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Abstract—Lattice-reduction-aided preequalization or precod-
ing are powerful techniques for handling the interference on the
multiuser MIMO broadcast channel as the channel’s diversity
order can be achieved. However, recent advantages in the closely
related field of integer-forcing equalization raise the question, if
the unimodularity constraint on the integer equalization matrix
in LRA schemes is really necessary or if it can be dropped,
yielding an additional factorization gain. In this paper, so-
called algebraic signal constellations are presented, where the
unimodularity is not required anymore. Assuming complex-
baseband transmission, particularly g¢-ary fields of Gaussian
primes (complex integer lattice) and Eisenstein primes (complex
hexagonal lattice) are considered. Given the signal constellation
and the channel code in the same arithmetic over a finite field of
order ¢, a coded modulation approach with straightforward soft-
decision decoding metric is proposed. Moreover, LRA precoding
over algebraic constellations and its advantages as opposed to
LRA preequalization are discussed. The theoretical considera-
tions in the paper are covered by means of numerical simulations.

I. INTRODUCTION

In the field of multiuser multiple-input/multiple output
(MIMO) communications, the principle of lattice-reduction-
aided (LRA) equalization has gained significant interest as the
respective schemes are able to achieve the diversity order of
the multiuser MIMO channel [28]—in contrast to well-known
traditional techniques like linear (pre-)equalization, decision-
feedback-equalization (DFE) [10] or Tomlinson-Harashima
precoding (THP) [29], [15], which have been adapted from
the singleuser to the multiuser scenario [10], [7].

In LRA schemes, the equalization is performed in a suited
basis w.r.t. the lattice described by the MIMO channel matrix.
This is achieved by factorizing the channel matrix into an
unimodular integer part and a “more suited” description of
the lattice with basis vectors close to orthogonal and of small
norm. This approach has first been presented for receiver-
side equalization (multiple-access channel) [35] but could
rapidly—via the uplink/downlink duality [31], [32]—be ex-
tended to downlink transmission (MIMO broadcast channel)
[33], [34], [26].

Recently, inspired by so-called compute-and-forward [23],
[17] or integer-forcing (IF) [36] schemes where the final
resolution of the interference is performed over finite fields,
the philosophy of LRA equalization has been considered from
a modified perspective [25]: applying signal constellations
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with algebraic property [9], or more specifically, constellations
which represent finite fields over the complex plane, the short-
est basis problem present in LRA equalization is generalized
to the shortest independent vector problem. This task, which is
always given in IF equalization, drops the unimodularity con-
straint on the integer matrix. Fields of Gaussian primes [19],
[1], [3] (complex integer lattice) or Eisenstein primes [3], [27],
[30] (complex hexagonal lattice) are suited algebraic structures
[25], not only providing the desired finite-field property, but
also directly yielding the precoding lattice or modulo operation
inherently accompanied by LRA preequalization or precoding.

In this paper, the approach of applying algebraic signal
constellations for LRA preequalization over the MIMO broad-
cast channel as proposed in [25] is reviewed and extended.
This includes a factorization according to the shortest inde-
pendent vector problem and the assessment of the achievable
factorization gain. A coded modulation approach where both
the channel code and the signal constellation operate over
the same arithmetic, specifically a finite field of order g, is
presented and implemented via non-binary g-ary LDPC codes.
Moreover, the LRA linear preequalization in [25] is replaced
by (Tomlinson-Harashima-type) LRA precoding and its ad-
vantages w.r.t. signal properties and resulting transmission
performance are discussed.

The paper is organized as follows: In Sec. II, the sys-
tem model of coded modulation in combination with LRA
preequalization or precoding for the MIMO broadcast chan-
nel is given. Sec. III details the aspects of LRA encoding
over algebraic constellations, coded modulation over these
constellations and the advantages of precoding instead of
preequalization. Numerical results are provided in Sec. IV.
The paper closes with a summary and outlook in Sec. V.

