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Abstract—We propose a joint uplink/downlink channel estima-
tion scheme for frequency-division duplex (FDD) massive MIMO
systems that is based on the analog feedback of the downlink
channel state information (CSI) and a blind estimation of the
uplink channels. The latter operation is enabled by the correlative
coding of the uplink signals. Our scheme reduces the resource
overhead that is needed to acquire full CSI for FDD Massive
MIMO systems. The proposed technique requires a minimum of
2M channel uses in contrast to the start-of-the-art algorithm that
requires 2M+K, where M denotes the number of antennas at the
base station, and K denotes the number of single-antenna users.
Moreover, the performance of the uplink channel estimation can
be strongly improved for low SNR scenarios because M uplink
channel uses are utilized (in contrast to K channel uses of the
start-of-the-art algorithm Echo-MIMO).

I. INTRODUCTION

Closed-loop CSI estimation in FDD massive MIMO systems
is critical for harvesting the potential gains offered by the
very large number of antennas. However, the required training
overhead grows with the number of antennas at the base station
as well as with the number of terminals, which makes the
accurate acquisition of high dimensional CSI very costly. To
overcome this problem, one typically assumes the availability
of side information such as the knowledge of the channel
statistics [1], or channel sparsity in the time, frequency or
angular domain [2], [3]. In both cases, one of the main
objectives is to reduce the feedback overhead that is needed
to transfer the downlink CSI back to the base station. Though,
if no a-priori information on the channel structure is available
then the full CSI needs to be fed back in order to exploit
the full dimension of the channel. For this case, the analog
CSI feed back has been proposed in e.g., [4], [5], which
employs two training phases; one for a dedicated uplink
channel training and one for the downlink training and analog
feedback in the uplink. In [6], [7] it is shown for the i.i.d.
Rayleigh fading case, that the analog feedback is optimal
the sense of mean square error of the downlink CSI if the
number of feedback symbols equals the number of feedback
channel uses. The practicability of this feedback scheme is
demonstrated in [8].

Our goal is to combine the uplink and downlink training
phases. Instead of using a dedicated uplink training phase,
we use the feedback signals of the downlink CSI in order
to estimate the uplink channels. Since the feedback signals
are unknown, we have to resort to a blind channel estimation
scheme. Though, blind techniques rely on specific characteris-
tics of the received signals, such as cyclostationarity [9], higher

order cumulants [10] or second-order statistics [11]. We adopt
the latter case by utilizing correlative filters at the terminals in
order to shape the feedback signals, similar to [12]. One should
note that such an approach provides estimates of the uplink
and downlink channel subspaces rather than the exact channel
coefficients; that is, the channels are known only up to an
unknown complex scalar scaling factor. However, for typical
precoding and equalization methods such as zero-forcing or
maximum ratio transmission/combining, the knowledge of the
channel subspaces is completely sufficient.

After introducing the underlying system model in Section II,
we describe in Section III the training scheme and the channel
estimation procedure. In Section IV, we conduct numerical ex-
periments in order to characterize the achievable CSI accurary
in terms of root mean square subspace error1 (RMSE), and we
illustrate our scheme’s sensible operation range in combination
with maximum ratio transmission/combining. Finally, we give
a short outlook on the final version of the paper in Section V.

Notation: Vectors and matrices are given in lowercase and
uppercase boldface letters, respectively. (·)H denotes the Her-
mitian transpose. The symbol E denotes the expectation opera-
tor. IM denotes the M×M identity matrix. The Grasmannian
GM (Cτ ) denotes the set of M dimensional subspaces in Cτ .
The superscript # denotes the Moore-Penrose pseudoinverse.

