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Abstract—We analyze the performance of a �xed-size uniform
circular array which is used to transmit information to a single
antenna receiver as a function of the number of transmit side
antennas. We �nd that the minimum necessary energy to transfer
one information bit stops decreasing once the number of antennas
grows over a certain bound. We relate this bound to the diameter
of the array and show that there is an optimum and �nite number
of antennas for every such array. For large array diameters this
optimum number grows linearly with the diameter, the factor of
proportionality primarily depending on whether the receiver is
inside or outside of the transmit uniform circular array.

I. Introduction

Massive mimo systems are currently considered a possible key
technology for the next generation of wireless communication
systems [1]. The idea is that the number of antennas at the
base station is much larger than the total number of antennas
of the served user terminals. This may require hundreds or
even thousand of antennas at the base station.
There are a number of possible advantages of such an ap-

proach. For example, Russek et al. point out in [2] that massive
mimo systems 1) allow linear signal processing techniques to
reach near optimum performance, 2) provide a natural stage
for improved analysis based on random matrix theory [3], and
3) allow that thermal noise can be averaged out since coherent
averaging o�ered by a receive antenna array would eliminate
quantities that are uncorrelated between the antenna elements,
and especially thermal noise. In [1] Larsson et al. additionally
point out that 4) if an antenna array were serving a single ter-
minal, then it could be shown that the total necessary transmit
power could be made inversely proportional to the number of
antennas at the transmitter.
While assertions 1) and 2) above might ring true, the asser-

tions 3) and 4) look problematic. Since increasing the number
of antennas in a �xed space requires the average antenna sep-
aration to decrease, the inevitable electromagnetic interaction
of the antennas leads to correlated instead of uncorrelated ther-
mal noise, which violates the basic assumption of assertion 3).
Similarly, electromagnetic interaction leads to the e�ect that
the power which is radiated by an antenna array is not pro-
portional to the sum of squares of the antenna’s excitation [4].
A consequence of this is that, when the number of antennas
grows beyond a certain bound, the radiated power to ensure
a preset signal quality at the receiver does not drop any more
by adding still more antennas. This is the subject of this paper.

II. SystemModel

Figure 1 schematically shows the system under investigation.
It consists of a uniform circular array (uca) of N quarter
wavelength monopoles used for transmission, and one single
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Figure 1: Uniform circular array transmits to a single antenna
receiver located in the formers center.

such monopole, located in the center of the circle, used for
reception. The center monopole is loaded with a resistance of
R = 35Ω, while the N uca monopoles are fed by linear gen-
erators with the same output impedance of R. All monopoles
reside over an in�nite groundplane in an otherwise empty half-
space, while the half-space below the groundplane contains
the generators and the termination resistance. Denoting with
r the radius of the uca, the distance between neighboring
monopoles equals ∆l =2r sin π/N . Keeping r constant, ∆l must
decrease with increasing N towards zero. This ever increasing
proximity creates strong mutual electromagnetic interaction
between all antennas and has to be modeled carefully. To this
end, the multiport model shown in Figure 1 is used. The cou-
pling between the N+1 antennas is described by the impedance
matrix Z, which is partitioned into four blocks according to:

[u1

u2
] = [ZT z

z
T ZR

] [ i1
i2
] + [uN,1

uN,2
] ,

where u1, i1 and uN,1 are N-dimensional vectors of the com-
plex envelopes of the port voltages, currents and open-circuit
noise voltages of the uca antenna ports, while u2 , i2 and uN,2

are the respective quantities for the receiver’s single antenna
port. The N complex envelopes of the open-circuit generator
voltages are collected into the vector uG, while the vector iN,R

contains the N complex envelopes of the noise currents which
model the thermal agitation of the electrons in the generators’
internal resistances R. At the receiver side, uN and iN are the
complex envelopes of the equivalent input noise voltage and
current that model the noise of the receiver’s low-noise ampli-
�er and following stages. The input resistance of the receiver is
assumed to be equal to R. Finally, we denote by u the complex
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Figure 2: Multiport model of the system from Figure 1.

envelope of the voltage at the receiver’s output scaled down
by its voltage ampli�cation factor. For such a scaling does not
change the signal to noise ratio, no harm is done to take u
itself as the output quantity. The components ZT, z and ZR ,
of the antenna system’s impedance matrix, can be determined
for the antenna con�guration of Figure 1, by following classical
antenna theory [5]. The transmit power PT, is de�ned as the
sum of active powers which �ow into the N ports of the uca,
not counting the contribution of noise:

PT = E [Re{uH
1 i1} ∣ no noise] ,

where E[⋅] and (⋅)H are the expectation and the complex con-
jugate transpose operations, respectively, while Re{⋅} returns
the real-part of its argument. To �x ideas, we assume the noise
properties of the receiver to be given as:

E [∣uN∣2] = 2kBTWR, E [∣iN∣2] = 2kBTW/R, E [uN i
∗

N] = 0,
where kB is Boltzmann’s constant, W is the (small) noise band-
width, and T the antenna noise temperature, while ∗ and ∣ ⋅ ∣
are the complex conjugation and magnitude operations, respec-
tively. We note in passing that the minimum noise �gure of
this receiver is equal to 3dB and is achieved when it is con-
nected to a source of impedance R [6]. Regarding the remain-
ing noise sources in Figure 2, we assume that they generate
thermal equilibrium noise [7]. Moreover, we assume that the
receiver’s noise is uncorrelated with the other noise sources
and that all noise is Gaußian distributed.

III. Shannon Limit

Let C be the channel capacity of the communication system
from Figure 2. Then

Eb = min
C

PT/C
is the minimum required energy per information bit, the so-
called Shannon-limit [8]. In the full paper, we will derive that
Eb for the described system is given by:

Eb

kBT
= ∣R + ZR∣2

zH (Re{ZT −
z z

T

R + ZR

}/R)
−1

z

⋅ loge4, (1)

where loge(⋅) refers to the natural logarithm function. Figure 3
shows Eb/(kBT) as a function of the number N of uca an-
tennas for a number of di�erent �xed radii. Starting from a
single antenna at the transmitter, we see that Eb �rst drops
with increasing N , approximately reducing to half its value
when N is increased twofold. However, when N climbs over
a certain (radius dependent) number (e.g. about 5 for r=10λ)
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Figure 3: Energy per information bit as function of the number
of transmit side antennas. Exact results up to round-o� errors.

we observe a more and more irregular and non-monotonic be-
havior of Eb with respect to N . When another critical number
of antennas is reached (e.g., about 60 for r= 10λ), Eb sharply
decreases (e.g., by more than a factor of 5 for a 12% increase of
the antenna number when r=10λ). A�er this steep descent, Eb

levels o� almost immediately and remains at the same value
(e.g., 48.74kBT for r= 10λ), no matter how the antenna num-
ber is increased further. Calling this critical antenna number
Nsat where Eb saturates, it turns out that

for r ≫ λ, Nsat ≈ ⌊2π r

λ
⌋ , (2)

where λ denotes the wavelength. We note in passing that, for
r=λ/2, the antenna spacing corresponding to Nsat is also ∆l =
λ/2, which makes the uca a hexagonal array which achieves
an array gain of 9 from 6 antennas and an Eb which is 1.6dB
larger than the absolute minimum.

IV. Outlook

In the full paper, we will derive (1) and apply it also to di�erent
positions of the receiver, both inside and outside of the circle
of the transmitter array. It will turn out that similar relation-
ships as (2) can be found depending on whether the receiver
is located inside or outside of the transmitter’s uca.
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