II. SYSTEM MODEL

A discrete-time complex baseband multiuser MIMO broadcast
channel is considered. At the transmitter-side, a joint process-
ing is present to supply Ny non-cooperating single-antenna
users via Nt > Ny transmit antennas. The system model of
LRA precoding in combination with (soft-decision) channel
coding is depicted in Fig. 1.

A. Transmitter-Side Processing

Source information symbols ¢,, are transmitted to user u =
1,..., Ng. Since usually bits are communicated, we restrict



n1
| 1 | 2
i Y1 51 i1

’i1 mi C1 ‘ X1 ml
o MC » ENC » M —o—»] (o L » DEC = MC o
I I a P di € H : I I I
: : recoding [—O : inNR : : : )
IN —my cN, ‘ TN, YN — N —— N, ‘ N,
OL MC l; ENC R> M —o:r» % L R> DEC i/\/{(fl +0R
| | | | |
]FQ ! F : C ! [0, 1]q ! F ! FQ

| q

| q |

Fig. 1. System model of LRA precoding (transmitter- and receiver-side processing) for the MIMO broadcast channel with N transmit antennas and Ny

single-antenna users in combination with soft-decision channel coding.

to the binary case (¢, € F5). For each time step, the symbols
are summarized in the vector 4 = [i1, . ..,ing]| € Fo®.

If the source and channel coding do not share the same
arithmetic, i.e., the channel code is represented over a field
F, = {¢1,...,04} with ¢ # 2, a modulus conversion
(denoted as MC) has to be applied [12], [10], [25]: a block
of serial ;1 source symbols € Fy is converted to a block of
v message symbols € F, (¢© > 2¢). These symbols are
combined in m = [my, ..., my,]" € FY®.

Subsequently, performing the channel encoding (ENC), k.
(serial) message symbols are encoded to a codeword of length
ne via a k. X n. generator matrix G of a linear block code
(rate R, e ke/ne), yielding the vector of encoded messages
c=lc1,...,eng]T € IF(]IVR. All users are assumed to have the
same code properties (length, rate, and code class).

Given the encoded symbols, a predefined mapping M : ¢ €
F, — a € A to the data symbols is performed, where A C
C denotes a zero-mean signal constellation with cardinality
M = | Al and variance o2.

The vector of data symbols a = [ay,...,any]|’ € AVR
is finally precoded to a vector of transmit symbols x
[Z1,...,2N;]7 € CNT that are radiated from the antennas
(sum-power constraint Nto?2 Ngro?, where o2 is the
transmit symbols’ variance). The process of precoding will
further be explained in Sec. III.

B. Channel Model
The MIMO broadcast channel is expressed by

y=Hx+n. @))]

The Nr X Nt channel matrix H is assumed to have i.i.d.
complex Gaussian zero-mean unit-variance coefficients. A
block-fading channel is assumed, i.e., the channel matrix is
constant over a block of n. symbols (block length of the
channel code). The vector n [n1,...,nng)T € CMr
represents the additive white noise present at each receiver.
It is assumed to be i.i.d. zero-mean complex Gaussian with
variance o2. Finally, y = [y1,...,yng]’ € CM* denotes the
vector of receive symbols.

The signal-to-noise ratio (SNR) is expressed as transmitted
energy per bit in relation to the noise power spectral density
Ny, given by
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C. Receiver-Side Processing

At the receiver side, each user u, u = 1,..., Ny, calculates
a metric for soft-decision decoding from its incoming signal
Y, (metric calculation denoted as £). It is represented as g-
dimensional vector I, = [ly,1,- - ., ly,q] per time step. Thereby,
lup = Pr{cy =¢,|Yu}, p=1,...,q, ie., 1, is a probability
mass function (pmf) of the encoded message at the transmitter
side w.r.t. all possible elements ¢, € F,.

Using the metric, a soft-decision decoding (DEC) is per-
formed. The resulting decoded messages are denoted as 1M =
[, ... ,mNR]T S F(IIVR

In a final step, inverse modulus conversion is applied to
obtain the estimated initial information symbols (blocks of
v message symbols are converted to blocks of p source
symbols). This yields the vector 2 = [i1,...,ing]" € FO®.

