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Abstract—Machine-type communications is quite often of very
low data rate and of sporadic nature. In a multi-user wireless sen-
sor network, this sporadic transmission activity can be favourably
exploited to facilitate a joint activity and data detection on the
physical layer as it has been shown in previous works. This
abolishes the need for shared channel access signaling on higher
network layers and increases bandwidth efficiency. However, each
data source transmits over a user-specific channel which makes
channel estimation mandatory for phase-coherent reception and
channel equalisation. Since a totally blind estimation of channels,
transmit activities and user data — all at the same time - is practi-
cally infeasible, we propose a joint activity and channel estimation
scheme based on pilots and matching pursuit algorithms. We
show that Zadoff-Chu sequences lead to a better user separation
and estimation performance than random Gaussian codes. And
since we do not make any assumptions about the user’s data
payload, our results are generally valid to any frame structure.

I. INTRODUCTION

One of the big emerging fields for future communication
systems is machine-type communications. This term describes
data traffic between two autonomous entities without human
interaction. Nowadays high data rate systems, such as LTE,
were designed for human-driven, high data rate traffic without
machine-type communications in mind [1]. However, many
applications arise, e.g. in the industrial automation context,
where lots of sensor nodes communicate status information to
a common base station (sink node). This is quite often of very
low data rate and of sporadic nature.

In such a wireless uplink scenario, where sensor nodes spo-
radically transmit data to a central aggregation node, activity
signaling to access the shared wireless medium generates a lot
of overhead and makes communication inefficient compared to
the small amount of payload data. Previous works in [2]—[4]
therefore proposed a novel joint activity and data detection
at the multi-user receiver, or data aggregation node, on the
physical network layer. The cited works altogether assume
perfect channel state information (CSI) at the receiver. But in a
practical setup, CSI must be estimated for channel equalisation
and phase-coherent reception of data symbols taken from a
digital modulation alphabet, e.g. Phase-Shift Keying.

It is practically impossible to reliably estimate user-specific
channels, activity and data symbols all at once. Hence, the
partitioning of this problem into a joint multi-user activity and
channel estimation followed by a classical non-sparse data
detection, instead of a combined activity and data detection
with given CSI, is a viable solution. This idea was first brought

forward in [5] and it was shown that good results can be
achieved with known data symbols serving as pilots.

We will take a similar approach and utilise user-specific
code sequences to form a multi-user pilot signal. Additionally
to random Gaussian sequences we will also investigate Zadoft-
Chu (ZC) sequences [6] which promise good performance
regarding channel equalisation and multi-user interference
cancellation. User activities and channel responses can math-
ematically be written as a vector which is either sparse or
block-sparse depending on whether there are frequency-flat
or frequency-selective fading channels, respectively. However,
detection algorithms may not be arbitrarily complex in re-
spect of a potential implementation in physical layer modem
hardware. For this reason, we will examine the detection
performance of relatively simple Orthogonal Matching Pursuit
(OMP), of which VLSI designs have already been reported,
e.g. in [7], and its variant for block-sparse signals, Block
Orthogonal Matching Pursuit (BOMP).

II. SYSTEM MODEL

The multi-user wireless uplink communications system we
consider in this work is depicted schematically in Figure 1.
The N sensor nodes, shown on the left, transmit their data
frames to a central aggregation node as receiver for further
processing. Each transmitter only is sporadically active with
probability p, on a frame-to-frame basis. Each node transmits
with the same probability p, or, in other words, just a random
subset of N, = p,N nodes transmits data at a specific
time instance, as indicated. We assume that the detector
has probabilistic but not instantaneous knowledge about the
activities, i.e. p, is known by the receiver.

A data frame consists of a preamble and payload data.
The preamble contains a user-specific pilot code sequence of
length N,,. While we do not make any assumptions about the
payload, we assume that all active users begin transmission
synchronously at the same time instance. This basically is the
system model of previous works extended by a preamble to
facilitate pilot-based channel estimation [2], [3]. The user-
specific pilot sequences become superimposed due to the
concurrent channel access, similar to a direct-sequence code-
division multiple access (CDMA) system. In the following,
we restrict ourselves to the mathematical system description
of this preamble only.
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Fig. 1: Uplink wireless sensor network with sporadic ac-
tivity and per-user channels h, in a star topology. The
frame-synchronous and superimposed received signal is shown
schematically.

