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Abstract—Simultaneous Wireless Information and Power
Transfer (SWIPT) has attracted significant attention in the
communication community. The problem of waveform design
for SWIPT has however never been addressed so far. In this
paper, a novel SWIPT transceiver architecture is introduced
relying on the superposition of multisine and OFDM waveforms
at the transmitter and a power-splitter receiver equipped with
an energy harvester and an information decoder capable of
cancelling the multisine waveforms. The SWIPT multisine/OFDM
waveforms are optimized so as to maximize the rate-energy
region of the whole system. The SWIPT waveforms are adaptive
to the channel state information and result from a posynomial
maximization problem that originates from the non-linearity of
the energy harvester. Numerical results illustrate the performance
of the derived waveforms and SWIPT architecture.1

I. I NTRODUCTION

The emerging field of Simultaneous Wireless Information
and Power Transfer (SWIPT) and Wireless Powered Commu-
nication Network (WPCN) have recently attracted significant
attention in academia, with works addressing many scenarios,
a.o. MIMO broadcasting [1], architecture design [2], interfer-
ence channel [3], broadband systems [4], relaying [5].

The core element of the SWIPT receiver that enables to
harvest wireless energy is the rectenna. The rectenna is made
of a non-linear device followed by a low-pass filter to extract
a DC power out of an RF input signal. The amount of DC
power collected is a function of the input power level and the
RF-to-DC conversion efficiency. Interestingly, the RF-to-DC
conversion efficiency is not only a function of the rectenna
design but also of its input waveform [6]–[9].

In the rapidly expanding SWIPT literature, the sensitivity
of the RF-to-DC conversion efficiency to the rectenna design
and input waveforms has been inaccurately addressed in past
SWIPT works (e.g. [1]–[5]). It is indeed assumed for the sake
of simplicity and tractability that the harvested DC power is
modeled as a conversion efficiency constant multiplied by the
average power of the input signal to the energy harvester.
Unfortunately, this is an oversimplified model that does not
reflect accurately the dependence w.r.t. the input waveform.
This inaccuracy originates from the truncation to the second
order of the non-linear rectification process of the diode.
However as explained in [10], a second order truncation
does not accurately model the rectification behavior of the
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diode. Hence, truncating to a second order the non-linear
rectification process of the diode has been used so far so
as to simplify the design of SWIPT but is unfortunately an
unrealistic assumption from an RF perspective [7]–[10] that
can lead to inaccurate design of SWIPT.

The problem of SWIPT waveform design that accounts for
the non-linearity of the rectifier has never been addressed
so far. However, since SWIPT relies on WPT, a thorough
understanding of the WPT waveform design would be required
beforehand. In [6], the waveform design problem for WPT has
been tackled by introducing a simple and tractable analytical
model of the non-linearity of the diode through the second
and fourth order terms in the Taylor expansion of the diode
characteristics. Assuming perfect Channel State Information
at the Transmitter (CSIT) can be attained, an optimization
problem was formulated to adaptively change on each transmit
antenna a multisine waveform as a function of the CSI so as
to maximize the output DC current at the energy harvester.
Significant performance gains of the optimized waveforms
over state-of-the-art waveforms were demonstrated.

In this paper we leverage the waveform optimization
for WPT in [6] and tackle the problem of waveform and
transceiver optimization for Multiple Input-Single Output
(MISO) SWIPT. A novel SWIPT transceiver architecture is in-
troduced relying on the superposition of multisine waveforms
for WPT and OFDM waveforms for Wireless Information
Transfer (WIT) at the transmitter and a power-splitter receiver
equipped with an energy harvester and an information decoder
capable of cancelling the multisine waveforms. The SWIPT
multisine/OFDM waveforms are optimized so as to maximize
the rate-energy region of the whole system, accounting for the
non-linearity of the energy harvester.

Organization: Section II introduces the SWIPT architecture,
section III addresses the SWIPT waveform design, section IV
evaluates the performance and section V concludes the work.

Notations: Bold lower case and upper case letters stand for
vectors and matrices respectively whereas a symbol not in bold
font represents a scalar.‖.‖2F refers to the Frobenius norm a
matrix.A{.} refers to the DC component of a signal.EX {.}
refers to the expectation operator taken over the distribution
of the random variableX (X may be omitted for readability
if the context is clear).(.)T and (.)H represent the transpose
and conjugate transpose of a matrix or vector respectively.