III. LRA PRECODING FOR CODED MODULATION OVER
ALGEBRAIC SIGNAL CONSTELLATIONS

In order to handle the multiuser interference present on the
MIMO broadcast channel, both LRA preequalization and
(Tomlinson-Harashima-type) precoding share the principle of
performing the interference cancellation in a suited basis, i.e.,
a change in basis is realized to reduce the related increase in
transmit power. The optimal solution is found by solving a
shortest basis problem [33], [34]. In the following, the basic
idea behind LRA schemes is reviewed.

Solving the shortest basis problem is equivalent to a factor-
ization of the channel matrix. More precisely, a factorization
of the augmented channel matrix [11]

H = [H \/ZI]NRX(NR,J,»NT) = ZHred (3)

is performed, where H,.q denotes the augmented reduced
channel matrix, I the identity matrix and { = 02 /o2. Z is an
integer matrix w.r.t. the given signal point lattice A, [10], [25]
(signal grid of .A) which has to be unimodular (| det(Z)| = 1)
for the existence of an inverse integer matrix Z .

Given the channel factorization, the LRA preequalization
can be performed as depicted in Fig. 2: The LRA preequal-
ization is realized by an integer equalization matrix

Z, =Pz "

def
p=

4)

to obtain equalized symbols @ = [ay, ..., axy]" from the data
symbols a. Thereby, P is a permutation matrix enabling an
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Fig. 2. Block diagramm of LRA preequalization (feedback part inactive, i.e.,

B = I) and precoding for the MIMO broadcast channel.

optimized precoding order among the data symbols (detailed
below). Employing the component-wise modulo reduction

mody, (2) £z — Qa,(2), 2€C, (5)

where Qa (-) is the quantization to the predefined precoding
lattice A, [10], [25], encoded symbols & = [Z1,... IR T
are created. In case of LRA precoding, this is done in a
successive way as the interference from previously encoded
symbols is canceled via feedback matrix B (for LRA pree-
qualization: B = I). Noteworthy, due to the modulo reduction
a periodically extendable constellation [10], [25]

AZRy(A)NA, (6)

is required, where Rv (A,) denotes the Voronoi region [10]
of the precoding lattice. In the last step, the feedforward
matrix F' handles the remaining (non-integer) interference; the
factor g ensures that the sum-power constraint is fulfilled when
obtaining the vector of transmit symbols .

A. Unimodularity Constraint and Algebraic Constellations

Initially, for LRA preequalization and precoding, conven-
tional square-QAM constellations have been employed [34]:
utilizing the Gaussian integers G [1], [3] (i.e., the integer
lattice in the complex plane) as the signal point lattice! A,,
the demanded property of a periodical extensibility can be
provided by setting A, = VMG [25], i.e., a scaled version
of the signal point lattice (cf. (6)).

Quite recently, an alternative strategy [25] inspired by
integer-forcing schemes [23], [17], [16], [36] was proposed:
In IF, the integer interference is canceled over the arithmetic
of a finite field, setting the requirement to have a signal
constellation which can be represented as algebraic structure
[9] over the complex numbers. In turn, the unimodularity
constraint can be dropped, as Z ' always exists over F,.
Utilizing these structures in LRA equalization/precoding, the
factorization according to (3) can be performed w.r.t. the short-
est independent vector problem: neglecting the unimodularity
constraint, a factorization gain may be achieved.

1) Fields of Gaussian Primes: Specifically, for the lattice
G, fields of Gaussian primes [1], [3] are convenient algebraic
structures. A Gaussian prime is a Gaussian integer © = a+j b,
a,b € Z, which fulfills the equation ©0* = |©|? = p, where
p is a real-valued prime and ©* = a —j b denotes the complex
conjugate of ©. In particular, primes of the form? remy(p) =

'If /M is even, a shifted version of G has to be applied, cf. [25].
Zremg(c) Heo— d|c/d], with ¢,d € Z.

1,i.e.,p=5,13,17,... are suited. In addition, for real-valued
primes of the form remy(p) = 3, ie., p = 3,7,11,..., a
related real-valued Gaussian prime is directly given by © = p.

