis zum abgefüllten Bier vorhanden sein. Ein wesentlich höheres Kontaminationsrisiko besteht jedoch bei der Abfüllung, wenn sich Biofilme als Quelle einer Sekundärkontamination etablieren können.

Die NBB® range umfasst gebrauchsfertige Medien - von der Bouillon bis zum Agar - für den Nachweis von Spurenverunreinigungen in allen Proben entlang des gesamten Brauprozesses. Schon der Erfinder Prof. Dr. Werner Back legte höchsten Wert auf Sicherheit, Schnelligkeit und Selektivität. Durch seine Entdeckung spezieller Wachstumssubstanzen werden auch sehr langsam wachsende Keime in kürzester Zeit zuverlässig nachgewiesen.

Validierung

Um die Sicherheit zu erhöhen werden nicht relevante Mikroorganismen gehemmt. Brauereien vertrauen auf NBB® rund um den Globus.

Das BQC (Brewers Qcheck Kit) enthält ausnahmslos einfach zu handhabende Einzeltests, deren Auswertung auch für nicht geschulte Laboranten unkompliziert ist.

"Halten Sie Ihre Hefe fit und rein". Unerwünschte Kontaminationen mit wilder Hefe lassen sich mit dem **Siebel**-Medienangebot nachweisen. Seit Jahren vertraut uns das Siebel Institute of Technology US die Herstellung seiner hochwertigen Produkte an.

Unsere neueste Eigenentwicklung im Bereich der Hefeanalyse ist das **DSDM™** Nachweismedium für Saccharomyces cerevisiae var. diastaticus – selektiv und schnell!

NATURAL INGREDIENTS WE BRING INGREDIENT SYSTEMS IDEAS TO LIFE. INTEGRATED SOLUTIONS Although the utmost care has been taken to prepare this material as accurately as possible, Döhler does not guarantee the accuracy, timeliness, completeness or merchantability for any purpose of any information contained in this document. The information contained herein is for informational purposes only and is subject to change without notice. © DÖHLER