II. SYSTEM MODEL

We consider a time-invariant, frequency-flat channel. A
base station, equipped with M antennas, serves K single-
antenna terminals. In the downlink, the base station array
transmits and the terminals receive. At integer time t an
M×1 complex vector s(t) = [s1(t) · · · sM (t)]

T is transmitted

1Rather than estimating a vector ξ ∈ CM itself, we resort to the estimation
of the subspace R(ξ) spanned by ξ. Thus, the estimation takes place in
the Grassmann manifold G1(CM ). The accuracy of a subspace estimator is
quantified by using the natural metric on G1(CM ) [13]: The squared distance
between two subspaces is given by the sum of the squared principle angles
between these spaces. For two one-dimensional subspaces R(ξ) and R(ξ̂),
their distance is

d(ξ, ξ̂) = arccos

 |ξH ξ̂|

∥ξ∥
∥∥∥ξ̂∥∥∥

 . (1)

The performance of a subspace estimator can be quantified by the root mean
square subspace error (RMSE), which is defined as

ϵ = E
[
d(ξ, ξ̂)2

] 1
2 (2)
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and the K terminals collectively receive a K × 1 vector
x(t) = [x1(t) · · ·xK(t)]

T

x(t) =
√
ρD/MHs(t) +w(t) (3)

where ρD denotes the downlink signal-to-noise ratio2 (SNR),
H is the K ×M downlink propagation matrix and w(t) is a
K×1 vector comprising both receiver noise and interference.
The components of s(t) and w(t) are i.i.d. CN (0, 1). The
downlink propagation matrix is partitioned into K i.i.d. row
vectors

HH = [h1, . . . ,hK ] (4)

where hk is the M × 1 propagation vector from the array
to the k-th terminal. The components of hk are i.i.d. CN (0, 1).

In the uplink, the terminals transmit scalar symbols and
the base station array receives their transmissions collectively.
We assume the K terminals are synchronous and collectively
transmit a K × 1 complex vector t(t) and the array receives
a M × 1 vector y(t)

y(t) =
√
ρUGt(t) + n(t) (5)

where ρU denotes the uplink SNR, G is the M × K uplink
propagation matrix and n(t) is a M × 1 vector comprising
both receiver noise and interference. The components of t(t)
and n(t) are i.i.d. CN (0, 1). The uplink propagation matrix is
partitioned into K i.i.d. column vectors

G = [g1, . . . , gK ] (6)

where gk is the M × 1 propagation vector from the k-th
terminal to the array. The components of gk are i.i.d. CN (0, 1).

III. JOINT UPLINK/DOWNLINK CHANNEL ESTIMATION

A. Pilot Transmission

The downlink propagation channel is learned through
known pilots that are transmitted by the base station array.
The required number of training symbols is proportional to
M and independent of K. It is most efficient for the base
station antennas to transmit power-scaled signals of duration
τ that are mutually orthonormal. We may choose τ as large
as needed to give the desired quality of the channel estimate.

Let SH = [s(1) . . . s(τ)] denote the M × τ matrix of
collective training signals. Then S may be written

SH =
√
ρDτ/MΦH (7)

where Φ is a τ ×M unitary matrix (i.e., ΦHΦ = IM ). Then,
the 1× τ signal vector received at the k-th terminal is

xH
k =

√
ρDτ/MhH

k ΦH +wH
k (8)

where xH
k = [xk(1) . . . xk(τ)] and wH

k = [wk(1) . . . wk(τ)].

The uplink channel is learned through the analog feedback
of the downlink signals in the uplink. To do so, we impose
specific spectral properties on the individual uplink signals,

2For simplicity, it is assumed the the downlink and uplink SNRs are equal
for all terminals.

and utilize a blind source separation technique known as the
second-order blind identification (SOBI) algorithm [11]. To
guarantee the separability of the superimposed signals at the
base station, the transmit signals must satisfy the second-
order identifiability condition [14, Theorem 2, (A2)]; that is,
they must have different normalized spectra. Therefor, each
terminal employs a distinct correlative transmit filter with the
impulse response ck of length τ . Each filter realizes an AR
model of order 1 with coefficient ak = αkexp(jθk). The
angles are equidistantly distributed in the interval [0, 2π], e.g.,
θk = k2π/K. The modulus αk ∈ (0, 1) of the AR coefficient
can be used to tweak the channel estimation performance.
A typical value is αk = 0.9. Given the AR model, the
corresponding filter impulse response is given by

ck =
[
1, ak, a

2
k, . . . , a

τ−1
k

]T
(9)

The k-th transmit signal, scaled by the power control coeffi-
cient

√
βk to ensure E[t2k] = 1, is

tk =
√
βk(ck ∗ xk)(t) =

√
βkCkxk (10)

where Ck is the Toeplitz matrix specified by ck. Note that
the performance of the SOBI algorithm can be improved by
replacing the linear convolution by a circular3 one.

