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Abstract—In this work, we address the transmission of cor-
related Gaussian sources over Multiple Input Multiple Output
(MIMO) fading channels using analog Joint Source Channel
Coding (JSCC). The source symbols are first compressed using
a continuous parametric mapping based on a sinusoidal function
that exploits the source correlation. Given that the data at the
encoder output is also correlated, the information corresponding
to the covariance matrix is incorporated into the design of the
linear transmit and receive filters. The promising results obtained
from the simulations confirm the suitability of analog JSCC
techniques for the considered scenario.

I. INTRODUCTION

The application of analog Joint Source Channel Coding
(JSCC) techniques for the transmission of independent analog
sources has been analyzed for different scenarios and com-
munication models [1], [2], [3], [4]. These works confirm
that this transmission strategy is a feasible alternative to
traditional approaches based on the separation of the source
and the channel coding operations. Analog JSCC has also been
considered for the transmission of correlated sources, specially
in the context of wireless sensor networks [5], [6], [7]. The
source-channel separation is suboptimal in scenarios such as
the Multiple Access Channel (MAC) when the information
is correlated, since the separate optimization of the source
and channel encoders is not able to efficiently exploit the
source correlation [5], [8], [9]. For this reason, analog JSCC
techniques are particularly appealing for these scenarios.

In this work, we address the transmission of discrete-time
analog correlated symbols over fading channels using analog
JSCC. The transmitter and receiver are also equipped with
multiple antennas to increase the spectral efficiency. The main
contributions of this work are summarized as follows:
• A parametric non-linear analog mapping is proposed to

exploit the correlation of two consecutive source symbols
to produce one encoded symbol (bandwidth compres-
sion). The advantage of parametric mappings with respect
to non-parametric ones is the significant reduction of the
computational cost in the coding and decoding opera-
tions. In addition, the utilization of parametric mappings
enables the affordable optimization of the analog JSCC
system by adapting the encoder parameters to the channel
time variations.

• The proposed analog JSCC system for Multiple Input
Multiple Output (MIMO) channels exhibits extremely

low complexity and delay thanks to the system design
based on a two-stage structure similar to the one proposed
for uncorrelated sources in [10].

• The design of the transmit and receive linear filters
incorporates the correlation information after the analog
JSCC encoding. Two different methods are considered to
estimate such correlation. Initially, the transformation of
the source symbols is assumed to be linear and, hence,
the correlation between the symbols at the encoder output
can be analytically calculated. This approximation can
be improved by using the unscented transform to model
the covariance matrix after the non linear transformations
performed by the analog encoder.

• The performance of the proposed analog JSCC system is
evaluated over fading MIMO channels. Other well-known
analog mappings are also considered to illustrate the
suitability of the proposed mapping for this scenario. Fi-
nally, the obtained results are compared to the theoretical
bounds given by the Optimum Performance Theoretically
Attainable (OPTA).

In summary, we show that the utilization of parametric
analog mappings allows to efficiently exploit the correlation
among the source symbols. The resulting analog JSCC system
is also able to achieve high transmission rates due to the
compression operation at the encoder, and the use of multiple
antennas at the transmitter and the receiver. An additional
advantage of this approach is the simplicity for the system
optimization depending on the specific channel conditions.

II. SYSTEM MODEL

Let us assume a correlated analog source modeled as an
autoregressive random process of order one, AR(1),

sk = ρsk−1 + ek (1)

where ρ is a constant parameter, and ek is a zero-mean
Gaussian distributed variable with variance σ2

ε = 1 − ρ2. In
such model, the correlation between two arbitrary symbols
is E[sisi+n] = ρn. Hence, two consecutive source symbols,
si = [s2i, s2i+1]T , follow a bivariate Gaussian distribution
with zero-mean and covariance matrix

Cs = E
[
sis

T
i

]
=

[
1 ρ
ρ 1

]
.
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Fig. 1. Block diagram of the proposed analog JSCC system.

Figure 1 shows the block diagram of the proposed analog
JSCC system for the transmission of correlated source sym-
bols over MIMO fading channels. As shown in the figure,
the transmitter and the receiver are equipped with nT and
nR antennas, respectively. At the i-th transmit antenna, two
consecutive source symbols si are encoded into one channel
symbol xi using a 2:1 analog JSCC mapping. As explained in
Section IV, the analog mapping must be designed to exploit
the correlation between the source symbols to be compressed.