Choosing the precoding lattice as A, = ©G [25], the re-
spective zero-mean signal constellation Ag} ) o Rv(©G)NG
(cf. (6)) represents a finite field over C. The constellation’s
cardinality always reads M = |©]2.

2) Fields of Eisenstein Primes: As an alternative choice
of the signal point lattice, the Eisenstein integers [E represent
the hexagonal lattice over C (A, = E). By analogy to the
Gaussian primes, Eisenstein primes [3], [27], [30] of the form
© = a + wb can be found that fulfill ©O* = p. Thereby,
w = (=14jv3)/2 = ¢/*™/3 is the Eisenstein unit. In this
case, remg(p) = 1 has to hold for the real-valued prime p,
ie,p="7,13,19,.... When rems(p) = 2 is fulfilled instead,
i.e., for the case when p = 2,5, 11,.. ., real-valued Eisenstein
primes of the form © = p are given.

Since the precoding lattice is now given as A, = OFE, where
O is an Eisenstein prime, a zero-mean finite-field constellation
is formed by A(@E ) 2Ry (BE)NE. The cardinality again reads
M = |02

The use of Eisenstein constellations additionally enables a
packing and shaping gain compared to the Gaussian prime
ones [25]: due to the higher packing density of the signal
points as well as the hexagonal shaping region Ry (OE)
instead of the square one Rv(OG) the power efficiency is
increased.

B. Coded Modulation over Algebraic Constellations

Utilizing the property of g-ary (complex-valued) fields of
Gaussian and Eisenstein primes being isomorphic to F, [19],
[3], [25], a coded modulation approach is straightforward.
Performing the channel coding over the finite field F,, the
elements ¢1,...,p, are mapped to the g-ary constellation
A(@G )~ F, or A(@E )~ F,, respectively, where a natural
mapping F, — Ag) via modulo reduction (5) can be used
[25]. This strategy gives the possibility to operate in the
same arithmetic for both channel coding and (integer) channel
equalization (a precondition for the application of IF schemes).

Non-binary LDPC codes are a suitable code class for the
above coded modulation strategy due to the possibility of
soft-decision decoding via non-binary belief-propagation (BP)
decoding over I, [4] and the flexible code length (e.g., in
contrast to Reed-Solomon codes).? In particular, the subclass
of irregular repeat-accumulate codes [20] adapted to the non-
binary case [22] is of interest, as the parity-check matrix
H_ is guaranteed to have full rank and thus a systematic
linear encoding with the related generator matrix G, can be
employed.

3Literature on non-binary BP decoding is usually focused on the case q =
2b b eN, e.g., [5]. For arbitrary fields Fg, a standard probability-domain BP
decoding as explained in [4] can be performed over the related arithmetic. It
should be noted that for each element of F, additionally the probability of
its additive inverse has to be calculated in the sum-product step (check-node
message update). When choosing ¢ = 2°, this is typically neglected as the
additive inverse is the element itself.



An approximate metric for soft-decision decoding can be
derived in the following way: According to Bayes’ theorem,
each element [, ,, p = 1,...,q, of the g-dimensional proba-
bility vector (pmf) is given by

| Prlglen =) Prleu = )
Pr{yu}
(N

(cf. Sec. II, receiver-side processing), where Pr{c, = ¢,} and
1/Pr{y,} are constant Y¢,. The first factor reads

Priy. e = 0o} = 3. fn (g — (M(,) + X)) -Pra,

(®)
since an infinite number of modulo congruent signal points is
present at the receiver side [10]. Thereby,

—|nf?
exp (920_% ; neC ; (9)

is the probability density function (pdf) of the scaled noise
(factor g) and Pry , = Pr{y, — n, = M(p,) + X| Z,} the
probability of occurrence for each modulo-congruent signal
point which depends on the actual integer equalization matrix.
Due to the infinite number of congruent points, (8) has to be
approximated. For mid-to-high SNRs, it is sufficient to assume

(M(‘pp) + )‘min,P))'Pr)\min,p )

(10)
i.e., for each element of F,, only the neighboring modulo-
congruent representative

lu,p = Pr{cu = $p ‘ Yu

A€EA,

n(n) =

wg2o2

Pri{y.|cu = ¢p} = fn (Yu —

(M(gp) + ) (11)

def .
Amin,p = argmin ‘yu -
A€EA,
is taken into account [10], where Pry

the vector [, = [l~u,1, el l~u7q] with

~ 1/q. In summary,

min,p

a2 (ol = (MG 4 0]) (2

is calculated and normalized to I, = I, / 22:1 l~u7p.