(a) Transmitter

(b) Receiver

Fig. 1. A transceiver architecture for SWIPT.

II. A SWIPT TRANSCEIVER ARCHITECTURE

In Figure 1, we introduce a SWIPT architecture where
power and information are transmitted simultaneously from
one transmitter to one receiver equipped with a power splitter.

A. Transmitter

The SWIPT waveform on antennam, xm(t), consists in
the superposition of one multisine waveformxP,m(t) at fre-
quencieswn = w0 + n∆w (with ∆w = 2π∆f the frequency
spacing),n = 0, . . . , N−1 for WPT and one OFDM waveform
xI,m(t) at the same frequencies for WIT. The multisine WPT
waveform can be written as

xP,m(t) =

N−1
∑

n=0

sP,n,m cos(wnt+ φP,n,m). (1)

The baseband OFDM signal over one symbol durationT =
1/∆f can be written as

xB,m(t) =
N−1
∑

n=0

xn,me
j 2πt

T
n, 0 ≤ t ≤ T (2)

wherexn,m = wI,n,mx̃n refers to the precoded input symbol
on frequency tonen and antennam. We further write the
precoderwI,n,m = |wI,n,m| ejφI,n,m and the input symbol
x̃n = |x̃n| ejφx̃n . After adding the cyclic prefix over duration
Tg, it comes to

xB,m(t) =
N−1
∑

n=0

xn,me
j 2πt

T
n, −Tg ≤ t ≤ T. (3)

Vector-wise, the baseband OFDM signal vector on tone
n writes as xB(t) =

[

xB,1(t) . . . xB,M (t)
]T

=
∑N−1

n=0 xne
j 2πt

T
n with xn = wI,nx̃n and wI,n =

[

wI,n,1 . . . wI,n,M
]T

is the precoder. After upconver-
sion, the transmitted OFDM signal on antennam is written
as

xI,m(t) = ℜ
{

xB,m(t)ejw0t
}

=

N−1
∑

n=0

s̃I,n,m cos(wnt+ φ̃I,n,m) (4)

where xn,m = s̃I,n,me
jφ̃I,n,m with s̃I,n,m = |wI,n,m| |x̃n|

and φ̃I,n,m = φI,n,m + φx̃n
. We also definesI,n,m =

√

PI,n |wI,n,m| wherePI,n = E
{

|x̃n|2
}

. The total transmit-
ted SWIPT waveform on antennam writes as

xm(t) = xP,m(t) + xI,m(t)

=

N−1
∑

n=0

sP,n,m cos(wnt+ φP,n,m)

+ s̃I,n,m cos(wnt+ φ̃I,n,m), (5)

as illustrated on Figure 1(a).
The amplitudes and phases of the WPT waveform are

collected intoN × M matricesSP and ΦP , respectively.
Similarly, the (n,m) entry of matrix S̃I , SI , ΦI write as
s̃I,n,m, sI,n,m, φI,n,m, respectively. We define the average
power of the WPT and WIT waveforms asPP = 1

2 ‖SP ‖
2
F

andPI = 1
2E
{
∥

∥S̃I

∥

∥

2

F

}

= 1
2 ‖SI‖

2
F . The total average transmit

power constraint writes asPP + PI ≤ P .

B. Receiver

The multi-antenna transmitted sinewaves propagate through
a multipath channel, characterized byL paths whose delay,
amplitude, phase and direction of departure (chosen with
respect to the array axis) are respectively denoted asτl, αl, ξl
andθl, l = 1, . . . , L. We assume transmit antennas are closely
located so thatτl, αl and ξl are the same for all transmit
antennas (assumption of a narrowband balanced array) [11].
Taking the power signal for instance, it is transmitted by
antennam and received at the single-antenna receiver after
multipath propagation as

y
(m)
P (t) (6)

=

N−1
∑

n=0

sP,n,m

(

L−1
∑

l=0

αl cos(wn(t− τl) + ξl + φP,n,m +∆n,m,l)

)

where ∆n,m,l refers to the phase shift between themth

transmit antenna and the first one. For simplicity, we as-
sume that∆n,1,l = 0. For a Uniform Linear Array (ULA),
∆n,m,l = 2π(m − 1) d

λn
cos(θl) whered is the inter-element

spacing,λn the wavelength of thenth sinewave.
The quantity between the brackets in (6) can simply be

rewritten as

L−1
∑

l=0

αl cos(wn(t− τl) + ξl + φP,n,m +∆n,m,l)

= An,m cos(wnt+ ψP,n,m) (7)

where the amplitudeAn,m and the phaseψP,n,m are such that

An,me
jψP,n,m = An,me

j(φP,n,m+ψ̄n,m) = ejφP,n,mhn,m (8)

with hn,m = An,me
jψ̄n,m =

∑L−1
l=0 αle

j(−wnτl+∆n,m,l+ξl) the
frequency response of the channel of antennam atwn. Vector-
wise, we can define the frequency-domain channel vector
hn =

[

hn,1 . . . hn,M
]

. We can write similar expressions
for the information signal.



