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Abstract—Generalized frequency division multiplexing
(GFDM) is a promising candidate waveform for next generation
wireless communications systems. Unlike conventional orthogonal
frequency division multiplexing (OFDM) based systems, it is
a non-orthogonal waveform subject to inter-carrier and inter-
symbol interference. In multiple-input multiple-output (MIMO)
systems, the additional inter-antenna interference also takes
place. The presence of such three-dimensional interference
challenges the receiver design. This paper addresses the MIMO-
GFDM channel estimation problem with the aid of structurally
inverted pilot symbols on the transmitter side. Specifically, the
received signal is expressed as the joint effect of the pilot part,
unknown data part and noise part. On top of this formulation,
least squares (LS) and linear minimum mean square error
(LMMSE) estimators are presented, while their performance is
evaluated for various pilot arrangements.

I. INTRODUCTION

ULTRA low latency, very high reliability and robustness,
low out-of-band (OOB) emission and very high data

capacity are among the challenges for the 5th generation (5G)
of wireless systems, e.g., [1], [2], [3]. The well-known orthog-
onal frequency division multiplexing (OFDM) has reached to
its boundaries in addressing the above various requirements.
Hence, several non-orthogonal waveform candidates have been
proposed and rediscovered for the new air interface of 5G, e.g.
filter bank multi-carrier (FBMC) [4], universal filtered multi-
carrier (UFMC) [5], filtered-OFDM [6] as well as generalized
frequency division multiplexing (GFDM) [7].

This paper considers GFDM, since it is equipped with
necessary flexibility to address a wide range of requirements
envisioned for 5G, e.g., latency, data rates, reliability and OOB
emission. Relying on it, a unified air interface can be provided
for various service types. The combination of GFDM with
multiple antennas, i.e., multiple-input multiple-output (MIMO)
GFDM, can further enhance the system performance e.g. [8],
[9], [10]. For the MIMO-GFDM receiver design, channel
estimation is a critical functional unit. The prior work [11]
relied on preamble which is spectrally efficient for continuous
transmission over slow fading channels. This paper aims to
deliver accurate estimates of channel state information (CSI)
for coherent detection by scattered pilot symbols. This type

of data-aided channel estimation is more suitable for time and
frequency dispersive channels.

In pilot-aided channel estimation, pilot symbols and
information-bearing data symbols are multiplexed and trans-
mitted within the same time-frequency resource block, e.g.,
Fig. 1. At the receiver side, the task of channel estimation is
to estimate CSI based on the knowledge of pilot symbols. To
this end, different channel estimation techniques have been
developed for conventional OFDM systems e.g. [12], [13],
[14], [15] and reference therein. The extension of OFDM-
based channel estimation methods for GFDM are not straight-
forward, because the orthogonality of OFDM ensures clean
pilot observations without interference from unknown data
symbols. This property is not valid for GFDM which is a non-
orthogonal waveform in general. Moreover, in OFDM many
narrow-band subcarriers allow one-tap equalization while on
the contrary, in GFDM depending on the transmit signal
configuration (e.g. low latency requirement) the subcarriers
might have broader bandwidth and consequently, they become
frequency selective.

Given the knowledge of data symbols at the transmitter side,
it is possible to design pilots such that the interference from
data symbols can be properly pre-cancelled. This idea has been
applied for channel estimation in a single carrier transmission
system over a frequency selective fading channel [16] as
well as a GFDM-based system [17]. However, the approach
proposed in [17] was developed under the assumption of a
nearly flat and slow fading channel, which is unrealistic with
respect to broadband communication.

This paper tackles the MIMO-GFDM channel estimation
problem for rich multipath fading channels. Two well known
estimation techniques, namely least squares (LS) and lin-
ear minimum mean square error (LMMSE), are respectively
tailored for pilot-aided MIMO-GFDM channel estimation.
We evaluate and analyze their performance in accordance
with pilot arrangement and correspondingly, we examine their
complexity. The LS approach is an unbiased estimator which
does not require any probabilistic assumption and therefore, it
is being widely used due to its ease of implementation [18].
Nevertheless, the performance loss in LS estimation needs
significant attention. On the other hand, LMMSE estimation



is a Bayesian approach which exploits the a-priori knowledge
of channel statistics in order to improve the estimation quality
at the cost of further implementation complexity.