After the encoding operation, the resulting vector of nT
symbols x = [x1, . . . , xnT

]T is precoded and sent over a
MIMO fading channel. The received signal is hence given by

y = HPx + n, (2)

where H is the MIMO channel response matrix, P is the
precoding matrix and n is the Additive White Gaussian Noise
(AWGN) with n ∼ NC(0, σ2

nInR
). The precoder P is designed

to satisfy a total transmit power constraint PT , hence the
Signal-to-Noise Rate (SNR) is η = PT /σ

2
n. For simplicity,

along this paper the transmit power is assumed to be PT = 1.
At the receiver, the vector of nR observed symbols is

employed to calculate an estimate of the source symbols.
MMSE decoding is optimum for analog JSCC given that it
minimizes the distortion between source and decoded sym-
bols. Nevertheless, the analog mapping involves non-linear
transformations at the encoder and, hence, the calculation of
the MMSE estimates requires the numerical computation of
complex integrals.

A low-complexity alternative is the concatenation of a
linear MMSE filter and a Maximum Likelihood (ML) decoder,
as proposed in [10] for the analog JSCC transmission of
independent sources. In such case, an MMSE linear estimate
of the transmitted symbols is obtained as follows

x̂ = Wy = WHPx + Wn, (3)

where W is the linear MMSE receive filter

W = CxP
HHH(HPCxP

HHH + σ2
nInR

)−1, (4)

with Cx representing the covariance matrix of the encoded
symbols. The covariance of the estimation error is

Ce = Cx −CxP
HHH

(
HPCxP

HHH + σ2
nInR

)−1
HPCx.

(5)
If no Channel State Information (CSI) is available at the

transmitter, the optimum precoder is P′ = 1/
√
nT InT

and
the linear MMSE detector simplifies to

W′ = (HHH + nTσ
2
nC−1x )−1HH , (6)

An estimate of the source symbols ŝi is finally determined
from the filtered symbols x̂ by using the corresponding ML
decoder.

A. Covariance of the Encoded Symbols

The optimum transmit and receive filters should exploit the
correlation of the encoded symbols to minimize the expected
distortion. This correlation is determined from the covariance
matrix of the source symbols Cs, and the analog JSCC
mapping employed at the encoding operation.

A first estimation of the covariance matrix of the encoded
symbols Cx is obtained by approximating the non-linear ana-
log mapping to a linear transformations xi = k(s2i + s2i+1),
where k is a factor to guarantee that E[x2i ] = 1 ∀i. For the
two-antennas case, nT = 2, it can be show that the covariance
matrix for the encoded symbols x = [x1, x2]T is

Cx = E
[
xxT

]
=

[
1 1

2ρ(1 + ρ)
1
2ρ(1 + ρ) 1

]
.

In practice, we have observed that this approach provides
good estimates of the actual correlation, specially in the
low SNR regime where the mapping approximates a linear
transform. However, these approximations could be improved
by using the idea of the Unscented Transform to model the
covariance after the non-linear transformations of the analog
encoder.

III. LINEAR MMSE PRECODING

Let us now consider that the CSI is available at transmission
and reception. In this case, CSI knowledge can be exploited
to design a linear MMSE precoder to improve the system
performance.

The linear transmit and receive filters are designed to
minimize the MSE between the transmitted symbols x and
the estimates x̂. The error vector is given by

e = x− x̂ = x−WHPx + Wn, (7)

and, therefore, the transmit and receive filters P and W can
calculated by solving

arg min
P,W

E
[
tr
(
eeH

)]
s.t. tr

(
PCxP

H
)

= 1, (8)

where tr
(
·
)

represents the trace operator. This problem can be
solved by differentiating this MSE expression with respect to
PH and WH . The resulting expressions can be used to obtain
the filters P and W following an alternating approach.

Alternatively, a lower complexity solution can be found by
following an approach similar to [11], [12] but incorporat-
ing the transmitted symbols correlation information into the
derivation of the optimum filter expressions [13]. Let us con-
sider the Single Value Decomposition (SVD) of the channel
as H = UhΣhV

H
h and the SVD of the covariace matrix

Cx = UxΣxV
H
x . Assuming the optimum linear MMSE filters

are of the form P = VhTUH
x and W = UsDUH

h , where



the matrices T and D are diagonal, the expression in (8) can
be transformed in

arg min
D,T

tr
(
Σx + DΣhTΣxT

HΣH
h DH

+ σ2
nDDH − 2<{DΣhTΣx}

)
(9)

s.t. tr
(
TΣxT

H
)

= 1.