The system model in symbol clock can well be summarised
by
y=Ta+w=Sh+w, (D

where y is the received signal vector and w denotes additive
white Gaussian noise with zero mean and variance o2. The
multi-user vector a € {0,1}" defines the activity pattern of
the sensor nodes during a frame and its nth entry, a,,, corre-
sponds to the activity of node n. A transmitter is modelled as
inactive if a,, = 0 or active if a,, = 1, i.e. a user-specific pilot
code sequence is transmitted. Hence, Pr(a, =0) = 1 — p,
and Pr (a,, = 1) = p,. If p, is sufficiently small, a is a sparse
vector containing a considerable number of zero symbols. The
system matrix T can be partitioned into two matrices,

h; 0

T =SH = [81 SN] . , ()
0 hy
where S is the horizontal or row-wise concatenation of the
convolution matrices S,, and H is a block-diagonal matrix of
the channels h,,, with n = 1, ..., N. Each h,, is a user-specific
channel impulse response, a column vector of length L. The
transmission of the user-specific pilot code sequences s, €
CNv corresponds to a convolution with the channel impulse

responses, or

T = [sl*hl SN*hN} . 3)

In (2) these convolution operations are expressed with the help
of a convolution matrix such that s,, * h,, = S,,)h,,, S,, €
CNp+L—1xL_

In high data rate CDMA systems the channel impulse
responses are sparse such that multipath propagation delays
are distributed over a couple of echoes, usually appearing in
clusters [8]. However, as stated above, machine-type com-
munications are assumed to be of low data rate. Hence, it
can be justified to model frequency-selective channels with

only a few, non-sparse channel coefficients, all i.i.d. Rayleigh.
If the transmission is of very low data rate, occupying
only a narrow bandwidth, the fading is frequency-flat, i.e.
L = 1. In that special case, each h, simply is a single
Rayleigh-distributed complex channel coefficient h,,. Then,

S = [s1 sn| contains column-wise arranged all user-
specific pilot sequences and H = diag [hy hy] is a
diagonal matrix of the user’s channel coefficients.
Of special interest is the product
h =Ha, 4)

with h € CIV being the stacked vector of all user channel
impulse responses multiplied with the activity of the corre-
sponding users. Incorporating (4) into the system model leads
to the right hand side of (1). h is like a a sparse vector, but
in fact it is block-sparse with N, blocks of non-zero elements
of length L. Generally, a vector x of N blocks can be defined

as
T
x:[m1'~xdxd+1~-~ ﬂUNdi , ()
N——
xT[1]

ZTog x(N_l)d...

xT[2] xT[N]

whereby x[¢] denotes or selects the ¢th block of length d. If
only k blocks contain non-zero elements, this vector is said to
be k-block-sparse, or mathematically

N
Ix[l20 = Y I(Ix[A]l2 > 0) < &, (6)

(=1

with I(-) being the indicator function [9].

III. JOINT ACTIVITY AND CHANNEL ESTIMATION

The goal of this work is to estimate the multi-user ac-
tivity and channel coefficent vector h, eq. (4), given the
measurements y according to (1). The support of h, i.e. the
positions of the non-zero entries, represents the activity pattern
of the transmit nodes, and the values of the non-zero entries
correspond to the channel response of the active users. Hence,
the estimation of h constitutes a joint activity and channel
estimation.

As discussed in the previous section, there can be frequency-
selective fading (channel impulse responses of length L) or as
a special case (L = 1) frequency-flat fading. Depending on
this, the recovery problems and applicable algorithms differ
somewhat.

A. Frequency-Flat Fading Channels

The sparsity-aware MAP (S-MAP) optimisation problem
associated with (1) and L =1 is

h= i —Sh|2+ A|hlo, 7
arg min ||y 12+ Allhllo (7

where |x|lo0 = #{i : x; # 0} is the fp-(pseudo) norm
of a vector x, i.e. the total number of non-zero elements
or the cardinality of the support. The penalty term A =
202 log ((1 — pa)/pa) reflects the a priori statistics of the
activity vector and scales with the noise power o2, cp [10].



function OMP( y,S k)

1:
2 r—y;h« 0,7« 0 > initialisation
3 for 1,....k do
4 c+ Sfr > correlation
5: 0* + argmaxy |cel > selection
6 T+Turr ~ > index set
7 h7 < argming Hy — Szth2 > least squares
8 r<y—Sh > residual
9 end for
10: return h

11: end function

Fig. 2: Pseudocode of Orthogonal Matching Pursuit (OMP),
cp. [11].

