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Abstract—We study the performance of multiple-input
multiple-output (MIMO) wireless systems employing linear min-
imum mean-squared error (MMSE) or zero-forcing (ZF) pro-
cessing at the receiver. In particular, we focus on a source-
destination pair communicating through a multiple scattering
channel affected by Rayleigh fading. This is an especially relevant
case, as it can well represent the communication between a pico-
base station and a user in 5G cellular networks. In this scenario,
we investigate the system performance in terms of achievable
sum rate. In the case of MMSE receiver, we provide a closed-
form expression, exploiting the relationship derived by McKay et
al. [1] between the achievable sum rate and the ergodic mutual
information corresponding to optimal nonlinear receivers. For ZF
receivers, instead, we leverage the result derived by Matthaiou
et al. [2], and derive compact upper and lower bounds to the
sum rate. We validate the obtained expression through numerical
results.

I. INTRODUCTION

Linear processing at the receive side of a MIMO system is a
suitable strategy to limit computational burden, while achiev-
ing close-to-optimal performance, especially in certain signal-
to-noise (SNR) ranges. In spite of their practical relevance,
information-theoretic characterization of linear detectors is yet
to be performed in closed form but for some results regarding
the minimum mean-squared error (MMSE) receiver [1], [3],
under the assumption of Rayleigh/Rayleigh-product or uncor-
related Rician fading. Zero-forcing (ZF) receive processing has
been investigated by Matthaiou et al. in [2], [4], providing
bounds to the sum rate in presence of Rayleigh fading, with
and without the presence of large-scale Lognormal fading
component.

Finding a closed-form expression for the sum rate of MIMO
communications in presence of fading and suboptimal receive
processing is more difficult than the characterization in the
case of optimal reception, due to the expression of the signal-
to-interference-plus-noise-ratio (SINR). In [1], the authors
unveiled a relationship between the sum rate for linear MIMO
receivers and the mutual information conveyed by the same
channel with optimal processing at the receiving end. The
strategy proposed in [1] finds its easiest application when the
channel matrix has independent columns, but the approach
can be conveniently extended to the case of channels modeled
by a product of independent matrices. A first step in this
direction has been made in [3], where the performance of
Rayleigh-product channel is investigated along the lines of

McKay’s result [1]. Throughout our paper, we further extend
the analysis to multiple Rayleigh scattering MIMO channels,
with an arbitrary number of scattering stages (clusters) and of
transmit/receive antennas. Such a fading model is suitable for
pico-cellular communication channels [5], foreseen as one of
the viable solutions for 5G. We provide first an analysis of the
spectral properties of the multiple-scattering channel matrix.
Then, relying on [1], we provide a closed-form expression
for the sum rate of a MIMO MMSE receiver. Additionally,
borrowing results from [2], we analyze the ZF case and derive
an upper and a lower bound to the sum rate.

II. NOTATION

Boldface uppercase and lowercase letters denote matrices
ad vectors, respectively. The identity matrix is indicated by I.
The determinant and the conjugate transpose of the generic
matrix A are denoted by |A| and AH, respectively, while the
(i, j)-th element of A is indicated by [A]i,j . Moreover, Ea[·]
represents the average operator with respect to the random
variable a.

For any m × m Hermitian matrix A with eigenvalues
a1, . . . , am, the Vandermonde determinant is defined as [6,
eq. (2.10)]:

V (A) =
∏

1≤`<k≤m

(ak − a`) . (1)

Gc,da,b(·|·), with integer parameters a, b, c, d, denotes the
Meijer-G function [7, Ch. 8].

The probability density function of the random variable a
is denoted by fa(a).

III. SYSTEM MODEL

Let us consider a source-destination pair of nodes communi-
cating through a wireless MIMO channel with N−1 scattering
stages, hereinafter referred to as clusters (see Figure 1). Let us
denote by n0 and nN the number of antennas at the source and
destination, respectively. The signal received at the destination
can be written as

y =
√
αHx + n (2)

where y and x are vectors of size equal to nN and n0,
respectively. Assuming no CSI at the transmitter, the available
transmit power is uniformly distributed over all the n0 anten-
nas, hence x is modeled as a random vector with covariance
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Fig. 1. Scattering channel.

