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I. INTRODUCTION

Channel estimation and synchronization are fundamental
tasks that need to be solved for every communications system.
For MIMO systems this can become very complex due to the
possibly high number of parameters that need to be estimated
depending on the system setup. For fading channels there have
been several investigations over years determining fundamen-
tal limits and viable training schemes that allow the estimation
of the channel, as well as common/individual frequency off-
sets [1], [2], [3]. It was shown that performances close (or
asymptotically equal) to the Cramér-Rao Bound (CRB) can
be achieved, depending on the complexity of the algorithm
involved and the length of the training sequence. In principal,
the same techniques used in the literature can also be applied to
line-of-sight (LOS) MIMO systems for parameter estimation.
However, the inherent structure of the channel can be exploited
in order to reduce estimation complexity and length of training
sequences.

In this paper we will show some results on how to estimate
channel coefficients and frequency offsets specifically for LOS
channel MIMO systems that can use spatial multiplexing
[4], which has rarely been considered in the literature. We
will discuss suitable pilot sequences, estimation schemes and
compare them to the fundamental limits.

II. SYSTEM MODEL

Consider the narrowband received signal of a MIMO system
in baseband to be defined by

ym(t) =

N∑
n=1

hmn · xn(t) · ej2π∆fmntej∆φmn + nm(t) (1)

where n = 1 . . . N and m = 1 . . .M describes the index and
number of transmit and receive antennas. Furthermore, hmn
is the channel coefficient between the corresponding antennas
and xn(t) is the continuous information carrying waveform
transmitted from the nth antenna. Additionally, ∆fmn and
∆φmn denote phase and frequency differences between the
different transmit and receiving antennas, given that each of
them has a dedicated oscillator. The term nm(t) is additive
noise with complex Gaussian distribution at the mth antenna.

Note that the frequency offsets correspond to the normalized
angular value, i.e., ∆fmn = fn−fm

fs
where fs is the symbol

rate and fn, fm are the frequencies of the corresponding
oscillators.

For the case of a common oscillator at transmitter and
receiver this reduces to

ym(t) = ej2π∆ftej∆φ ·
N∑
n=1

hmn · xn(t) + nm(t) (2)

which should generally perform better as less parameters have
to be estimated and compensated, but might not always be
realizable in practice, e.g., due to a large number of antennas.

For a pure LOS channel the coefficients are determined
through

hmn = amn · exp (−j2πfn · τmn) (3)

= amn · exp

(
−j2π rmn

λn

)
(4)

where amn is the corresponding attenuation coefficient and
τmn is the propagation delay between antenna n and antenna
m, which is given by the distance between the antennas rmn
and the wavelength of the nth transmit oscillator λn = c/fn
where c is the speed of light. The value of amn should in
a LOS scenario be approximately equal across the different
paths and can thus be neglected for the further analysis.

III. CRAMÉR-RAO BOUND

The CRB offers the fundamental limit that an estimator can
possibly achieve. To derive it first assume that xn(t) is now a
training signal that is going to be used to estimate the unknown
parameters of the channel. Using P discrete samples, we can
write the mth received signal as a vector with

ym = (Ωm �X)︸ ︷︷ ︸
Xm,ω

Φmhm︸ ︷︷ ︸
hm,φ

+nm (5)

where ym = [ym(1), . . . , ym(P )]
T , nm =

[nm(1), . . . , nm(P )]
T , hm = [hm1, . . . , hmN ]

T ,



Φm = diag
(
ej∆φm1 , . . . , ej∆φmN

)
, � is the Hadamard

product, and

X =

x1(1) · · · xN (1)
...

. . .
...

x1(P ) · · · xN (P )

 ,

Ωm =


ej∆ωm1 · · · ej∆ωmN

ej2∆ωm1 · · · ej2∆ωmN

...
. . .

...
ejP∆ωm1 · · · ejP∆ωmN

 ,

with ∆ωmn = 2π∆fmn. Note that for the common oscillator
setup, there is no dependence on m and n in the matrices Φm

and Ωm.
We can finally also write the complete received vector as

y = Xωhφ + n (6)

where y =
[
yT1 , . . . ,y

T
M

]T
, n =

[
nT1 , . . . ,n

T
M

]T
,

hφ =
[
hT1 Φ1, . . . ,h

T
MΦM

]T
, Xω =

blkdiag (Ω1 �X, . . . ,ΩM �X). As noted in other works
[1], [2], the estimation of the parameters for each of the
receiving antennas is decoupled (FIM is block diagonal, CRB
is block diagonal) and can be carried out independently and
hence we will in the following focus on (5) rather than (6).