Since the problem is expressed as the product of diagonal
matrices, the Lagrangian cost function can be written as

L =

L∑
i=1

λx,i(ditiλh,i − 1)2 + σ2
nd

2
i + ∆(

L∑
i=1

t2iλx,i − 1),

(10)

where di and ti are the diagonal elements of D and T,
respectively; ∆ ≥ 0 is a Lagrange multiplier; and λx,i and
λh,i are the eigenvalues of the source covariance matrix and
the channel, respectively. Thus, Σx = {λx,1, λx,2, . . . , λx,nT

}
and Σh = {λh,1, λh,2, . . . , λh,L}, with L the number of non-
zero channel eigenvalues. The solutions for di and ti are given
by

d2i =
1

λ2h,i

[
λh,i

√
λx,i∆

σ2
n

−∆

]+
(11)

t2i =
1

λ2h,i

[
λh,i

√
σ2
n

λx,i∆
− σ2

n

λx,i

]+
, (12)

The operator [·]+ takes the positive arguments and sets nega-
tive arguments to zero.

Substituting (12) into the power constraint, the following
value is obtained for the Lagrange multiplier

∆ =
1

σ2
n

 ∑L∗

k=1

√
λx,k

λh,k

η +
∑L∗

k=1
1

λ2
h,1


2

. (13)

Finally, substituting this value for ∆ into (11) and (12), we
find the following solution for the diagonal matrices T and D

di =

√
1

σ2
n

Ai

[√
λxi
−Ai

]+
(14)

ti =

√
σ2
n

λ2h,i

[
1

Aiλx,i
− 1

λxi

]+
(15)

where

Ai =

1
λh,i

∑L∗

k=1
λx,k

λh,k

η +
∑L∗

k=1
1

λ2
h,k

. (16)

The number L∗ ≤ L refers to the number of singular values
whose corresponding expressions for di or ti are non-zero.
The solution previously described remembers that obtained
for the case of uncorrelated inputs in [12], but including
the eigenvalues of the source covariance matrix. Equivalently
to [12], it can also be observed that the obtained solution
resembles the traditional waterfilling algorithm in the sense
that it provides the optimal distribution of the transmit power
among the data streams that minimizes the MSE.
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Fig. 2. Proposed 2:1 analog JSCC mapping for SNR = 25 dB.

IV. ANALOG JSCC MAPPING

Let us focus on the 2:1 compression of the source infor-
mation. A parametric non-linear analog mapping based on
sinusoidal functions is proposed to transform two correlated
source symbols si = [si, s(i+1)]

T into one encoded symbol
xi. Let Cs = UHΣU be the eigendecomposition of the
source covariance matrix. The proposed mapping is based on
the space-filling curves defined by the following parametric
expression:

K(t) = UΣ

[
t− 1

2α sin(αt)
∆ sin(αt)

]
, (17)

where K(t) represents a point into the bidimensional source
space given a parameter t in the one-dimensional channel
space. The parameters α and ∆ represent the frequency and
the amplitude of the sinusoidal function, respectively. The
optimal values for these parameters specifically depend on the
value of the noise variance or, equivalently, on the SNR value.
An adequate optimization of α and ∆ for the SNR value
is important to closely approach the optimal cost-distortion
tradeoff.

Besides the parametric curve given by (17), it is required
to define a function M(s) that specifies the mapping of the
points in the source space into the corresponding point in the
parametric curve. In this case, the mapping function is

x = M(s) = arg min
t

∫ ∞
−∞
‖s−K(u)‖2pn(u− t)du, (18)

where pn(n) represents the probability density function of the
noise. If the noise distribution is disregarded, i.e., pn(n) =
δ(n), the mapping function reduces to the minimum Euclidean
distance.

The utilization of this mapping is motivated by previous
works for the considered scenario by using Power Constrained
Channel Optimized Vector Quantizers [14] and the optimal



non parametric mappings obtained by following an approach
similar to [15] for the case of correlated sources.

Figure 2 shows the specific analog JSCC mapping for
SNR = 25 dB. As observed, the red curve corresponds
to the sinusoidal function given by (17) with the optimal
parameters α and ∆ for that SNR. The point cloud around the
curve is generated from a bivariate Gaussian with correlation
factor ρ = 0.9. The figure also shows how the correlated
Gaussian symbols are mapped to the corresponding point
on the curve according to (18). Finally, the different colour-
schemes represents the variation of the encoded values given
by the curve parameter t. At the receiver, an estimate of the
source symbols is computed from the observed symbols by
using the Maximum Likelihood (ML) decoder which has the
form ŝi = h(x̂i) = K(x̂i).

As already mentioned, the value of the parameters α and ∆
can be optimized depending on the SNR to improve the system
performance. In the case of fading channels, it is necessary
to estimate the effective SNR at the receiver and feedback
this information to the transmitter. Thereby, the encoder may
adapt the mapping parameters to the channel fluctuations. The
effective SNRs are estimated by using the covariance matrix
of the error. Hence, the estimation of the SNRs per antenna
can be obtained from (5) as

η̂ = diag
(
C−1e

)
, (19)

where the operator diag(·) provides a vector with the diagonal
elements of the input matrix.