Ex[xxH] = Es
n0

I. Note that the total transmitted energy is
Ex[xHx] = Es. H is an nN × n0 random channel matrix,
hereinafter also referred to as multiple-scattering channel
matrix. α is a normalization constant defined as

α =
n0nN

Tr{EH[HHH]}
. (3)

As an example, if N = 1 and H has i.i.d. Gaussian complex
entries with zero mean and unit variance, we have α = 1.
Finally, n is a vector of additive white Gaussian noise with
covariance En[nnH] = N0I. Under such assumptions, the
signal-to-noise ratio (SNR) of the system is ρ = Es/N0.

We assume that x and H are independent and that the
communication between source and destination is affected
by Rayleigh fading. Also, each cluster is composed of ni
scatterers, i = 1, . . . , N − 1. The random channel matrix, H,
can be thus expressed as

H = HN . . .Hi . . .H1 , (4)

where matrices Hi have size ni × ni−1 and are complex
random with i.i.d. entries whose real and imaginary parts are
independent and have a standard normal distribution. Given
the communication system under study, in this work we
consider n0 ≤ n1 ≤ . . . ≤ nN . Under such assumptions,
the normalization constant α is given by

α =
n0nN

Tr{EH[HHH]}
=

n0nN∏N
i=0 ni

=

N−1∏
i=1

1

ni
. (5)

When perfect CSI is known at the receiver, the ergodic
mutual information achieved by optimal receive processing is
given by:

I(ρ, n0) = EH

[
ln

∣∣∣∣I +
ρα

n0
HHH

∣∣∣∣]
= EΛ

[
ln

∣∣∣∣I +
ρα

n0
Λ

∣∣∣∣]
= n0Eλ

[
ln

(
1 +

ρα

n0
λ

)]
(a)
= n0

∫ ∞
0

ln (1 + δλ) fλ(λ, n0) dλ , (6)

where Λ and λ are, respectively, the diagonal matrix of
eigenvalues and an unordered eigenvalue of HHH. As far as
the equality (a) is concerned, we defined

δ =
ρα

n0
. (7)

We remark that, although I depends on several system param-
eters, for simplicity in (6) we highlighted only the dependency
on the SNR, ρ, and on the number of transmit antennas, n0.
The distribution of λ, fλ too depends on n0, as highlighted in
the last line of (6).

Assuming to employ a linear receiver instead of the optimal
one, the system incurs some performance loss. The relation-
ship between the optimal ergodic mutual information and the
sum rate achieved by the MMSE receiver has been unveiled
in [1]. There, compact expressions for achievable rates have
been derived in the case of Rayleigh and Rician-faded MIMO
channels, under various assumptions on the spatial correlation.

In this work we extend the analysis to the multiple-
scattering channel matrix in (4). Furthermore, we analyse the
case of ZF receiver for which no closed-form results on the
sum rate are available yet. Thus, in this case we derive an
upper and lower bound by exploiting the approach proposed
by Matthaiou et al. in [2], [4].

IV. MATHEMATICAL BACKGROUND

Hereinafter we list some results on the statistics of multiple-
scattering channel matrices, which are useful in our analysis.

Given a multiple-scattering matrix with N − 1 clusters as
in (4), the joint law of the entries of matrices Hi, i = 1, . . . , N ,
is given by [8]:

fHi
(Hi) = e−Tr{Hi

HHi}π−nini−1 .

We further define the set of auxiliary variables νi = ni − n0,
i = 1, . . . , N . Since we assume n0 ≤ n1 ≤ . . . ≤ nN , such
variables are non-negative integers. It is worth mentioning,
however, that this assumption can be relaxed based on the
observations in [9].