The rest of this extended abstract is organized as follows:
Section II describes the GFDM modulation, pilots insertion
and also the assumptions taken into account for the MIMO
channel. Section III applies the LS channel estimation method
and calculates the closed form expression of the mean squared
error (MSE). Based on the computations provided in Sec. III,
the LMMSE estimator is then obtained in Section IV. A short
summary of this abstract and further plans for the full paper
are provided in Sec. V.

A. Notations

Column-vectors are denoted by vector sign ~X and matrices
by boldface X. Time and frequency domain representations
are separated by lowercase and uppercase letters respectively.
E[·] is the expectation operator. The trace of a square matrix
X is Tr(X). The transpose and Hermitian conjugate of X are
XT and XH respectively. The Frobenius norm of a matrix X
is ‖X‖ and its square can be written as ‖X‖2 = Tr(XXH).
The vectorization of a matrix X (i.e. stacking its columns on
top of one another from left to right) is denoted by vec(X).
The Kronecker and Hadamard products [19] of matrices X
and Y are denoted as X⊗Y and X◦Y respectively. diag( ~X)
is a diagonal matrix whose diagonal entries are the entries
of the column vector ~X . Furthermore, diag(X, · · · ,Y ) is a
block diagonal matrix according to its matrix entries with X
being the top-left and Y being the bottom-right blocks. The
matrix In is the identity matrix of size n. ~0n is a column
vector of size n with all zero entries.

√
X is the element-wise

square root of matrix X.

II. SYSTEM MODEL

A. GFDM Modulation

We assume a GFDM block of length N = MK samples
where M complex valued subsymbols are being transmitted on
K subcarriers. In GFDM, the entries of vector ~d ∈ CN×1 are
filtered through circularly time and frequency shifted versions
of a prototype filter g[n]. Hence, we define

gk,m[n] , g [(n−mK) mod N ] exp

[
j2π

k

K
n

]
, (1)

where the circular time shift is acquired via the modulo
operation and frequency shift is obtained through the complex
exponential term corresponding to subsymbol index m and
subcarrier index k respectively.

The superposition of pulse shaped data symbols will then
provide the GFDM transmit sample:

x[n] =

K−1∑
k=0

M−1∑
m=0

gk,m[n]dk,m, n = 0, · · · , N − 1 (2)

where dk,m is the symbol transmitted on subcarrier k and
subsymbol m.
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Fig. 1: Pilot positions in time-frequency grid

In terms of matrix and vector notations, the above expres-
sion (2) can be rewritten as

~x = A~d, (3)

where ~d = (~dk[m])Tm=0:M−1, ~dk[m] = (dk,m)Tk=0:K−1 and
~x = (x[n])Tn=0:N−1. The GFDM transmit matrix A follows:

A =
(
~g0,0, · · · , ~gK−1,0, ~g0,1, ~g1,1, · · · , ~gK−1,M−1

)
, (4)

with column vector ~gk,m =
(
gk,m[n]

)T
n=0,1,··· ,N−1

.

Furthermore, the vector ~d = ~dp + ~dd is generated from
the summation of pilots sequence ~dp ∈ CN×1 and data
vector ~dd ∈ CN×1. The pilots sequence ~dp contains one pilot
subsymbol every ∆k subcarrier and the rest of subsymbols
which are the position of data samples from ~dd are kept zero.
Note that each time-frequency resource element is associated
to either pilots or data leading ~dp ◦ ~dd = ~0N . Fig. 1 shows an
example of pilot positions in the time-frequency grid.

B. MIMO Wireless Channel

Consider a multi-path MIMO block fading channel with nT
transmit and nR receive antennas. Due to the cyclic prefix (CP),
the receive signal ~yiR (at Rx antenna iR) in time is the circular
convolution of transmit signal ~xiT (from Tx antenna iT) and
the channel impulse response ~hiT,iR (between the antennas iT
and iR) plus the AWGN process ~wiR

~yiR =

nT∑
iT=1

~xiT ~ ~hiT,iR + ~wiR . (5)

In the above expression, it is assumed that all the channels
have shorter lengths L compared to the CP length. Moreover,
the channel impulse response between the antennas iT and iR
is defined as

~hiTiR ,
√

diag(~PiTiR)~giTiR , (6)

where ~PiTiR ∈ RL×1 is the power delay profile between the
Tx antenna iT and Rx antenna iR; and ~giTiR ∈ CL×1 is a
vector of zero mean complex Gaussian random variables with
unit variance, representing independent Rayleigh fading for
different Tx-Rx antenna pairs.