V. PRELIMINARY RESULTS

In this section, the results of computer simulations are
presented to illustrate the performance of the proposed analog
JSCC system for the transmission of correlated information
over MIMO channels. In particular, we focus on nT × nR
Rayleigh fading channels H, such that E

[
tr
(
HHH

)]
=

nRnT . In this earlier version of the paper, we consider a 2×2
MIMO system with a correlation factor ρ = 0.9 for the source
symbols.

The performance of analog communications is measured in
terms of the Signal-to-Distortion Rate (SDR) with respect to
the SNR. The SDR is defined as

SDR[dB] = 10 log10(1/MSE),

where the term MSE = 1
M

∑M
i=1 E

[
‖ŝi − si‖2

]
is the MSE

between the source and the estimated symbols.
It is interesting to compare the performance of an analog

communication systems to the corresponding optimal cost-
distortion tradeoff, referred to as the Optimum Performance
Theoretically Attainable (OPTA). In general, this bound is
calculated by equating the rate distortion of the source and
the channel capacity [17].
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Fig. 3. Performance of the proposed analog JSCC system for 2× 2 MIMO
channels.

For multivariate Gaussian sources and the MSE as the dis-
tortion criterion, the rate distortion function can be represented
parametrically as [18]

D(θ) =
1

M

M∑
i=1

min[θ, λs,i],

R(θ) =
1

M

M∑
i=1

max

[
0,

1

2
log

(
λs,i
θ

)]
, (20)

where D(θ) is the distortion function, λi represent the eigen-
values of the covariance matrix and M is the source di-
mension. Notice that the analog JSCC system transmits 2nT
source symbols per channel uses, hence M is actually 2nT . In
this case, the covariance matrix for 2nT consecutive symbols
generated by an AR(1) process is

C̃s =


1 ρ ρ2 . . . ρ2nT−1

ρ 1 ρ . . . ρ2nT−2

...
...

...
. . .

...
ρ2nT−1 ρ2nT−2 . . . ρ 1

 .
On the other hand, the capacity of an nT × nR MIMO

systems is [19]

C(H) = log det

(
InR

+
1

σ2
n

HPPHHH

)
. (21)

Notice that the capacity given by (21) is maximized when the
precoder is designed according to the waterfilling solution.

Equating (20) and (21), solving for the distortion function
D(θ) and, finally, calculating the mathematical expectation of
the resulting expression, we determine the expected minimum
achievable distortion or, equivalently, the optimal performance
depending on the considered SNR.

Figure 3 shows the performance of the analog JSCC system
over 2× 2 MIMO channels with a source correlation ρ = 0.9.
The figure plots the SDR curves obtained for three different



situations: 1) utilization of a linear MMSE receive filter
without exploiting the correlation of the encoded symbols, 2)
the receive filter exploits such a correlation, and 3) utilization
of a linear MMSE precoder at transmission. As expected, the
worst performance corresponds to the case of linear MMSE
receive filtering for uncorrelated sources. The exploitation of
the correlation into the design of the receive filters improves
the system performance, specially for low and medium SNRs.
In the high SNR region, the correlation factor present in
(6) is less significant because it is weighted by the noise
variance. In addition, the utilization of the linear MMSE
precoder described in Section III significantly outperforms the
two previous strategies thanks to the smart exploitation of the
channel information at the transmitter.

VI. OUTLOOK

In the final version of the paper, we expect to include the
following aspects:
• The generalization of the covariance matrix for nT an-

tennas assuming linear transformations. In addition, the
Unscented Transform will be considered to estimate the
covariance matrix after the non linear transformations of
the analog mapping. Finally, the accuracy of the both
estimates will be compared.

• The OPTA curve for this scenario, as well as a perfor-
mance comparison between the proposed analog paramet-
ric mapping and other known analog JSCC mappings for
the compression of Gaussian sources, such as linear or
spiral-like mappings.

• A performance evaluation of the proposed communica-
tion system in other scenarios.

VII. CONCLUSIONS

In this work, we have addressed the transmission of cor-
related Gaussian sources over MIMO fading channels using
analog JSCC. We have presented a novel parametric analog
JSCC mapping to compress two source symbols into one chan-
nel symbol. In addition, the utilization of multiple antennas at
both transmission and reception allows to increase the system
throughput. The structured design of the proposed system pre-
serves the main advantages of analog JSCC communications,
namely, low complexity, negligible latency and robustness
against time variations of fading channels. According to this
idea, we have designed those linear transmit and receive filters
that minimize the signal distortion considering the specific
correlation at the encoded symbol vectors to be transmitted.
The promising results obtained in the simulations confirm
the suitability of analog JSCC techniques for the considered
scenario.
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