The joint and marginal eigenvalue distributions of HHH
have been characterized, respectively, in [10] and in [9], [11].
In particular, the joint law of the n0 eigenvalues of HHH can
be written as [10]

fΛ(Λ) =
V (Λ)

Z
|G(Λ)| , (8)

where the normalizing constant Z is given by [9, Eq.(21)]

Z = n0!

n0∏
i=1

N∏
`=0

Γ(i+ ν`) ,

and G is an n0 × n0 matrix such that

[G]i,j = GN,00,N

(
−
νN , . . . , ν2, ν1 + i− 1

∣∣∣λj) ,

for i, j = 1, . . . , n0.
Let us now define the n0×n0 matrix Ah (with h ∈ Z) with

entries

[Ah]i,j = Γ(ν1 + i+ j + h− 1)

N∏
`=2

Γ(ν` + j + h) . (9)

Then, drawing on [11, Theorem I], the following proposition
holds.



Proposition 4.1: The marginal density of a single, unordered
eigenvalue λ of HHH is given by:

fλ(λ, n0)=

n0∑
i,j=1

[D]i,jG
N,0
0,N

(
−
νN , . . . , ν2, ν1+i−1

∣∣∣λ)
λ1−jΓ−1(n0)Z

(10)
where [D]i,j is the (i, j)-th entry of the cofactor matrix of A0.
The proof is provided in the Appendix.
Clearly, fλ depends on n0, n1, . . . , nN , however, for simplic-
ity, we highlighted the dependency on n0 only. The above
expression differs from that in [9, Formula (52)], which is
normalized to the number of eigenvalues n0, and is based on
the classical approach of k-point correlation functions for the
density of an arbitrary subset of k < n0 eigenvalues of a
given random matrix. In particular, while (10) is a double
sum of terms where a single Meijer function appears, the
expression in [9] involves products of two Meijer functions.
Thus, although equivalent, we chose to use the more compact
expression in [11, Theorem I] and to complete it by expliciting
the normalizing constant therein.

Finally, the Shannon transform of HHH is defined as
V(δ, n0) = Eλ[ln(1+δλ)] [12, Def. 2.12], where δ is a positive
real number. Its expression for the multiple-scattering channel
can be obtained by replacing (10) in the above definition, by
writing ln(1 + δλ) in terms of a Meijer-G, and by exploiting
the properties of the Meijer-G functions [7]:

V(δ, n0) =

n0∑
i,j=1

Γ(n0)[D]i,j
Zδj

·

GN+2,1
2,N+2

(
−j, 1− j
−j,−j, νN , . . . , ν2, ν1+i−1

∣∣∣1
δ

)
. (11)

Using the definition of the Shannon transform and (6), we can
write:

I(ρ, n0) = n0V
(
ρα

n0
, n0

)
. (12)

V. PRELIMINARY RESULTS

The positive and negative moments of λ are given in [9].
Here we provide the expression of the moments of the determi-
nant of HHH, which we will exploit later in our analysis. We
also derive the first moment of ln |HHH|, which is largely used
in MIMO performance analysis (see e.g. [13, and references
therein]).

Proposition 5.1: The moments of |HHH| can be expressed
as

EH[|HHH|h] =
n0!

Z
|Ah| h ∈ N (13)

The proof is given in the Appendix.
Corollary 5.1:

EH[ln |HHH|] =
n0!

Z

n0∑
k=1

|A(k)
0 | , (14)

with A
(k)
0 a square matrix of size n0, whose elements coincide

with those of A0, but for the k-th column, for which [14]

[A
(k)
0 ]i,k = [A0]i,k

[
−γ +

ν1+i+k−2∑
t=1

1

t
+

N∑
`=2

(
−γ +

ν`+k−1∑
t=1

1

t

)]
, (15)

where γ is the Euler’s constant.
The proof is given in the Appendix.