At the receiver, we can write the received signal asy(t) =
yP (t) + yI(t), i.e. the sum of two contributions at the output
of the channel, namely one from WPTyP (t) and the other
from WIT yI(t)

yP (t) =

M
∑

m=1

N−1
∑

n=0

sP,n,mAn,m cos(wnt+ ψP,n,m) (9)

yI(t) =

M
∑

m=1

N−1
∑

n=0

s̃I,n,mAn,m cos(wnt+ ψ̃I,n,m) (10)

where ψP,n,m = φP,n,m + ψ̄n,m and ψ̃I,n,m = φ̃I,n,m +
ψ̄n,m = φI,n,m + φx̃n

+ ψ̄n,m. Let us also defineψI,n,m =
φI,n,m + ψ̄n,m such thatψ̃I,n,m0 − ψ̃I,n,m1 = ψI,n,m0 −
ψI,n,m1 . Using a power splitter with a power splitting ratio
ρ and assuming perfect matching (as in [6]), the input voltage
signal

√
ρRanty(t) is conveyed to the input to the energy

harvester (EH) while
√

(1− ρ)Ranty(t) is conveyed to the
information decoder (ID).

1) ID receiver: Since xP,m(t) does not contain any in-
formation, it is deterministic and can be cancelled at the
ID receiver. Therefore, after down-conversion and ADC, the
contribution of the WPT waveform is subtracted from the
received signal (Figure 1(b)). Conventional OFDM processing
is then conducted, namely removing the cyclic prefix and
performing FFT. We can write the equivalent baseband system
model of the ID receiver as

yID,n =
√

1− ρhnwI,nx̃n + vn (11)

wherevn is the AWGN noise on tonen (with varianceσ2
n)

originating from the antenna and the RF to baseband down-
conversion.

Assuming perfect cancellation and complex Gaussian input
symbols{x̃n}, the rate writes as

I(SI ,ΦI , ρ) =
N−1
∑

n=0

log2

(

1 +
(1− ρ)PI,n

σ2
n

|hnwI,n|2
)

.

(12)
Naturally,I(SI ,ΦI , ρ) can never be larger than the maximum
rate achievable whenρ = 0, i.e. I(S⋆I ,Φ

⋆
I , 0), which is

obtained by performing matched filtering on each subcarrier
and water-filling power allocation across subcarrier.

2) EH receiver: At the energy harvester, following [6], the
DC component of the current at the output of the rectifier
is proportional to the quantityzDC = k2ρRantA

{

y(t)2
}

+
k4R

2
antρ

2A
{

y(t)4
}

whereRant is the antenna impedance

and ki = is
e

a
nvt

i!(nvt)
i , i = 2, 4. Contrary to WPT, in SWIPT,

both WPT and WIT now contribute to the DC component
zDC . For a given channel impulse response, the input sym-
bols {x̃n} change randomly every symbol durationT . The
DC componentzDC therefore needs to be averaged out
over the distribution of the input symbols{x̃n} such that
zDC = E{x̃n}

{

k2ρRantA
{

y(t)2
}

+ k4R
2
antρ

2A
{

y(t)4
}}

.
This enables to compute the DC component as in (13),
where we use the fact thatE {A{yP (t)yI(t)}} = 0,

E
{

A
{

yP (t)
3yI(t)

}}

= 0, E
{

A
{

yP (t)yI(t)
3
}}

= 0 and
E
{

A
{

yP (t)
2yI(t)

2
}}

= A
{

yP (t)
2
}

E
{

A
{

yI(t)
2
}}

.
QuantitiesA

{

yP (t)
2
}

and A
{

yP (t)
4
}

can be directly
obtained from the WPT expressions in [6] and reproduced
in (14) and (15) for simplicity. ForE

{

A
{

yI(t)
2
}}

and
E
{

A
{

yI(t)
4
}}

, the DC component is first extracted for a
given set of amplitudes{s̃I,n,m} and phases

