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Abstract—We describe an extension of the known Effective
Aperture Distribution Function (EADF) approach to fully model
an antenna in terms of azimuth, elevation and frequency. The
extension also bases on Fourier transformation of measured or
simulated antenna responses and is stated as Effective Time-
Aperture Distribution Function (ETADF). We also propose a
method to automatically de-noise the sampled antenna responses
by estimating the model order. Furthermore, an efficient calcu-
lation method for off-grid sampling points is presented.
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I. INTRODUCTION

Knowledge of antenna radiation pattern is very important

for radio channel modelling and estimation of parameters like

direction-of-arrival (DoA). As stated in literature, the radiation

pattern has to be known in angular domain, as well as in

polarisation domain [1]. Furthermore, the antenna has to be

known in frequency domain for e.g. broadband applications.

Simple relying on sampled polarimetric beam patterns does

not fit, if e.g. the antenna has to be known at arbitrary points.

Therefore a model, describing the antenna continuously in

each dimension, is necessary, which allows the calculation of

the polarimetric antenna response at arbitrary points.

Methods to model frequency independent antennas are the

EADF [2], the Spherical Harmonics (SH) [3], [4] or the Vector

Spherical Harmonics (VSH) [5] approach. From literature,

methods which incorporate also the frequency domain are fit-

ting model based [6], VSH with Slepian decomposition [7] or

Spherical Modes Expansion method with Singular Expansion

method [8]. Here, we propose a straight forward extension of

the EADF approach to incorporate also frequency dependence

of the antenna (full 3D description), we call ETADF. We

describe the ETADF in a compact notation form, using tensor

algebra.

The rest of the paper is organized as follows: we in-

troduce the basic antenna model and two ways of Fourier

based antenna description in section II. Section III describes

the ETADF, which incorporates also de-noising of measured

antenna responses. An efficient method for antenna response

interpolation from ETADF is stated in section IV. Model order

estimation for ETADF is discussed in section V. Section VII

concludes the paper.

Scalars, column vectors, matrices and tensors are notational

distinguished as follows: Scalars are italic letters, vectors (in

column format, unless declared otherwise) are bold faced

letters, matrices are bold faced capitals, and tensors are bold

faced upper-case calligraphic letters. We define the matrix

operations (.)T , (.)† and (.)H as the Transpose, pseudo-inverse

and hermitian of a matrix, respectively. The Frobenius norm

of a matrix is stated as ‖.‖F . Real part and imaginary part

of a complex number are depicted as ℜ{. . } and ℑ{. . },

respectively.

We define the q-mode product between a tensor B ∈
C

M1×...×Mq×...MQ and a matrix A ∈ C
Pq×...Mq as B ×q

A, which is obtained by multiplying the q-mode unfolding

U(q) {. . } (column-order in accordance with [9]) of the tensor

from the left-hand side by the matrix and inverse unfolding:

U
−1
(q)

{

A · U(q) {B}
}

∈ C
M1×...×Pq×...MQ . Concatenation of

two tensors along dimension q is defined as ⊔q .

II. ANTENNA DESCRIPTION AND ALGEBRAIC MODELLING

We assume an antenna, placed in the origin of a spherical

coordinate system Fig. 1, with elevation angle ϑ in the range

from [−π/2 , π/2 ] and azimuth angle ϕ in the range of

[−π, π]. Polarisation of an impinging wave is defined accord-

ing to the ϕ-ϑ-plane, spanned by the spherical coordinate

system basis vectors kϕ and kϑ in the impingement point.

Antennas are commonly described as a linear, time invariant

systems [10]. A plane electromagnetic wave e at distance r in

the antenna’s far field is given by:

e(ϕ, ϑ, f) =
e−2πr f

c

r

[

kϕ kϑ
]

[

bϕ(ϕ, ϑ, f)
bϑ(ϕ, ϑ, f)

]

=
e−2πr f

c

r
Kϕ,ϑb(ϕ, ϑ, f) (1)

with the speed of light c. An antenna is fully described by

its polarimetric radiation pattern b(ϕ, ϑ, f). In practise, this

pattern is only known at discrete sampling points in spherical

coordinates, by e.g. measurements in an anechoic chamber

or simulations. Therefore, an antenna model is necessary to

derive sampling points outside of the sampling grid.