An exhaustive search over all 2%V different support patterns
(activity states of the multi-user network) is an NP-hard
problem. Furthermore, S may well be a fat matrix in an
overloaded communications system which renders common
regularised least squares (LS) solutions ineffective as they are
not capable to exploit the sparsity on hand, i.e. even if the
system of equations is fully determined, LS would not be able
to recover the truly sparse nature of h or a. As an additional
practical constraint, the estimation procedure has to take place
on the physical network layer and must thus be implementable
into a digital modem. This rules out computationally intensive
convex optimisation algorithms.

Taking all these considerations into account, we propose
OMP as a suitable algorithm [11], [12]. OMP solves eq. (7)
approximately in a greedy fashion while it exploits the fact that
h is maximally k-sparse, i.e. it contains maximally k£ non-zero
entries. As stated above, we assume statistical knowledge of
the activity ratio in our uplink sensor network, i.e. p, is known
and translates to k by k = [p,N].

The pseudocode of OMP is given in Fig. 2. It recovers a
k-sparse approximation of a vector in k iterations (line 3).
In every iteration, one column in S is selected that is most
strongly correlated with the residual r (lines 4 and 5). The
index of the chosen column identifies the non-zero location,
also called atom, of the sparse result vector x. Then, a least
squares step is computed in line 7 on a reduced system of
equations. Z is the index set of all atoms that have been chosen
so far (support set). Hence, Sz denotes a matrix composed of
all selected pilot code sequences, and hz denotes a short vector
of all selected atoms. An equivalent formulation of line 7
would be hy = STIy, whereby ()T denotes the Moore-Penrose
pseudoinverse.

B. Frequency-Selective Fading Channels

Frequency-selective fading necessitates the estimation of
a block-sparse vector h of size LN, as stated in eq. (4).
The MAP optimisation program for block-sparsity-aware joint
activity and channel estimation is

h=arg min |y — Sh[|3 + Al|h|2- ®)
heCLN

1: function BOMP( y,S,k, L)
2 r<y;h«0,Z+ 0
3 for 1,....k do

4: c+ Sfr

5: £* + arg maxy Hcm H2 > block selection
6 T+ Turr ~

7 h[I} < arg minﬁm Hy - S[I]h[z] H2

8 r<y—Sh

9 end for

10: return h

11: end function

Fig. 3: Pseudocode of Block Orthogonal Matching Pursuit
(BOMP), cp. [9].

O hesi x hyy © hBOMPL

® @
n

1.5 |-

Magnitude of Channel Coefficients

g

1

]

User Index

Ll

5 7 10

Fig. 4: Channel impulse responses estimated by BOMP com-
pared to the ground truth and ML estimation.

Now, the cost function promotes block-sparsity with |[hl|,o
according to eq. (6) and block length d = L, i.e. the length
of the channel impulse responses. A modified OMP which
recovers block-sparse signals should approximately solve it.
This algorithm is called BOMP and was introduced in [9].

The pseudocode of BOMP is given in Fig. 3. The major
difference to OMP can be found in line 5 where not a single
atom is selected but the ¢*th block of atoms of length L.
The selection is based on the maximal Euclidean norm of
the correlation values of each block. Here 7 therefore denotes
the set of selected block indices. In order to clarify notational
issues, the index notation cyy returns the smaller vector c[¢] of
the ¢th block in c in analogy to how single elements of a vector
are addressed, ¢; = c(i). When a set is given as index, e.g.
h(z) in line 7, all elements of all blocks in Z are returned as a
vector. Thus, the least squares step of the same line computes
L - |Z| values. The result of BOMP is a block-sparse vector
with k£ blocks of non-zero coefficients.