{

φ̃I,n,m
}

and
then expectation is taken over the randomness of the input
symbols x̃n. Due to the complex Gaussian distribution of
the input symbols,|x̃n|2 is exponentially distributed with
E
{
∣

∣x̃n
∣

∣

2 }
= PI,n and φx̃n

is uniformly distributed. From
the moments of an exponential distribution, we also have that
E
{
∣

∣x̃n
∣

∣

4 }
= 2P 2

I,n. This helps expressing (16) and (17) as a
function of sI,n,m =

√

PI,n |wI,n,m|.
III. SWIPT WAVEFORM OPTIMIZATION

We can now define the achievable rate-harvested energy (or
more accurately rate-DC current) region as

CR−IDC
(P ) ,

{

(R, IDC) : R ≤ I(SI ,ΦI , ρ),

IDC ≤ zDC(SP ,SI ,ΦP ,ΦI , ρ),
1

2

[

‖SI‖2F+‖SP ‖
2
F

]

≤ P
}

.

(18)

Optimal valuesS⋆P ,S⋆I ,Φ
⋆
P ,Φ⋆

I , ρ
⋆ are to be found in order to

enlarge as much as possible the rate-harvested energy region.

A. Phase Optimization

In order to maximize the rate (12),wn should be chosen
as a transmit matched filter, i.e.wn = h

H
n / ‖hn‖. However,

wn also influences the amount of DC currentzDC and a
transmit matched filter may not be a suitable strategy to also
maximizezDC . Looking at (12) and (13), we can nevertheless
conclude that matched filtering w.r.t. the phases of the channel
is optimal from both rate and harvested energy maximization
perspective. This leads to the same phase decisions as for WPT
in [6], namely φ⋆P,n,m = φ⋆I,n,m = −ψ̄n,m and guarantees
all arguments of the cosine functions in

{

A
{

yP (t)
i
}}

i=2,4

(expressions (14) and (15)) and in
{

E
{

A
{

yI(t)
i
}}}

i=2,4
(expressions (16) and (17)) to be equal to 0.Φ

⋆
P andΦ⋆

I are
obtained by collectingφ⋆P,n,m andφ⋆I,n,m ∀n,m into a matrix,
respectively.

B. Amplitude and Power Split Optimization

With such phasesΦ⋆
P andΦ⋆

I , zDC(SP ,SI ,Φ
⋆
P ,Φ

⋆
I , ρ) can

be finally written as (19). Similarly we can write

I(SI ,Φ
⋆
I , ρ) = log2

(

N−1
∏

n=0

(

1 +
(1− ρ)
σ2
n

Cn

)

)

(20)

whereCn =
∑

m0,m1

∏1
j=0 sI,n,mj

An,mj
.

Recall from [12] that a monomial is defined as the function
g : RN++ → R : g(x) = cxa11 x

a2
2 . . . xaNN where c > 0 and

ai ∈ R. A sum of K monomials is called a posynomial
and can be written asf(x) =

∑K

k=1 gk(x) with gk(x) =
ckx

a1k
1 xa2k2 . . . xaNk

N whereck > 0. As we can see from (19),
zDC(SP ,SI ,Φ

⋆
P ,Φ

⋆
I , ρ) is a posynomial.



zDC(SP ,SI ,ΦP ,ΦI , ρ) = k2ρRantA
{

yP (t)2
}

+ k4ρ
2R2

antA
{

yP (t)4
}

+ k2ρRantE
{

A
{

yI(t)
2
}}

+ k4ρ
2R2

antE
{

A
{

yI(t)
4
}}

+ 6k4ρ
2R2

antA
{

yP (t)2
}

E
{

A
{

yI(t)
2
}}

. (13)

A
{

yP (t)2
}

=
1

2





N−1
∑

n=0

∑

m0,m1

sP,n,m0
sP,n,m1

An,m0An,m1 cos
(

ψP,n,m0
− ψP,n,m1

)



 (14)

A
{

yP (t)4
}

=
3

8







∑

n0,n1,n2,n3
n0+n1=n2+n3

∑

m0,m1,
m2,m3

[

3
∏

j=0

sP,nj ,mj
Anj ,mj

]

cos(ψP,n0,m0
+ ψP,n1,m1

− ψP,n2,m2
− ψP,n3,m3

)






(15)