An algebraic antenna model can be obtained from wave field

modelling, which imposes an orthonormal decomposition of
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Figure 1. Spherical coordinate system and polarisation definition

the scalar antenna pattern [11]:

bϕ|ϑ(ϕ, ϑ, f) = g
T ·ψ(ϕ, ϑ, f) (2)

with ψ(ϕ, ϑ, f) the basis functions of the decomposition and

g the antenna sampling vector. Note that the antenna sampling

vector describes the antenna properties, whereas the basis

function are independent of the antenna. Commonly Fourier

basis functions are chosen, why wave field modelling becomes

Fourier transformation. Two possible Fourier transformations

are known from literature [12], which separates in the under-

lying coordinate system.

A. Cartesian Fourier Transformation

Cartesian Fourier Transformation (CFT) assumes equidis-

tantly sampled data in a Cartesian coordinate system. The basis

function ψ in 3D is given by:

ψCFT
µx,µy,µz

(x, y, z) = e2πµxx · e2πµyy · e2πµzz (3)

As noticeable, the basis is given as product of the coefficient

in each dimension and are therefore easily computable.

For application of the CFT to data measured in spherical

coordinates, a projection of the angular domain on a plane

is necessary. Several projections are known from map projec-

tions. Here, the Plate Carrée projection is used [13], because

it preserves equidistant spacing, which is a key assumption to

apply CFT. Based on the Plate Carrée projection, the relation

between spherical coordinates and Cartesian coordinates is:

ϕ→ x

ϑ→ y

f → z

Because of the applied projection, distortions occur. Tissot’s

indicatrix [14] can be used to visualize distortions introduced

by map projections. Small circles of equal radii are placed

at several sphere locations, which is projected on the map
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Figure 2. Tissot indicatrix for the Plate Carrée projection

afterwards. Modification of the circles in size and shape

indicate, whether the projection is non-equal-area or non-

conformal, respectively. The Tissot indicatrices for the Plate

Carrée projection is shown in Fig. 2. Distortions do not occur

for the longitudes but for the circles of latitude, because these

circles are enlarged to the length of the equator. Therefore, the

distortions increase to the poles. Accordingly, the main power

contribution of the antenna should lie in the azimuth plane,

because significant antenna energy at the poles would require

more sampling points for proper modelling.

B. Spherical Fourier Transformation

Fourier transformation which considers spherical coordi-

nates is the Spherical Fourier Transformation (SFT). The basis

functions for the SFT in 3D are given by [15], where the radial

part describes the frequency domain:

ψSFT
n,l,m(r, ϕ, ϑ) =

√

1

N
(l)
n

· jl(kn,lr) · Yl,m(ϕ, ϑ) (4)

with jl(kn,lr) the spherical Bessel function of order l,

Yl,m(ϕ, ϑ) the spherical harmonic and N
(l)
n ,kn,l defined ac-

cording to [15].

Because the SFT basis functions are difficult to calculate,

the interpolation is computationally cumbersome. Therefore,

we skip the SFT approach.

III. EFFECTIVE TIME-APERTURE DISTRIBUTION

FUNCTION (ETADF)

A. Antenna Fourier Transform

The polarimetric antenna radiation pattern is sampled ac-

cording to the Nyquist criterion in azimuth steps ∆ϕ, elevation

steps ∆ϑ and frequency steps ∆f . The vectors of sampling

points are give as:

ϕ =
[

−π . . . π −∆ϕ
]T

∈ R
L1×1 (5)

ϑ =
[

π/2 . . .− π/2
]T

∈ R
L′

2×1 (6)

f = 2π/B
[

−B/2 . . . . . . B/2−∆f
]T

∈ R
L3×1 (7)

with B being the bandwidth. The sampled radiation pattern

per polarisation k forms a tensor Bk(ϕ,ϑ,f) ∈ C
L1×L′

2×L3 .

Because the polarisation components are orthogonal to each



other, we limit our investigations to a single polarisation in

the following. Furthermore, we use co-elevation θ instead of

elevation, which is given by transformation: θ = π/2−ϑ and

therefore θ′ =
[

0 . . . . . . π
]T

.

The sampled radiation patterns are periodic in azimuth, why

periodic extension of the elevation domain across the north

pole is necessary [2]. The periodical radiation pattern is given

by:

B
(p)
k (ϕ,θ,f) = −

(

Bk(ϕ
′,θ′′,f) ⊔1 Bk(ϕ

′′,θ′′,f)
)

⊔2 Bk(ϕ,θ
′,f) ∈ C

L1×L2×L3 (8)

θ′′ =
[

π −∆θ . . .∆θ
]T

ϕ′ =
[

0 . . . π −∆ϕ
]T

ϕ′′ =
[

−π . . .−∆ϕ
]T

with θ =
[

−π +∆θ . . .∆θ . . . π
]T

the new sampling vector

in co-elevation domain.