C. LRA Precoding over Algebraic Constellations

As a modulo reduction—in case of LRA equalization in-
herently defined by the precoding lattice A,—is one of the
basic ideas behind Tomlinson-Harashima-type precoding [29],
[15], [10], the combination of LRA (integer) equalization and
non-integer precoding / successive interference cancellation is
a promising strategy.

1) LRA Preequalization: Given the channel factorization
H = ZH,.q (cf. (3)), the integer equalization matrix directly
reads Z, = Z_l, i.e., P = I. The feedback part (cf. Fig. 2)
is deactivated; the feedforward matrix for the residual non-
integer equalization according to the minimum mean-square
error (MMSE) criterion is the Nt X Ny upper part F' of

F def I:IE(NTXNR)] = ﬂ-::ied (ﬂredﬁlr—'ed)
F(NRXNR)

13)

The factorization task (3) can be solved by any lattice
reduction / shortest independent vector algorithm. Employing

fields of Gaussian primes (A, = G), a complex-valued
factorization has to be supported. As an example, the complex
variant [13] of the LLL algorithm [21] is suited, however,
resulting in an (unnecessarily) unimodular Gaussian integer
matrix Z. For fields of Eisenstein primes (A, = [E), an
adapted version has recently been proposed [25], resulting in
an unimodular Eisenstein integer matrix Z.

2) LRA Precoding: For the application of LRA precoding,
additionally a sorted LQ decomposition according to [11]

PH.a=L[Q Q]=LQ

is necessary. Thereby, P is a Ng x Ny permutation matrix
describing the optimum encoding order among the users.
Usually—due to the uplink-downlink duality [31], [32]—the
reversed VBLAST [14] sorting is used. The lower triangular
Ny x Ng matrix L with unit main diagonal directly yields the
feedback matrix (i.e., B = L), and Q is a Ng X (Ng + Nt)
matrix with orthogonal rows. The MMSE feedforward matrix
for the residual equalization is given by the upper part F' of

F= I:IE(NTXNR)] _ QH (Q_Q_H),l |

F (Ng xNg)

(14)

15)

The integer preequalization now reads Z, = PZ ~! includ-
ing both the LRA equalization and the permutation for the
optimized encoding order.

In contrast to LRA linear preequalization, two different
factorization tasks have to be solved: first, the (complex-
valued) shortest basis / shortest independent vector problem
and afterwards, the sorted LQ decomposition. Both steps
can be combined into a single factorization algorithm [11],
however, the state-of-the-art approaches are limited to the
shortest basis problem.

3) Comparison of Preequalization and Precoding: Though
both LRA preequalization and precoding are performing the
same integer-based equalization they differ in how to treat the
residual non-integer interference. In the following, this will be
discussed with the help of Fig. 3, where preequalization and
precoding are exemplarily illustrated for a 25-ary square-QAM
and Eisenstein prime constellation.

Via Z,, linear combinations of data symbols or lattice
points, respectively, are calculated. Performing LRA pree-
qualization, the encoded symbols a are then simply modulo-
reduced via & = moda (@), resulting in symbols identical to
the ones from the original signal constellation A (Fig. 3 left).
For algebraic constellations Ag)this has the consequence that
still elements of the finite field are present, i.e., the cascade of
integer equalization and modulo can be interpreted as one op-
eration over Ag) ~ IF,. The residual non-integer interference
is equalized by the (pseudo-)inverse of the reduced augmented
channel matrix.