VI. COMMUNICATION-THEORETIC ANALYSIS

Let us consider the MIMO communication channel de-
scribed in (2). Assuming to employ a linear filter at the receiver
output and independent decoding, the MIMO channel can
be decomposed into n0 parallel subchannels. Let ρk denote
the instantaneous SINR corresponding to the k-th subchannel.
Then the achievable sum rate can be written as

R ,
n0∑
k=1

Eρk [ln(1 + ρk)] . (16)

The expression of ρk depends on the adopted receiving strat-
egy (e.g., MMSE or ZF). Below we provide the exact closed-
form expression for the achievable sum rate in the case of
MMSE receiver, and an upper and a lower bound in the case of
ZF receiver. Notice that the results we present below are based
on the eigenanalysis of HHH, rather than on the (cumbersome)
statistics of ρk.

A. MMSE receiver

The MMSE filter for the signal in (2) is given by F =
HH(HHH+I/δ)−1, where δ is as in (7). The k-th component
of the filtered signal Fy, has SINR, ρk, given by [15, Ch. 6]:

ρk =
1[

(I + δHHH)
−1
]
k,k

− 1 . (17)

An explicit expression for the pdf of (17) is only available
in the canonical Rayleigh case, i.e., when HHH is a central,
uncorrelated Wishart matrix with nN degrees of freedom [16].
However this problem can be circumvented by writing the term
[(I + δHHH)−1]k,k as [17][(

I + δHHH
)−1]

k,k
=

∣∣I + δH(k)HH(k)
∣∣

|I + δHHH|
(18)

where H(k) is the matrix obtained by removing the k-th
column from H. By using (18) and (17) in (16) (as done
also in [3]), we obtain

RMMSE =

n0∑
k=1

EH

[
ln
∣∣I + δHHH

∣∣]
−

n0∑
k=1

EH(k)

[
ln
∣∣∣I + δH(k)HH(k)

∣∣∣] . (19)

By using (6), the first term on the r.h.s. of (19) can be written
as n0I(ρ, n0). As far as the second term is concerned, this



depends on the distribution of the matrix H(k), which has
size nN × n0 − 1. By using the definition of H in (4), H(k)

can be rewritten as

H(k) = HN · · ·Hi · · ·H(k)
1

where H
(k)
1 is the matrix obtained by removing the k-th

column from H1. Since the entries of H1 are i.i.d., we
conclude that the term W = EH(k) [ln |I + δH(k)HH(k)|] does
not depend on k. Note that W is equivalent to the ergodic
mutual information of the linear system ỹ =

√
αH(k)x̃ + ñ

where Ex̃[x̃x̃H] = Es
n0

I and Eñ[ññH] = N0I. In particular,
note that, according to (3), the normalization constant α is the
same for both matrices H and H(k). It follows that

W = I (ρ, n0 − 1) .

In conclusion,

RMMSE =n0I(ρ, n0)− n0I (ρ, n0 − 1)

=n20V(δ, n0)−n0(n0−1)V (δ, n0−1) . (20)

From (20) immediately follows that the availability of an
explicit expression for the Shannon transform of the channel
matrix allows for a closed-form evaluation of the sum rate in
the MMSE case.

B. ZF receiver

When the ZF filter is employed at the receiver, the SNR on
the k-th sub-channel is given by,

ρk =
δ[

(HHH)
−1
]
k,k

. (21)

In absence of an exact expression for the sum rate of a MIMO
communication with ZF receiver, we resort to the bounds in
[2], and collect the results in the following proposition.