Utilising the periodic radiation pattern, the discrete Fourier

transform (DFT) per dimension is given by:

Gk = B
(p)
k (ϕ,θ,f)×1 E(ϕ)×2 E(θ)×3 E(f) (9)

with the DFT matrices

E(ϕ) =
(

eϕµT
ϕ

)†

∈ C
L1×L1 (10)

E(θ) =
(

eθµ
T
θ

)†

∈ C
L2×L2 (11)

E(f) =
(

efµ
T
f

)†

∈ C
L3×L3 (12)

µϕ =
[

−L1

2 . . . L1

2 − 1
]T

∈ R
L1×1

µθ =
[

−L2

2 . . . L2

2 − 1
]T

∈ R
L2×1

µf =
[

−L3

2 . . . L3

2 − 1
]T

∈ R
L3×1

We state the tensor Gk as the Time-Aperture Distribution

Function (TADF) of the antenna for polarisation k.

B. Truncation and De-Noising

The Fourier transformed angular antenna pattern is con-

centrated in a limited area [2] and, because we assumed a

time limited antenna impulse response, the same holds for the

Fourier transformed frequency domain. Also, if the antenna

pattern is oversampled, their Fourier transformation is band

limited. Therefore, truncation of the TADF to energy carrying

signal parts is possible, whereas other signal parts, which

contain e.g. measurement noise, are negligible.

Truncation of the TADF has several advantages. First, the

amount of data to store is reduced. Second, because noise

carrying signal parts are dropped, the measured data are de-

noised. Last, the computational complexity of the antenna

interpolation (see next section) is reduced, because less data

points have to be considered. Therefore, the truncated version

of the TADF is called ETADF.
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Figure 3. ETADF tensor Ḡk with yellow sub-tensors where µϕ = 0, µϑ = 0

or µf = 0 holds

Calculation of the ETADF can be done by truncating the

DFT matrices. The truncated DFT matrices are:

Ē(ϕ) =
(

eϕµ̄T
ϕ

)†

∈ C
N1×L1 (13)

Ē(θ) =
(

eθµ̄
T
θ

)†

∈ C
N2×L2 (14)

Ē(f) =
(

efµ̄
T
f

)†

∈ C
N3×L3 (15)

µ̄ϕ =
[

−N1−1
2 . . . N1−1

2

]T
∈ R

N1×1

µ̄θ =
[

−N2−1
2 . . . N2−1

2

]T
∈ R

N2×1

µ̄f =
[

−N3−1
2 . . . N3−1

2

]T
∈ R

N3×1

with N1, N2, N3 are odd numbers and N1 < L1, N2 < L2,

N3 < L3 for truncation. The ETADF for polarisation k is:

Ḡk = B
(p)
k (ϕ,θ,f)×1 Ē(ϕ)×2 Ē(θ)×3 Ē(f) (16)

An ETADF tensor is visualised in Fig. 3. The yellow fields

refer to tensor entries, where µϕ = 0, µϑ = 0 or µf = 0
holds.

IV. EFFICIENT ANTENNA PATTERN INTERPOLATION

Based on the Fourier antenna model, calculation of the

antenna radiation pattern for arbitrary azimuth, co-elevation

and frequency is possible by inverse discrete Fourier transform

(iDFT). The iDFT row-vectors are built according to the

azimuth ϕ0, co-elevation θ0 and frequency f0 of interest:

d(ϕ0) = e(µϕϕ0) ∈ C
1×N1 (17)

d(θ0) = e(µθθ0) ∈ C
1×N2 (18)

d(f0) = e(µff0) ∈ C
1×N3 (19)

µϕ =
[

−N1−1
2 . . . N1−1

2

]

∈ R
1×N1

µθ =
[

−N2−1
2 . . . N2−1

2

]

∈ R
1×N2

µf =
[

−N3−1
2 . . . N3−1

2

]

∈ R
1×N3



Applying the iDFT row-vectors to the ETADF tensor, the

antenna radiation pattern for polarisation k is calculated as

follows:

bk(ϕ0, θ0, f0) = Ḡk ×1 d(ϕ0)×2 d(θ0)×3 d(f0) (20)

Calculating the antenna pattern using the above formula needs

O(4N1N2N3) real-valued multiplications, which is computa-

tional cumbersome if many points are requested. Therefore,

methods for efficient calculation are necessary. In the follow-

ing we present a two stage approach to 1) reduce the number of

real-valued multiplications and 2) shrink the data dimension,

which allows a much more efficient calculation.

