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I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) are used
in a wide field of applications, whether for positioning or
time synchronization. In these applications the estimation
accuracy of the line-of-sight (LOS) signal time-delay estimate
directly influences the quality of the service. Multipath, i.e.
superimposed replicas of the LOS signal, can severely degrade
the LOS signal time-delay estimation [1].

In the past different multipath mitigation techniques have
been studied. The maximum-likelihood (ML) estimator which
estimates the channel parameters of each multipath together
with the LOS parameters is the optimum approach for
solving the multipath problem [2]. However, the optimum
ML estimator requires an exact model order estimate and
depending on the number of multipath signals a high
computational effort. In order to avoid these problems
advanced tracking loops [3] and multi-correlator bank based
approaches [4] have been proposed for single antenna
receivers. If an array of multiple antennas is used, the spatial
diversity can be exploited for multipath suppression. However,
for multi-antenna receivers the computational complexity
of the ML estimator increases due to the additional spatial
dimension. Therefore ,reduced complexity methods like
the space alternating generalized expectation maximization
(SAGE) algorithm [5] have been developed. While offering a
significant reduction of computational effort in comparison to
the exact ML estimator the SAGE algorithm and its extensions
[6], [7] still require for a model order estimation. This can
be avoided if a statistical multipath model [8], [9] is employed.

All of the methods mentioned above perform best if LOS and
multipath signals are temporally and spatially uncorrelated,
i.e. sufficiently separated in time and space. Dual-polarization
antenna arrays, i.e. antenna arrays with right-hand-circularly
polarized (RHCP) and left-hand-circularly polarized (LHCP)
outputs can offer an additional degree of freedom to identify
and separate spatially and temporally highly correlated
multipath signals from the LOS signal. In [10] a multipath
mitigation approach based on dual-polarization arrays has
been proposed. Additionally the problem of model order
estimation has been tackled by introducing the correlated path
(CP) model, which divides the multipath signal into a signal
correlated with the LOS signal and multipath interference. To
achieve a simple ML estimator the multipath interference is
modeled as temporally white Gaussian noise in [10].

This white noise assumption is inaccurate when considering
the properties of the GNSS signals. Therefore, we show how
to solve the ML estimator for the CP model for temporally
coloured multipath interference in this work. Additionally,
we derive the temporal multipath interference covariance
matrix which is exact for temporally highly correlated LOS
and multipath. In order to further reduce the computational
complexity the signal is compressed with the help of a
multi-correlator bank. The performance of the improved CP
model is shown in an example of a dual-polarization global
position system (GPS) receiver.

II. MULTIPATH SIGNAL MODEL

We consider a GNSS multipath scenario. One LOS signal
with time delay τ0 ∈ R and L multipath signals with time
delays τl ∈ R are impinging on a dual polarization antenna
array composed of M antenna elements. The unstructured
base-band representation of the signal is

y(t) = b0c(t− τ0) +

L∑
l=1

blc(t− τl) + η(t) , (1)

where c(t) ∈ R is the GNSS transmit signal with single-
sided bandwidth B ∈ R and bl ∈ C2M denotes the signal’s
spatial and polarization signature. A spatially structured model
for bl is given in [10]. In the following η(t) ∈ C2M is
assumed as temporally and spatially white Gaussian noise, i.e.
η(t) ∼ CN

(
0, σ2

ηI2M
)
. After collecting N time samples of

(1) at sampling rate fs = 2B the discrete time representation
is

Y = b0c(τ0)
T

+

L∑
l=1

blc(τl)
T

+E, (2)

where with Ts = 1/fs and

Y = [y[Ts] y[2Ts] . . . y[NTs]] ∈ C2M×N (3)

c(τl) = [c[Ts − τl] c[2Ts − τl] . . . c[NTs − τl]]T ∈ CN (4)
E = [η[Ts] η[2Ts] . . . η[NTs]] ∈ C2M×N . (5)

The noise covariance is characterized by

E
[
vec(E) vec(E)

H
]

= σ2
ηIN ⊗ I2M , (6)

where vec(•) vectorizes a matrix by stacking its columns and
E[•] denotes the expected value.