IV. NUMERICAL SIMULATION RESULTS

We investigated the system performance by numerical
Monte-Carlo simulations. Fig. 4 exemplarily shows for illus-
tration purposes one random channel realisation of a multi-user
channel impulse response vector hcgy according to (4). Here,
the system consists of N = 10 users, whereby N, = 3 users



Parameter Symbol  Value

No. of Users N 30

Activity Probability Pa {0.1,0.2,0.3}
No. of Active Users Ng palN

Channel Imp. Resp. Length L {1,3}

Pilot Sequence Length Np {LN,LN/2}

Pilot Sequence Type — Zadoff-Chu, Random Gaussian

TABLE I: Simulation parameters.

are active (no. 1, 5 and 7). The channel impulse response
length is L = 3, thus hc¢gy is of length LN = 30 and N,-
block-sparse with LN, = 9 non-zero elements. The system of
equations is fully determined since we chose N, = LN. The
BOMP algorithm correctly detects all active users and returns
a truly sparse estimation HBOMp. Other than that, simple ML
estimation distributes the measured noise over all coefficients
and an arbitrary threshold level to recover the support would
obviously lead to an erroneous activity detection.

For the following results we used a standard set of sim-
ulation parameters, given in Table I. Each data point was
averaged over at least 20000 random system model realisa-
tions. We employed two different types of pilot sequences
to compare their performance. On the one hand, random
zero-mean complex Gaussian sequences can be used as pilot
codes. They facilitate a better user separation compared to
traditional pseudo-noise sequences [13]. On the other hand,
Zadoff-Chu (ZC) sequences promise a good performance as
they are so-called CAZAC sequences, which means “constant
amplitude and zero autocorrelation” [6]. This good autocor-
relation behaviour is especially useful in frequency-selective
fading environments. Additionally, there are bounds on the
cross-correlation.

Figure 5 shows the average activity detection error rate
(AER) over SNR. AER is defined to be N /N, i.e. the average
number of false detections (false active and false inactive)
over the number of users in our system. In this case, the
system is fully determined with N, = LN = 90. Hence,
only measurement noise degrades the detection performance.
It becomes obvious that frequency-selective fading enhances
the activity and channel detection process. This is mainly
because of the lesser outage probability of Rayleigh fading
channels with L > 1. ZC can benefit more from this effect
though, especially when many users are active (better user
separation). The plotted curves are for different levels of user
activity (p, = 0.2 not shown for the sake of clarity), where
po = 0.3 corresponds to 9 active users, which is quite a lot
compared to results given in other works [5]. In all cases, ZC
sequences show a better performance than random Gaussian
sequences. The quality of the channel estimation can also be
expressed in terms of normalised mean square error (NMSE)
which is defined as NMSE(h,h) = |h — h||2/|/h||3. This
is shown in Fig. 6 for p, = 0.2. It can be observed that
ZC sequences lead to estimations which are closer to the true
channel. Frequency-selective channels improve the NMSE as
well.
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Fig. 5: Average activity error rate for random Gaussian
(dashed) and Zadoff-Chu (solid) sequences. The system is
fully determined.
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Fig. 6: Averaged normalised MSE of the estimated multi-user
flat (dashed) and frequency-selective (solid) fading channel for
Gauss and Zadoff-Chu pilot sequences.

In Fig. 7 the same setup is investigated with shorter pilots of
length NV, = LN/2, i.e. a underdetermined system with factor
1/2, for a better bandwidth efficiency. As ZC sequences do
not exist for this case, we can only resort to random Gaussian
sequences. These, however, perform fairly well and only little
loss can be observed for p, = 0.1 compared to the fully
determined case. Detection is again improved by frequency-
selective channels. Nonetheless, the spread of the curves is
wider, which means that the underdetermined system is less
tolerant to support many active users. For p, > 0.3 reliable
estimation is not possible.

V. CONCLUSION

We investigated the combined activity and channel esti-
mation in a wireless sensor network based on user-specific
pilot code sequences. This, was shown, can successfully be
facilitated especially in frequency-selective fading environ-
ments with (Block) Orthogonal Matching Pursuit. Zadoff-Chu
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Fig. 7: Average activity error rate for flat (dashed) and
frequency-selective (solid line) fading channels and random
Gaussian sequences. The system is underdetermined with the
factor 1/2.

sequences outperform random Gaussian codes in detection
performance (lesser activity error rates) and quality. However
only the latter are able to support sequences shorter than the
number of users, but only when there are few active users.

Since we did not make assumptions about the user’s data
payload, our results are generally valid. They are applicable
to any possible frame structure and supply the data detector
with user activity and channel state information.
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