Due to the circular convolution in (5), the individual chan-
nels are diagonal in frequency domain and therefore, the
observed signal on Rx antenna iR is characterized by the
following linear equation:

~Y ′iR =

nT∑
iT=1

(X ′p,iT + X′d,iT) ~H ′iT,iR + ~W ′iR , (7)

with ~H ′iT,iR = F′L
~hiT,iR . Furthermore, X ′s,iT = diag( ~X ′s,iT)

is a diagonal matrix associated either to pilots p or data
sequences d (i.e. s ∈ {p, d}). ~X ′s,iT is being transmitted
on Tx antenna iT and it is defined as ~X ′s,iT , (F′tA

~ds)iT .
F′t ∈ CN×N is the DFT matrix and F′L ∈ CN×L contains
only the first L columns of F′t where L is the channel length.
~W ′iR is the frequency domain counterpart of AWGN process
on receive antenna iR.

If the number of pilot subcarriers is smaller than the number
of data subcarriers, i.e., the subcarrier spacing ∆k > 1, only
a subset of observations in frequency domain that contain
the information of pilots will be used for pilot-aided channel
estimation. In equations, the received signal at pilot-bearing
subcarriers follows:

~YiR =

nT∑
iT=1

(Xp,iT + Xd,iT) ~HiT,iR + ~WiR , (8)

where ~HiT,iR = FL
~hiT,iR , ~WiR = Ft ~wiR , Xs,iT = diag( ~Xs,iT)

and ~Xs,iT = (FtA~ds)iT . Here, Ft ⊆ F′t and FL ⊆ F′L are
N
∆k × N and N

∆k × L matrices that take the DFT at pilot
subcarriers respectively i.e. every m + kM row of Ft,FL

corresponds to m+ kM∆k row of F′t,F
′
L respectively. Note

that an estimation of the channel exists if and only if the
number of pilot-bearing subcarriers is larger than the channel
length i.e. K

∆k > L.
We rearrange the expression (8) into matrix form as

Y = (Xp+Xd)Fh+W, with


Y,W ∈ CN×nR

Xp,Xd ∈ CN×NnT

F ∈ CNnT×LnT

h ∈ CLnT×nR

(9)

herein, each of the above parameters are defined as

Y , (~Y1, · · · , ~YiR , · · · , ~YnR), (9a)
Xs, (Xs,1, · · · ,Xs,iT , · · · ,Xs,nT), (9b)
F , InT ⊗ FL, (9c)

h ,


~h11 · · · ~h1nR

...
. . .

...
~hnT1 · · · ~hnTnR

 , (9d)

W, ( ~W1, · · · , ~WiR , · · · , ~WnR). (9e)

Eq. (9) depicts that the observed matrix Y contains a de-
terministic term XpFh, an interference term due to useful
information XdFh and the WGN W. Moreover, Fig. 2 shows
an example of matrix structures for nT = 2 by nR = 2
antennas. In Fig. 2 it is illustrated that Xs is a wide matrix
composed of individual diagonal matrices of transmit signals
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Fig. 2: Overview of the matrix sturctures for
a 2× 2 MIMO channel

associated to different Tx antennas. Furthermore, the matrix
of channel impulse responses h is structured as nT × nR
column vectors. Such matrix structure brings an advantage for
mathematical analysis when vectorizing the channel matrix.
It is plane from Fig. 2 that ~h = vec(h) will consist of
nTnR = 4 independent column vectors of channel impulse
responses, and thus, considering Rayleigh fading channels
with no spatial correlation the covariance matrix of all channel
impulse responses E

[
~h~hH

]
becomes block diagonal.

Resorting to the matrix identity vec(ABC) = (CT ⊗
A)vec(B) [19], the corresponding vectorization of the ob-
served matrix Y yields the following equation:

~Y = vec(Y) = x̃~h+ ~W, (10)

where ~h = vec(h), ~W = vec(W) and x̃ = (InR ⊗XF).

III. LEAST SQUARES ESTIMATION

The structure of the transmit signal matrix Xs does not
allow to provide a least squares estimate of the channel in
frequency domain. As mentioned in Sec. II-B, Xs is a wide
matrix of diagonal matrices and therefore, the product of
XH

s Xs or specifically XH
p Xp is always singular. Although,

one can obtain the LS estimate of the channel impulse response
by minimizing ‖Y −XpFh‖2 with respect to h. This yields

ĥLS = QLSY = h + E, (11)

where QLS =
(
(XpF)H(XpF)

)−1
(XpF)H . The above esti-

mation yields the following interference and noise terms:

E = QLSΨ + QLSW. (12)

Here, Ψ = XdFh leads to an error floor due to the confront
of the pilots and useful information.