In LRA precoding, the feedforward matrix shapes the
reduced channel to have a lower triangular structure; con-
sequently the remaining causal interference can perfectly be
eliminated by successive interference cancellation. As in con-
ventional THP—due to the modulo operation—this results in



&, LRA preequalization &, LRA precoding

x - g, LRA preequalization x - g, LRA precoding

oy
X .'"'..:\

re----e~
[ ]
[ ]
[ ]
[ ]

..

Fig. 3. Comparison of signal processing for LRA preequalization and precoding (cf. Fig. 2). Channel factorization via complex LLL [13] and Eisenstein

LLL [25]; additional QR decomposition for precoding. 25-ary square-QAM (top) and Eisenstein prime (bottom) constellations. Ey, tx/No =

Nt = Nr = 8, Ny - 100 = 800 samples per illustration.

approximately uniformly distributed encoded symbols & over
Rv(Ap) (cf. Fig 3). A finite-field property of & is no longer
present as a part of the non-integer interference is already
incorporated.

In Fig. 3 (right side), the transmit symbols « (after feedfor-
ward processing) are illustrated for both cases neglecting the
scaling factor g which enables a fair comparison. Apparently,
on average precoding results in lower signal amplitudes. This
is accompanied by a lower scaling factor g for a constant
transmit power (dual to the noise enhancement for receiver-
side equalization) which finally results in an increase in the
receiver-side SNR and hence an improved performance. The
gain is induced by a lower row norm [11] of the feedfor-
ward matrix when performing precoding instead of simple
inversion of the reduced channel matrix. Moreover, as can
be seen from Fig. 3 (both preequalization and precoding), the
mean amplitude is even more decreased when applying the
Eisenstein constellation. This not only results from the packing
and shaping gain, but also from a factorization gain due to the
higher packing density [25].

IV. PRELIMINARY NUMERICAL RESULTS

In this section, we present numerical results for the approach
of coded modulation over algebraic signal constellations.
Noteworthy, a factorization according to the shortest basis
problem via the complex LLL or its Eisenstein variant has
been applied. In the final paper, this will be extended to results
on the basis of a recently proposed algorithm [6] solving
the shortest independent vector problem. Below, always the
average over all users and a sufficiently large number of
channel realizations is shown.

10 dB,
TABLE I
SIMULATION PARAMETERS.

A [Aa [Feld [ w | v [ nc | ke [ Info-Bits
AD T ¢ | Fis || 37 [ 10 [ 16200 [ 8760 [ 32412
A 1 g || Fur | 94 | 23 [[ 16200 [ 7935 [ 32430
AD T E [ Fis [ 37 | 10 [[ 16200 | 8760 || 32412
AT T E [ Fio [ 497 | 117 [[ 16200 | 7722 || 32802
16QAM [ G [[ Fig | 4 [ 1 ][ 16200 | 8100 [ 32400
T6QAM | G || F» || - | - [[ 64800 | 32400 ]| 32400

A. Uncoded Transmission

For a reasonable assessment of the coded modulation ap-
proach and its impact on the transmission performance of LRA
transmission, we first restrict to the uncoded case. Binary end-
to-end transmission is considered, i.e., a modulus conversion
is performed for the use of g-ary signal constellations. The
simulation parameters are listed in Table I; for the moment
the last three columns and last two rows can be omitted.

The simulation results for Nt = Nr = 8 are shown
in Fig. 4. Considering the symbol-error rate (SER), we
are able to observe the convergence to diversity order eight
independently from the constellation, and a precoding gain of
about 3—4 dB. The superiority of the Eisenstein constellations
is clearly visible. However, their packing, shaping, and fac-
torization gain [25] has a minor impact on LRA precoding
(compared to preequalization): as the overall performance is
increased, the potential gain by changing the signal grid is not
that high. The Gaussian prime constellations show—at least
when factorizing according to the shortest basis problem—an
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equivalent performance as the 16-ary QAM one.