A. Multiplication Reduction

The iDFT vectors feature a symmetry property, which is

generally:

d =
[

(Π · a)H 1 aT
]T

a =
[

eυ . . . e
N−1

2
υ

]T

with the permutation matrix Π as:

Π =







0 . . . 1
. . .

1 . . . 0







Due to this symmetry, the inner product of vector d and an

arbitrary vector w =
[

xT y zT
]T

can be simplified as

follows:

dT ·w =
[

1 ℜ
{

aT
}

ℑ
{

aT
}]

·





y
z +Π · x
z −Π · x





The number of real-valued multiplications is reduced by half.

Vector w is folded by either summation or subtraction of his

left and right part.

This relationship is utilised to reduce the computational

complexity of the iDFT. First, we define the folding matrix

F :

F (N) =





oT 1 oT

Π o I

−Π o I



 ∈ R
N×N (21)

I ∈ R
N−1

2
×N−1

2 ,o ∈ R
N−1

2
×1,Π ∈ R

N−1

2
×N−1

2

with I the identity matrix and o vector of zero values. The

ETADF folding is now given by:

˜̄Gk = Ḡk ×1 F (N1)×2 F (N2)×3 F (N3) (22)

with G̃k ∈ C
N1×N2×N3 the folded ETADF. A folded ETADF

tensor is depicted in Fig. 4, whereas the yellow blocks rep-

resent the sub-tensors where µϕ = 0, µϑ = 0 or µf = 0
holds.

The antenna radiation pattern for polarisation k can now be

calculated by:

bk(ϕ0, θ0, f0) = Ḡk ×1 d(ϕ0)×2 d(θ0)×3 d(f0)

= ˜̄Gk ×1 d̃(ϕ0)×2 d̃(θ0)×3 d̃(f0) (23)

µf

µ
ϕ

µ
θ

Figure 4. Folded ETADF tensor ˜̄Gk with yellow sub-tensors where µϕ = 0,
µϑ = 0 or µf = 0 holds

with the iDFT row-vectors:

d̃(ϕ0) =
[

1 ℜ
{

eµ̃ϕϕ0
}

ℑ
{

eµ̃ϕϕ0
}]

∈ R
1×N1 (24)

d̃(θ0) =
[

1 ℜ
{

eµ̃θθ0
}

ℑ
{

eµ̃θθ0
}]

∈ R
1×N2 (25)

d̃(ϕ0) =
[

1 ℜ
{

eµ̃ff0
}

ℑ
{

eµ̃ff0
}]

∈ R
1×N3 (26)

µ̃ϕ =
[

1 . . . N1−1
2

]

∈ R
1×

N1−1

2

µ̃θ =
[

1 . . . N2−1
2

]

∈ R
1×

N2−1

2

µ̃f =
[

1 . . . N3−1
2

]

∈ R
1×

N3−1

2

The number of real-valued multiplications is reduced to

O(2N1N2N3).

B. Skipping Redundancy

Due to the periodical extension of the radiation pattern

in elevation domain, redundant data are added in azimuth

domain. This results in zero valued samples in the folded

ETADF, which are ignorable during iDFT calculation.

First, matrices Se and So are introduced, which selects even

and odd rows of a matrix, respectively:

Se =









0 1 0 0 . . . 0 0
0 0 0 1 . . . 0 0

:
0 0 0 0 . . . 1 0









∈ R
N1−1

2
×N1 (27)

So =









1 0 0 0 . . . 0 0
0 0 1 0 . . . 0 0

:
0 0 0 0 . . . 0 1









∈ R
N1+1

2
×N1 (28)

Second, matrices Sr and Si are introduced, which selects the

upper and lower rows of a matrix, respectively:

Su =
[

I N2+1

2

ON2+1

2
,
N2−1

2

]

∈ R
N2+1

2
×N2 (29)

Sl =
[

ON2−1

2
,
N2+1

2

I N2−1

2

]

∈ R
N2−1

2
×N2 (30)

with OA,B ∈ R
A×B matrix of all zeros and IN ∈ R

N×N

the identity matrix. For short hand notation, we abbreviate the



multiplication of the selection matrices with a folded ETADF:

˜̄G
e

k = ˜̄Gk ×1 Se ×2 Su (31)

˜̄G
o

k = ˜̄Gk ×1 So ×2 Sl (32)

and accordingly the multiplication with the iDFT row-vectors:

d̃e(ϕ0) = d̃(ϕ0) · S
T
e ∈ R

1×
N1−1

2 (33)

d̃o(ϕ0) = d̃(ϕ0) · S
T
o ∈ R

1×
N1+1

2 (34)

d̃u(θ0) = d̃(θ0) · S
T
u ∈ R

1×
N2+1

2 (35)

d̃l(θ0) = d̃(θ0) · S
T
l ∈ R

1×
N2−1

2 (36)

The antenna radiation pattern for polarisation k is now given

by:

bk(ϕ0, θ0, f0) = Ḡk ×1 d(ϕ0)×2 d(θ0)×3 d(f0)

= ˜̄G
e

k ×1 d̃e(ϕ0)×2 d̃u(θ0)×3 d̃(f0)

+ ˜̄G
o

k ×1 d̃o(ϕ0)×2 d̃l(θ0)×3 d̃(f0) (37)

Due to the skipped redundancy, the number of real-valued

multiplications is O(N1N2N3).

V. MODEL ORDER ESTIMATION

For truncation purpose, the number of significant signal

parts have to be estimated in each ETADF dimension, which

can be assumed as a model order estimation problem. As

stated, we utilise an algebraic antenna model, why the un-

folding of each dimension is generally modelled as:

U(q)

{

B
(p)
k

}

=D(q) · U(q) {Gk}+N (38)

with N ∼ N (0, σ2
qI) the matrix of circular, normal dis-

tributed noise; U(q) {Gk} the matrix of Fourier coefficients and

D(q) the DFT matrix. For notational convenience we introduce

the following abbreviations:

Bk,(q) = U(q)

{

B
(p)
k

}

∈ C
Lq×L̄q

Gk,(q) = U(q) {Gk} ∈ C
Lq×L̄q

wheras L̄q =
∏3

i=1,i 6=q Li. Thus, equation (38) becomes:

Bk,(q) =D(q) ·Gk,(q) +N (39)

De-noising is achieved by band limiting the DFT matrix

and therefore truncating parts of the Fourier coefficient matrix.

We decompose model (39) into two parts, to account for Pq

significant and Lq − Pq truncated Fourier coefficients:

Bk,(q) =

Pq
∑

l=1

D(q)(:, l) ·Gk,(q)(l, :)

+

Lq
∑

l=1+Pq

D(q)(:, l) ·Gk,(q)(l, :) +N (40)

whereas D(q)(:, l) denotes the selection of the l-th column

and Gk,(q)(l, :) the selection of the l-th row. Decomposition of

model (39) is accomplished by considering the first Pq Fourier

coefficients, which are ordered descendingly according to their

magnitude, and their corresponding DFT matrix vectors. In the

following, Pq is denoted as model order. Estimation of model

order Pq is conducted by statistical comparison of model order

Pq and Pq + 1. Thus, the additional Fourier coefficients are

tested, whether they significantly differ from zero, why the

test’s H0 hypothesis is: Gk,(q)(Pq + 1, :)T = o.

A known statistical test here for is the F-test [16, p. 37],

which test statistic for order Pq is:

Fstat(Pq) =
L(Pq)− L(Pq + 1)

L(Pq + 1)
· (Lq − Pq − 1) (41)

The Fisher statistic is tested against the 1−α percentile point

of the Fisher distribution, in order to verify the H0 hypothesis:

Fstat(Pq) < F1−α(2 · L̄q, 2 · L̄q · (Lq − Pq − 1)) (42)

with L(Pq) the sum of squared residuals according to model

order Pq:

L(Pq) =
∥

∥

∥
Bk,(q) −D

(Pq)

(q) D
(Pq)

†

(q) Bk,(q)

∥

∥

∥

2

F
(43)

Model orders from Pq = 1...Lq − 1 are tested successively,

until H0 hypothesis cannot be rejected based on a significance

level α. If so, the additional Fourier coefficients, and also the

following ones because of the magnitude ordering for model

decomposition, are not significantly different from zero and

can be truncated.

VI. SIMULATION

Verification of the ETADF approach based on HFSS sim-

ulation data of a horn antenna will be presented in the final

paper.

VII. CONCLUSION
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