Proposition 6.1: The sum rate achievable with a ZF receiver
over a MIMO channel affected by Rayleigh fading, in presence
of multiple scattering, is upper bounded by [2, Thm.1]1:

RZF ≤ n0 ln

(
Eλ
[

1

λ

]
+ δ

)
+ n0EH[ln |HHH|]

−
n0∑
k=1

EH(k) [ln |H(k)HH(k)|]

= n0 ln

(
Eλ
[

1

λ

]
+ δ

)
+ n0EH[ln |HHH|]

−n0EH(k) [ln |H(k)HH(k)|]
(22)

where recall that matrix H(k) is obtained from H by removing
the k-th column. Also, due to the independence of the columns
of H, the average EH(k) [ln |H(k)HH(k)|] does not depend on
k. Its value can be computed by exploiting Corollary 5.1 and

1This bound explicitly depends on the first negative moment of an un-
ordered eigenvalue of the channel matrix; in case it does not exist, one can
resort to the upper bound [2, Thm.2], which hold irrespectively from the
availability of Eλ[λ−1].

by noting that H(k)HH(k) has size (n0 − 1)× (n0 − 1). The
expression of the first negative moment of λ can be found
in [9, Eq. (59)].

The sum rate is lower bounded by [2, Thm.3]:

RZF ≥
n0∑
k=1

ln
(
1 + δeφk

)
= n0 ln

(
1 + δeφk

)
(23)

where for any k ∈ {1, . . . , n0},

φk = EH[ln |HHH|]− EH(k) [ln |H(k)HH(k)|] .

An explicit expression of (23) for the channel model at hand
is obtained by replacing (14) in the φk’s.

VII. NUMERICAL RESULTS

Here we validate the expressions of the mutual information
and of the rates derived in the previous sections, against
numerical (i.e., Monte Carlo) simulations.

Figure 2 shows the mutual information I(ρ, n0), the sum-
rates RMMSE and RZF, and the upper and lower bounds to
RZF plotted against the SNR ρ. In this scenario, we consider
a channel with one scattering cluster (N = 2), 4 transmit
antennas (n0 = 4), 5 scatterers (n1 = 5), and 6 receive
antennas (n2 = 6). In the plot, the lines represent the results
obtained by evaluating the expressions in (12), (20), (22),
and (23), while the markers refer to the results obtained by
averaging over M = 1000 randomly generated samples of the
matrix H. In particular,
• square markers have been obtained by computing

Ī(ρ, n0) =
1

M

M∑
m=1

ln |I + δH[m]HH[m]|

• circles have been obtained by computing

R̄MMSE = − 1

M

M∑
m=1

n0∑
k=1

ln

[(
I + δH[m]HH[m]

)−1]
k,k

• triangles have been obtained by computing

R̄ZF = − 1

M

M∑
m=1

n0∑
k=1

ln

1 +
δ[(

H[m]HH[m]
)−1]

k,k


where H[m] is the m-th realization of random matrix H.

The figure shows a perfect match between Monte Carlo and
analytical results, thus proving the validity of our derivations.
The upper and lower bounds to RZF are also tight, especially
for high SNR; at low SNR the upper bound exhibits a floor.

In Figure 3 we compare the sum-rates achieved by the
MMSE and ZF filters in the case where N = 1, 2, 3 and
ni = 4, for i = 0, . . . , N . Note that for N = 1 the channel
reduces to a classical Rayleigh MIMO without scattering
clusters. The figure also reports the lower bound to RZF.
Again, for all considered values of the system parameters, the



match between Monte Carlo and analytic results for RMMSE is
perfect. We also observe that as N increases, the performance
of the system decreases and the gap between R̄ZF and the
lower bound to RZF increases.
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Fig. 2. Ergodic mutual information, sum rate and bounds as functions of the
SNR ρ, for N = 2, n0 = 4, n1 = 5, and n2 = 6.
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VIII. CONCLUSIONS

We studied the performance of a MIMO communica-
tion system in presence of Rayleigh fading and a multiple-
scattering channel between source and destination. We derived
the exact closed-form expression for the achievable sum rate
in the case of MMSE receivers. When ZF receiver is adopted,
we provided a lower and an upper bound to the achievable
sum rate by leveraging results available in the literature. Our
analysis has been validated by numerical results. Future work
will address the case of multiple-level MIMO relay channels.