The related bit-error rate (BER) is depicted in Fig. 4. The
precoding gain expectable from the SER curves is visible, but
all non-QAM constellations suffer from an error propagation
in the inverse modulus conversion [25]. Additionally, a direct
mapping from bits allows Gray labeling, still more increasing
the advantage of conventional QAM constellations. Even the
13-ary Eisenstein constellation only achieves the same perfor-
mance as the 16-ary QAM one in the high-SNR regime, but
naturally with an decrease in modulation rate. Consequently,
an uncoded binary transmission in combination with modulus
conversion is not advisable even in the case of LRA precoding.

B. Coded Transmission

Finally, we apply the presented coded modulation scheme
based on LRA preequalization/precoding. For this pur-
pose, near-ultra-sparse [4] semi-random-based irregular repeat-
accumulate parity-check matrices of the form H., =
[H™ | HS| = [HAY HA? | H®)] have been employed.
Thereby, the submatrix H ((:S) denotes the fixed systematic part
[20] and the submatrices H EAD and H gAQ) form the random
part, which is chosen according to a given rate distribution. To
achieve a irregular code structure, we set the column weight
of H* to d. = 3, and the one of H*Y to d. = 2; the
row weight d, is chosen in accordance and may only differ
by one. Thereby, about 10 % of the n. — k. columns of H &A)
are assigned to HEAU, the other 90 % to H£A2).
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Fig. 5. FER (top) and BER (bottom) over E}, tx/No for LRA preequal-
ization (dashed) and precoding (solid, dashed dotted) assuming coded binary
transmission. Parameter: M variation of the signal constellation A and the
related signal point and precoding lattice. N7 = N = 8.

Fig. 5 illustrates the results for a end-to-end binary coded
transmission; the parameters are listed again in Table I (code
parameters are given in the last three columns). To have a
fair comparison among the different settings, by adapting the
code rate R. the number of information bits per code block
is fixed to achieve the same amount of transmission data.
For comparison, a 16-ary square-QAM transmission is studied
performing the channel coding in the extension field Fyg
with the above code construction. Besides, the conventional
bit-interleaved coded modulation (BICM) [2] approach is
applied, where a respective bit-log-likelihood metric and a
well-optimized binary repeat-accumulate parity-check matrix
from the DVB-S2 standard [8] are employed.

Considering the frame-error rate (FER; frame is the decoded
message word), all transmissions based on the Gaussian inte-
gers as signal point lattice nearly perform the same. Among
them, the BICM approach slightly shows an advantage due
to the optimized code. In contrast, the Eisenstein-based ones
allow a gain in Eb,TX/NO of more than 1 dB (packing,
shaping, and factorization gain). Applying LRA precoding, the
transmission performance can enormously be increased (gain
of about 5-6 dB). The choice of the constellation has a lower
influence on the performance; a minor gain of the Eisenstein
lattice is present. Apparently, the combination of constellations
with lower cardinality but in compensation a higher code rate
seems to be advantageous.

Concerning the BER (Fig. 5 bottom), the negative impact of



the error propagation in the inverse modulus conversion (if the
block/frame cannot be decoded correctly) is visible, degrading
the performance of the non-QAM constellations. Nevertheless,
in the low-BER regime of LRA preequalization, the Eisenstein
transmissions even perform better than the BICM one with
optimized code. For LRA precoding, only a small loss is
present in comparison to BICM.

V. SUMMARY AND CONTRIBUTIONS OF THE FINAL PAPER

In this paper, we have presented an LRA MIMO broadcast
channel transmission strategy, where the integer-interference
is eliminated over finite-field constellations enabling a non-
unimodular integer equalization matrix. These constellations
have also enabled a coded modulation scheme, where the chan-
nel coding and the integer channel equalization are performed
over the same g-ary arithmetic. For the cancellation of the
non-integer interference, both LRA linear preequalization and
precoding have been considered, including a discussion on the
advantages of precoding.

Numerical results employing LLL-based algorithms (re-
sulting in unimodular integer equalization matrices) have
been shown. In the final paper, a comparison with the non-
unimodular case will be given, where a factorization according
to the shortest independent vector problem [6] will be applied.
In combination with the application of optimized non-binary
(g-ary) codes, as recently presented in [18], further gains in
transmission performance are expected.
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