E
{

A
{

yI(t)
2
}}

=
1

2





N−1
∑

n=0

∑

m0,m1

sI,n,m0
sI,n,m1

An,m0An,m1 cos
(

ψI,n,m0
− ψI,n,m1

)



 (16)

E
{

A
{

yI(t)
4
}}

=
6

8

[

∑

n0,n1

∑

m0,m1,
m2,m3

[

∏

j=0,2

sI,n0,mj
An0,mj

][

∏

j=1,3

sI,n1,mj
An1,mj

]

cos(ψI,n0,m0
+ ψI,n1,m1

− ψI,n0,m2
− ψI,n1,m3

)

]

(17)

zDC(SP ,SI ,Φ
⋆
P ,Φ

⋆
I , ρ)

=
k2ρ

2
Rant





N−1
∑

n=0

∑

m0,m1

[

1
∏

j=0

sP,n,mj
An,mj

]



+
3k4ρ2

8
R2

ant







∑

n0,n1,n2,n3
n0+n1=n2+n3

∑

m0,m1,
m2,m3

[

3
∏

j=0

sP,nj ,mj
Anj ,mj

]







+
k2ρ

2
Rant





N−1
∑

n=0

∑

m0,m1

[

1
∏

j=0

sI,n,mj
An,mj

]



+
3k4ρ2

4
R2

ant





N−1
∑

n=0

∑

m0,m1

[

1
∏

j=0

sI,n,mj
An,mj

]





2

+
3k4ρ2

2
R2

ant





N−1
∑

n=0

∑

m0,m1

[

1
∏

j=0

sP,n,mj
An,mj

]









N−1
∑

n=0

∑

m0,m1

[

1
∏

j=0

sI,n,mj
An,mj

]



 (19)

In order to identify the achievable rate-energy region, we
formulate the optimization problem as an energy maximization
problem subject to transmit power and rate constraints

max
SP ,SI ,ρ

zDC(SP ,SI ,Φ
⋆
P ,Φ

⋆
I , ρ) (21)

subject to
1

2

[

‖SI‖2F + ‖SP ‖2F
]

≤ P, (22)

I(SI ,Φ
⋆
I , ρ) ≥ R̄. (23)

It therefore consists in maximizing a posynomial subject
to constraints. Unfortunately this problem is not a standard
Geometric Program (GP) but it can be transformed to an
equivalent problem by introducing an auxiliary variablet0

min
SP ,SI ,ρ,t0

1/t0 (24)

subject to
1

2

[

‖SI‖2F + ‖SP ‖2F
]

≤ P, (25)

t0/zDC(SP ,SI ,Φ
⋆
P ,Φ

⋆
I , ρ) ≤ 1, (26)

2R̄/

[

N−1
∏

n=0

(

1 +
(1− ρ)
σ2
n

Cn

)

]

≤ 1. (27)

This is known as a Reverse Geometric Program [12], [13].
A similar problem also appeared in the WPT waveform
optimization [6]. Note that1/zDC(SP ,SI ,Φ⋆

P ,Φ
⋆
I , ρ) and

1/
[

∏N−1
n=0

(

1 + (1−ρ)
σ2
n
Cn

)]

are not posynomials, therefore
preventing the use of standard GP tools. The idea is to replace
the last two inequalities (in a conservative way) by making use
of the arithmetic mean-geometric mean inequality.

Let {gk(SP ,SI ,Φ⋆
P ,Φ

⋆
I , ρ)} be the monomial

terms in the posynomialzDC(SP ,SI ,Φ⋆
P ,Φ

⋆
I , ρ) =

∑K
k=1 gk(SP ,SI ,Φ

⋆
P ,Φ

⋆
I , ρ). Similarly we define

{gnk(SI , ρ)} as the set of monomials of the posynomial
1 + ρ̄

σ2
n
Cn =

∑Kn

k=1 gnk(SI , ρ) with ρ̄ = 1 − ρ. For a
given choice of{γk} and {γnk} with γk, γnk ≥ 0 and
∑K

k=1 γk =
∑Kn

k=1 γnk = 1, we perform single condensations
and write the standard GP as

min
SP ,SI ,ρ,ρ̄,t0

1/t0 (28)

subject to
1

2

[

‖SI‖2F + ‖SP ‖2F
]

≤ P, (29)

t0

K
∏

k=1

(

gk(SP ,SI ,Φ
⋆
P ,Φ

⋆
I , ρ)

γk

)−γk

≤ 1, (30)

2R̄
N−1
∏

n=0

Kn
∏

k=1

(

gnk(SI , ρ)