Accordingly, the result of the MSE calculation follows:

MSE = E
[
‖ĥLS − h‖2

]
= Tr

((
InR ⊗ (QH

LSQLS)
)
ΣΨΨ

)
+σ2

wTr
(
InR ⊗ (QH

LSQLS)
)
, (13)



where σ2
w is the noise variance. Then, we compute the covari-

ance matrix of the interference term as

ΣΨΨ = E
[
vec(XdFh)vec(XdFh)H

]
= EXd

[
(InR ⊗XdF)Eh

[
~h~hH |Xd

]
(InR ⊗XdF)

H
]

= EXd

[
(InR ⊗XdF) Σhh (InR ⊗XdF)

H
]
. (14)

Here, an important fact arises that both of the above matrices
(InR ⊗XdF) and Σhh have block diagonal structures as

InR ⊗XdF = diag([Xd,1FL, · · · ,Xd,nTFL], · · · ,
[Xd,1FL, · · · ,Xd,nTFL]), (15)

Σhh = diag(Σh11 , · · · ,ΣhnT1 ,

· · · ,Σh(nT−1)nR
,ΣhnTnR

), (16)

where ΣhiTiR
∈ RL×L is the diagonal covariance matrix of

channel impulse response, computed as

ΣhiTiR
= E

[
~hiTiR

~hHiTiR

]
= diag(~PiTiR). (17)

The product of (15), (16) and the hermitian conjugate of
(15) will then provide a block diagonal structure for the
interference covariance matrix ΣΨΨ as expressed in (14). This
is due to the fact that independent Rayleigh fading has been
considered for the individual channels (see Sec. II-B). As a
result, it is possible to perform the computations separately
for the individual blocks. Hence, for the Tx antenna iT and
Rx antenna iR we have [19]:

ΣΨΨiTiR
= EXd,iT

[
Xd,iTFLEh

[
~hiTiR

~hHiTiR |Xd,iT

]
FH

LXH
d,iT

]
= ΥiTiR ◦ΣXdXd,iT , (18)

where ΥiTiR = FLdiag(~PiTiR)FH
L . Furthermore, the covari-

ance matrix of data is being calculated as

ΣXdXd,iT = E[(FA~dd)iT(FA~dd)HiT ]

= (FAdiag(~̌σ2
d)AHFH)iT , (19)

where, ~̌σ2
d is the vector of data variances with zero entries at

pilot positions.
Consequently, for each Rx antenna iR we calculate the

individual diagonal blocks of ΣΨΨ as

ΣΨΨ(iR) =

nT∑
iT=1

ΥiTiR ◦ΣXdXd,iT . (20)

Hence, the full interference covariance matrix follows:

ΣΨΨ = diag(ΣΨΨ(iR=1),ΣΨΨ(iR=2), · · · ,ΣΨΨ(iR=nR)).
(21)

IV. LMMSE

The LMMSE estimation calculates the coefficients of a
linear filter aiming at minimum mean squared error. In ac-
cordance with (9) and the corresponding vectorization in (10),
we formally have:

~̂
hLMMSE = ΣhY Σ−1

Y Y
~Y , (22)

with the matrices defined as

ΣY Y = x̃pΣhhx̃H
p + ΣΨΨ + σ2

wINnR , (23)

ΣhY = Σhhx̃H
p , (24)

where x̃p = (InR ⊗ XpF). Note that ~̂hLMMSE is a column
vector containing nTnR individual column vectors of size L,
associated to the LMMSE estimates of the individual channel
impulse responses.

V. SHORT SUMMARY

This paper presents a system model (9), serving as a general
framework for deriving various pilot-aided channel estimators
for MIMO-GFDM systems. Both LS and LMMSE criterion-
based estimators are derived and their resulting MSE perfor-
mance is analyzed. The symbol error rate (SER) performance
of the MIMO-GFDM channel estimation will be simulated and
compared to OFDM in the full paper. Additionally, simulation
results for different pilot arrangements as well as numerical
analysis of the analytical computations vs simulation will be
provided accordingly.
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