APPENDIX A
PROOF OF PROPOSITION 4.1

The marginal density of the unordered eigenvalue of HHH
can be obtained by applying [11, Theorem I] to the joint pdf
in (8), i.e.,

fλ(λ, n0) =

n0∑
i,j=1

[D]i,jG
N,0
0,N

(
−
νN , . . . , ν2, ν1+i−1

∣∣∣λ)
λ1−jKZ

(24)
where K is a proper normalization constant and [D]i,j is the
(i, j)-th entry of the cofactor matrix of A0.

In order to derive K, we impose
∫
fλ(λ, n0) dλ = 1. Using

the Laplace determinant expansion (as done in the proof of [11,
Theorem I]) and applying [18, Corollary I], we obtain:

K =
1

(n0 − 1)!
=

1

Γ(n0)
. (25)

By replacing (25) in (24), we get the assertion.

APPENDIX B
PROOF OF PROPOSITION 5.1 AND COROLLARY 5.1

In order to prove Proposition 5.1, recall that |HHH| =∏n0

`=1 λ`. Then, using (8), we have:

EH[|HHH|h] =
1

Z

∫
[0,+∞)n0

V (Λ)|G(Λ)|
n0∏
i=1

λhi dλ1 . . . dλn0

=
n0!

Z
|Ah|,

by virtue of [18, Corollary I]. Note that

[Ah]i,j =

∫
[0,+∞)n0

λj−1+h[G]i,j dλ

which results to be equal to the expression in (9) [7, 7.811.4].
In order to prove Corollary 5.1, we can write:

EH[ln |HHH|] =
d

ds
EH[exp(s ln |HHH|)]

∣∣∣∣∣
s=0

=
d

ds
EH[|HHH|s]

∣∣∣∣∣
s=0

=
n0!

Z
d

ds
|As|

∣∣∣∣∣
s=0

(26)

where in the last line we exploited the above Proposition. To
compute the derivative of a matrix determinant, we apply the
result in [14, Eq. (1)] and write:

d

ds
|As| =

n0∑
k=1

|[as1, . . .
·
ask, . . . . . .asn0

]| (27)



where ask is the k-th column of matrix As and
·
ask denotes

the derivative of ask. The derivative of the generic i-th entry
of ask is given by:

[
·
ask]i=

d

ds
Γ(ν1 + i+ k + s− 1)

N∏
`=2

Γ(ν` + k + s)

= Γ(ν1 + i+ k + s− 1)

N∏
`=2

Γ(ν` + k + s) ·[
−γ +

ν1+i+k+s−2∑
t=1

1

t
+

N∑
`=2

(
−γ +

ν`+k+s−1∑
t=1

1

t

)]

= [As]i,k

[
−γ +

ν1+i+k+s−2∑
t=1

1

t
+

N∑
`=2

(
−γ +

ν`+k+s−1∑
t=1

1

t

)]
(28)

where γ is Euler’s constant. By computing (27) and (28) for
s = 0 and using the results in (26), we obtain the assertion.
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in multiantenna communication,” IEEE Trans. on Information Theory,
Vol. 51, No. 12, pp. 4134–4151, Dec. 2005.

[14] H. Hanche-Olsen, “The derivative of a determinant,” Personal Note
available at http://www.math.ntnu.no/∼hanche/notes/diffdet/diffdet.pdf

[15] S. Verdú, Multiuser Detection, Cambridge University Press, 2011.
[16] H. Gao, P.J. Smith, and M.V. Clark, “Theoretical reliability of MMSE

linear diversity combining in Rayleigh-fading additive interference chan-
nels,” IEEE Trans. Commun., Vol. 46, No. 5, pp. 666–672, May 2003.

[17] R. A. Horn and C. R. Johnson, Matrix Analysis, 4th ed., Cambridge
University Press, 1990.

[18] M. Chiani, M. Z. Win, and A. Zanella, “On the capacity of spatially
correlated MIMO Rayleigh-fading channels,” IEEE Trans. on Inf. Theory,
Vol. 49, No. 10, pp. 2363–2371, Oct. 2003.