γnk

)−γnk

≤ 1, (31)

ρ+ ρ̄ ≤ 1. (32)

It is important to note that the choice of{γk, γnk} plays a



great role in the tightness of the AM-GM inequality. An itera-
tive procedure can be used where at each iteration the standard
GP (28)-(32) is solved for an updated set of{γk, γnk}. Assum-
ing a feasible set of magnitudeS(i−1)

P andS(i−1)
I and power

splitting ratioρ(i−1) at iterationi − 1, compute at iterationi

γk =
gk(S

(i−1)
P

,S
(i−1)
I

,Φ⋆
P ,Φ

⋆
I ,ρ

(i−1))

zDC(S
(i−1)
P

,S
(i−1)
I

,Φ⋆
P
,Φ⋆

I
,ρ(i−1))

k = 1, . . . ,K andγnk =

gnk(S
(i−1)
I , ρ(i−1))/

(

1+ ρ̄(i−1)

σ2
n
Cn(S

(i−1)
I )

)

, n = 0, . . . , N−1,
k = 1, . . . ,Kn and then solve problem (28)-(32) to obtain
S
(i)
P , S(i)

I andρ(i). Repeat the iterations till convergence. The
whole optimization procedure is summarized in Algorithm 1.

Algorithm 1 SWIPT Waveform

1: Initialize : i← 0, R̄, Φ⋆
P andΦ⋆

I , SP , SI , ρ, ρ̄ = 1− ρ,
z
(0)
DC = 0

2: repeat
3: i← i+ 1, S̈P ← SP , S̈I ← SI , ρ̈← ρ, ¨̄ρ← ρ̄
4: γk ← gk(S̈P , S̈I ,Φ

⋆
P ,Φ

⋆
I , ρ̈)/zDC(S̈P , S̈I ,Φ

⋆
P ,Φ

⋆
I , ρ̈),

k = 1, . . . ,K
5: γnk ← gnk(S̈I , ρ̈)/

(

1+
¨̄ρ
σ2
n
Cn(S̈I)

)

, n = 0, . . . , N−1,
k = 1, . . . ,Kn

6: SP ,SI , ρ, ρ̄← argmin (28)− (32)
7: z

(i)
DC ← zDC(SP ,SI ,Φ

⋆
P ,Φ

⋆
I , ρ)

8: until
∣

∣

∣
z
(i)
DC − z

(i−1)
DC

∣

∣

∣
< ǫ or i = imax

Similarly to WPT waveform optimization in [6], the final
solution for the SWIPT waveform optimization problem is not
guaranteed to be the global optimum but only a local optimum.

IV. SIMULATION RESULTS

We now illustrate the performance of the optimized SWIPT
architecture.k2 = 0.0034 and k4 = 0.3829 have been
computed for an operating pointa = 0 and used as such
to design the optimized waveform. We assume a WiFi-like
environment at a center frequency of 5.18GHz with a 36dBm
EIRP, 2dBi receive antenna gain and 58dB path loss. This
leads to an average received power of about -20dBm. The
noise powerσ2

n is fixed at -40dBm (i.e. 20dB SNR). The
frequency gap is fixed as∆w = 2π∆f with ∆f = B/N
with B = 1MHz and theN sinewaves are centered around
5.18GHz. Fig. 2 illustrates the rate-energy region obtained
with Algorithm 1 forM = 1 andN = 2, 4, 8 in the particular
scenario where the impulse response of the channel is equal to
1. The rate is normalized w.r.t.N . Extreme points on the x and
y-axis refer to the rate andzDC achieved by the water-filling
solution and the WPT waveform of [6], respectively.

V. CONCLUSIONS

The paper derived a methodology to design waveforms for
MISO SWIPT. Contrary to the existing SWIPT literature,
the non-linearity of the rectifier is modeled and taken into
account in the SWIPT waveform and transceiver optimization.
The SWIPT waveform is obtained as the superposition of a
WPT waveform (multisine) and a WIT waveform (OFDM).
The waveforms are adaptive to the CSI (assumed available
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Fig. 2. CR−IDC
as a function ofN for M = 1.

to the transmitter) and result from a non-convex posyno-
mial maximization problem. The algorithm allows to draw
the fundamental limits of SWIPT in terms of rate-energy
region. Future interesting works consist in designing SWIPT
transceivers for broadcast, multiple access, interference and
relay channels accounting for the non-linearity of the rectifier.
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