

Abstract Info Sheet

For the <u>Munich Hydrogen Symposium 2024</u> we would like to welcome the listed main research topics in the field of hydrogen. The contents can be of an analytical, simulation-based, or experimental nature. Moreover, we welcome suggestions for additional topics that align with hydrogen research, provided they contribute to the overall research focus of the conference. We look forward to a broad exchange in the field of hydrogen research!

Please choose the topic your research belongs to from the following list:

	Topic	Sub-topics	Examples
1.	Hydrogen System Studies	1.a System modelling	Circular economy, transport and storage, implementation in existing infrastructure (steel industry, chemical industry, glass industry)
		1.b Policy and regulations	European and worldwide challenges and goals
		1.c Economic aspects	Life Cycle Analysis (LCA), value chain analysis, transport and storage costs
2.	Hydrogen Production	2.a Electrochemical	Electrolysis (PEM, alkaline, high and low temperature electrolysis, SOEC), reversible SOC
		2.b Thermochemical	Pyrolysis and gasification of biomass and waste for hydrogen and syngas production
		2.c Biochemical	Hydrogenases and whole cell biocatalysts, utilization of algae and cyanobacteria, metabolic engineering, photo-fermentation, microbial electrolysis cells (MECs)
3.	Power-to-X and Circular Economy	3.a Power-to-X (Synthesis Pathways)	Methanol synthesis, sustainable aviation fuels (SAF), carbon capture utilization (CCU), CO ₂ direct-electrolysis to ethylene, hydrogenolysis, ammonia synthesis, hydro-processing
		3.b Biomass- and Waste-to-X Technologies	Pyrolysis, gasification and plasma technologies for biomass, waste and syngas treatment, syngas cleaning
4.	Hydrogen Utilization	4.a Applications	Fuel cells (conventional and SOC), production of bio-based polymers, electro-synthesis of polymers
		4.b Synthetic Energy Carriers and Chemicals	Methanol, ethylene, ammonia, SAF

Abstract Submission Guidelines

Please adhere to the following guidelines. Only this approach can guarantee that your contribution will appear correctly in the published conference proceedings. Therefore, please adhere strictly to the specifications and formatting specified therein.

Template	Click here for the template
Length	max. 2 pages, but at least more than 250 words
Format	doc, docx
Size	max. 5 MB

Please use the abstract submission tool provided on the conference website. <u>Click here to get to the submission.</u>

Timeline

11.12.2023	Start of abstract submission	
11.02.2024	Deadline for the submission of abstracts	
01.04.2024	Feedback to submitters	
21.10.2024	Start of the MH2S 2024	

Conference Proceedings and Conference Presentations

	The abstracts will be published in a book of abstract with a DOI in the MH2S 2024 conference proceedings.
presentations	The collection of presentations will be made available via a download link after the MH2S 2024. All presenters will be asked in advance for permission to make their presentations available.

Contact

Dr. Sebastian Fendt

Technical University of Munich School of Engineering and Design Chair of Energy Systems

Boltzmannstraße 15 85748 Garching near Munich

Email: h2symposium.les@ed.tum.de