A. Compression with a Multi-Correlator Bank

Since the number of samples N is often large, the received
signal Y is compressed to a signal Z ∈ R2M×Q with lower
temporal dimension Q < N using a multi-correlator bank. The
compression can be represented by a multiplication of Y with
the compression matrix Q ∈ RN×Q from the right hand side

Z = b0c(τ0)
T
Q+

L∑
l=1

blc(τl)
T
Q+EQ (7)

= b0q(τ0)
T

+

L∑
l=1

blq(τl)
T

+EQ. (8)

(8) can be parameterized by

ξ =
[
τ0, . . . , τL, b

T
0, . . . , b

T
L, σ

2
η

]T ∈ C(L+1)(2M+1)+1. (9)

For compression we employ the left singular vectors U of

Q̂ = [c(κ1) , c(κ2) , . . . , c(κQ)]
T

= UΣV H, (10)

i.e.
Q = U . (11)

(10) realizes the canonical component (CC) method [11]. The
CC is based on correlating the sampled received signal Y with
Q replicas of c(τ) with different delays κq and minimizes
the Fisher information loss due to compression [11], as well
as maintaining the multiple access properties of the direct
sequence code division multiple access (DS-CDMA) system
used in GNSS. Using the left matrix U from the singular
value decomposition (SVD) ensures that the noise EQ after
correlation is still white Gaussian noise

E
[
vec(EQ) vec(EQ)

H
]

= Cov[vec(EQ)] (12)

= σ2
ηIQ ⊗ I2M , (13)

where Cov[•] denotes the covariance matrix operator.

III. CORRELATED PATH MODEL

The optimum estimator for τ0 in (8) is the ML esti-
mator which estimates all parameters in (9) [2]. However,
this estimator requires a model order estimation and must
determine the actual LOS delay from all other multipath
delays. Moreover, this estimator has to cope with a number
of nuisance parameters. To avoid these problems we employ
the CP model proposed in [10]. Let

ρl = q(τ0)
T
q(τl) (14)

denote the temporal correlation between LOS and l-th mul-
tipath signal. For L = 1 the multipath signal can than be
decomposed

b1q(τ1)
T

= ρ1b1q(τ0)
T

+
√

1− ρ21b1uT, (15)

where the multipath interference u ∈ RQ is uncorrelated with
the LOS signal q(τ0), i.e.

E
[
uHq(τ0)

]
= 0 (16)

and has a temporal covariance matrix

Cov[u] = Qu ∈ RQ×Q. (17)

In [10] it is assumed that u is temporally white Gaussian noise
and therefore Qu is an identity matrix. Due to the properties
of the signal q(τl) it can be shown that this is not the case
in general. However, for highly correlated LOS and multipath
signals it holds

Cov[q(τ1)] ≈ Cov[q(τ0)] ≈ Qq = Qu (18)

which leads to a better multipath suppression in the case of
temporally and spatially highly correlated multipath signals in
comparison to [10]. Moreover it can be shown that for a single
multipath

Qu =
Cov[q(τ1)]− ρ21Cov[q(τ0)]

1− ρ21
. (19)

Using (19) increases the performance of the LOS delay esti-
mation when the CP model is applied. Even though the CP
model is based on the assumption of L = 1 multipath signals,
simulation results show that it also performs well in the case
of more than one multipath signals, if these are temporally
or spatially highly correlated [10]. In this case ρ1 and Qu
reflect the overall correlation between LOS and multipath and
temporal multipath interference covariance matrix while b1
reflects the overall multipath spatial signature. To emphasize
these properties we denote the correlation between LOS and
multipath with ρ while bCP denotes the overall multipath
spatial signature. The CP model is finally given by

Z = (b0 + ρbCP) q(τ0)
T

+
√

1− ρ2bCPu
T +EQ (20)

with parametrization

ξCP =
[
τ0, b

T
0, b

T
CP, ρ, σ

2
η

]
∈ C2M+3. (21)