A. No Frequency Offset

Let us first investigate the case when ∆ωmn = 0. Then, the
model reduces to

ym = Xhm,φ + nm (7)

where the parameter vector to be estimated is θm =[
Re{hTm,φ} Im{hTm,φ}

]T
, and since nm is a white Gaussian

noise vector, the CRB is readily found [5], [1] by

CRB (θm) =
σ2

2

[
Re{XHX} − Im{XHX}
Im{XHX} Re{XHX}

]−1

. (8)

B. Frequency Offset Impaired

Using the form

ym = Xm,ωhm,φ + nm (9)

the new parameter vector of interest is θm =[
Re{hTm,φ} Im{hTm,φ} ωTm

]T
and the CRB is

found [5] as (10) at the bottom of the page, where
Dm = diag (1, . . . , P ) ·Xm,ω · diag (hm,φ).

IV. LOS MIMO

As visible in (4), the channel coefficients in the LOS
MIMO case are determined by the distances between transmit
and receive antennas rmn. We write the channel coefficients
including the phase shifts

hmn,∆φ = exp

(
−j2π rmn

λn

)
· exp (j∆φmn) (11)

which can be jointly estimated as one term, c.f. (5). The
introduced phase shifts at transmitter and receiver, which do
not vary in time (practically this is not true), correspond to
row and column operations on the initial H = [h1, . . . ,hM ]

T

which does not change the conditioning of the matrix.
Due to geometrical structure of the channel, the channel

coefficients from one receive antenna to another typically do
not vary randomly as is the case for Rayleigh scattering. For
example, for all of the optimal ULA designs, see [4], the
matrix H will have a Toeplitz structure, i.e., h1, . . . ,hM are
circularly shifted versions of each other.

A. Estimation in Frequency Offset free Case

In general, any training matrix X having orthogonal rows
under transmit power constraint is optimal in the sense that
it minimizes the CRB [6], i.e., XHX = IN . Note that this
requires a pilot sequence of at least length P = N .

Now let us look specifically at the ULA mentioned above
that generates an H with Toeplitz structure and consider a
common oscillator at transmitter and receiver, as in (2). In
that case the full matrix Hφ will also be of Toeplitz character
and we can use that a-priori information, to infer the full
matrix from just one channel estimate. The accuracy of the
estimation will, however, depend on the noise power, but could
be improved by taking more (but still less than N ) estimates
and averaging over them. For the case of the individual phase
offsets per transmit/receive antenna pair one needs a longer
pilot sequence, since there are M · N unknown phase shifts
that need to be estimated.

In Fig. 1 we show some results for the case of a common
oscillator setup and a perfectly designed LOS MIMO system.
The performance exploiting the Toeplitz structure is as least
as good as the least-squares (LS) standard solution [6] (which
does not use the similarity between matrix columns), but
requires a shorter pilot sequence.

B. Estimation in Frequency Offset corrupted Case

It has been discussed in the literature that maximum like-
lihood estimators can be used to achieve the CRBs in a
Rayleigh channel case [1] for such a setup, but requiring a
high computational complexity. Those estimators are again

CRB (θm) =
σ2

2

Re{XH
m,ωXm,ω} − Im{XH

m,ωXm,ω} Re{XH
m,ωDm}

Im{XH
m,ωXm,ω} Re{XH

m,ωXm,ω} Im{XH
m,ωDm}

Re{DH
mXm,ω} − Im{DH

mXm,ω} Re{DH
mDm}

−1

(10)
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Fig. 1. MSE for different channel estimators, common oscillator setup, N =
M = 4

based on the idea that M · N random channel coefficients
and frequency offsets have to be estimated.

In the LOS MIMO case we can exploit the non-randomness
of the channel coefficients. For the example of a shared
oscillator as discussed above, this can be used to reduce
complexity. The estimate from time instant to time instant can
be directly used to infer the frequency offsets, as the channel
coefficients for each of the receiving antennas are just shifted
versions of each other. Since there is only one frequency offset
to be estimated, we can then remove the channel coefficients
from, e.g., two received vectors and we end up with estimates
of the frequency offset. As an example, consider M = N = 3
and a training matrix of

X =

[
1 0 0
0 1 0

]
,

the received vectors would be

y1 =

[
ej∆ωh11,∆φ

ej2∆ωh21,∆φ

]
, y2 =

[
ej∆ωh21,∆φ

ej2∆ωh11,∆φ

]
,

y3 =

[
ej∆ωh31,∆φ

ej2∆ωh21,∆φ

]
,

where we have again used the possible Toeplitz structure of the
channel. It should be visible that those vectors are sufficient
to gain estimates of the desired parameters.

V. OUTLOOK

In the full paper we will discuss the structure of the channel
in more detail, e.g., the matrix is not Toeplitz for URAs but
there is also a structure that can be exploited, and how suitable
pilot sequences for different cases can be found. Furthermore,
it is of practical interest how the estimators behave when the
matrix is not perfect, i.e., there are offsets from the ideal
antenna positions. Also in such cases there will still be some
structure left in the matrix due to the general geometrical setup
of the system. Finally we will investigate how a joint estima-
tion of all parameters in the individual oscillator setup can be
made with fewer pilots/higher accuracy than the commonly

known methods for Rayleigh fading channels by taking the
structure of the LOS channel into account.
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