A. Parameter Estimation

In order to estimate (21) the singular value decomposition
approach presented in [10] can be extended to the ML estima-
tor of a spatio-temporal model. Assuming Gaussian noise, the
probability density function is

p(Y |ξCP ) =
1

πMNdet(Q(ξCP))
(22)

· exp
(
−vec(M(ξCP))

H
Q(ξCP)

−1vec(M(ξCP))
)

with

M(ξCP) = Y − (b0 + ρbCP) q(τ0)
T (23)

Q(ξCP) = Cov
[√

1− ρ2bCPu
T +EQ

]
= Qu ⊗

(
1− ρ2

)
bCPbCP + σ2

ηIQ ⊗ I2M . (24)

The optimum estimator for ξCP in (15) is given by the ML
estimate

ξ̂CP = arg max
ξCP

p(Y |ξCP ) . (25)

It can be shown that the optimization problem (25) has a closed
form solution for all parameters except τ0 if Qu is assumed
to be known.



IV. PRELIMINARY RESULTS

We assume a GPS C/A code with chip duration Tc =
997.52 ns, bandwidth B = 1.023 MHz and Nd = 1023 chips
per code period as transmit signal c(t). The receive array is a
2 antenna dual-polarization uniform linear array (ULA) with
10 dB separation between RHCP and LHCP channels, and
spatially white Gaussian noise. The RHCP channel signal-to-
noise ratio (SNR) is

SNR = C/N0 − 10 log10 (2B) + 10 log10 (Nc) , (26)

with carrier-to-noise density C/N0 = 46 dB-Hz and number of
observed code periods Nc = 4. During the observation interval,
channel parameters are assumed to be constant. The LOS
azimuth angle-of-arrival is φ0 = 70◦. In [10] it has been shown
that the CP model can be applied to more than one multipath
signal if LOS and multipath are temporally and spatially
highly correlated. Therefore, we simulate L = 6 multipath
signals with angles between 60◦ and 80◦. The multipath
energy is equally divided into RHCP and LHCP power. The
spatial signatures bl are calculated with the dual-polarization
multipath model introduced in [10]. Figure 1 shows the RMSE
of the estimate τ̂0 for different choices of Qu over the mean
delay difference ∆τ̄ = 1

L

∑L
l=1 τl − τ0. The τl are evenly

spread within an interval of 0.2 ·Tc. Especially for ∆τ̄ around
0.5 · Tc assuming a non-identity covariance for u yields a
higher estimation performance for τ0 than assuming Qu as
white noise as done in [10]. Using the single multipath ap-
proximation Qu = Cov[q(τ1)]−ρ2Cov[q(τ0)]

1−ρ2 instead of Qu = Qq
also yields a better estimation performance in this ∆τ̄ range,
even though L = 6 multipath signals are present. This is due to
the fact that all multipath signal delays lie within in interval
of 0.2 · Tc and are temporally highly correlated. Therefore,
the temporal multipath interference covariance matrix given in
(19) is still valid, even though it is calculated for only one
multipath signal.
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Figure 1. Estimation Performance of the CP Model for Different Choices of
the Multipath Interference Temporal Covariance Matrix Qu

V. CONTENT OF THE FULL PAPER

In the full paper we derive the temporal multipath noise
covariance matrix Qu and the closed form solution for the ML
estimator (25). The performance of LOS time-delay estimation
with the improved CP path model is assessed in comparison
to the CP model with white noise assumption, a single path
ML estimator [8] and the Cramer-Rao lower bound (CRLB).
Additionally, the performance dependency on direction of
arrival, number of antennas and LOS and multipath space-time
correlation is investigated.
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spain.


	Introduction
	Multipath Signal Model
	Compression with a Multi-Correlator Bank

	Correlated Path Model
	Parameter Estimation

	Preliminary Results
	Content of the Full Paper
	References