The CSI-bearing signal, received at the base station, is

Y =
√
ρDG [t1, . . . , tK ]

H
+N (11)

where the N = [n(1) . . .n(τ)].

B. Uplink Channel Estimation

For the uplink channel estimation, we utilize the SOBI
algorithm, which consists of the following steps [11, III.D]:

1) Estimate the sample covariance matrix R̂(0) for time lag
δ = 0; that is,

R̂(0) = τ−1Y Y H (12)

Denote by λ1, . . . , λK the K largest eigenvalues and
v1, . . . ,vK the corresponding eigenvectors of R̂(0).

2) Estimate the uplink noise variance σ2
N by averaging the

M − K smallest eigenvalues of R̂(0). Then, perform a
whitening of the received signal Y by left-multiplying it
with the matrix

Ψ̂ =
[
(λ1 − σ̂2

N )−
1
2v1, . . . , (λK − σ̂2

N )−
1
2 vK

]H
, (13)

yielding the K × τ matrix Z = Ψ̂Y .
3) Compute the sample covariance matrix

R̂(δ) =
1

τ − δ

τ−δ∑
t=1

z(t+ δ)zH(t) (14)

3The estimation of uplink channels by blind separation of received (super-
imposed) signals relies on the estimation of (spatial) covariance matrices for
different time lags. However, due to the finite length of the uplink signals such
estimation may suffer from a finite sample support. By employing a circular
convolution it is possible to introduce correlation between all the samples of
signal, while a linear correlation filter would exhibit some transient behavior
at the beginning of the signal. As a result, the covariance matrix estimation
accuracy can be improved for finite sample support.
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for the time lag δ = 1. Optionally, a set of non-zero time
lags D = {δj |j = 1, . . . , D} can be used.

4) A unitary Û is then obtained as joint diagonalizer [15]
of the set {R̂(δj)|j = 1, . . . , D}. For the case D = 1,
Û is directly given by the eigendecomposition R̂(δ) =
ÛΣÛH .

5) The transmit signals are estimated (up to a permutation
and scalar scaling factor) as

[
t̂1, . . . , t̂K

]H
= ÛHΨ̂Y ,

and the uplink channel matrix G is estimated as Ĝ =
Ψ̂#Û

Remark 1. The SOBI algorithm provides estimates for the
uplink channels up to a permutation of the terminal indicies.
We assume that the permutation ambiguity can be resolved;
e.g., by means of a subsequent uplink data transmission
whereby the data includes terminal-specific information such
as scrambled cyclic redundancy checks.

Remark 2. For the case τ = M (i.e., the pilot matrix Ψ
is a square unitary matrix), the received sequences xk are
realizations of a complex circular white Gaussian process.
They are indistinguishable from a statistical domain point
of view because their power spectral densities exhibit a flat
pattern. By filtering them with the described AR models of
order 1, we assign distinct spectral patterns to transmit signals;
that is, the spectral density fk(λ) of the k-th transmit signal
becomes

fk(λ) ∝
1

|1− ake−j2πλ|2
. (15)

This spectral shaping ensures that a set of time lags D exists
such that the joint diagonalizer of the set of spatial covariance
matrices is unique, up to irrelevant scaling and permutation
of columns. Note that the SOBI algorithm estimates the
spatial covariance matrices, and the corresponding estimation
error vanishes as τ grows large; that is, the angle between
the subspaces spanned by the estimated and the true uplink
channel vectors will go to zero as τ goes to infinity.

C. Downlink Channel Estimation

Given the estimate t̂k of the k-th terminal’s signal, an
estimator for the downlink channel hk is by

ĥk = t̂kDk(D
H
k Dk)

−1, (16)

where Dk = CkΦ.

IV. NUMERICAL EXPERIMENTS

We simulate a large scale antenna array with M ∈
{40, 80, 160} antennas, that estimates the uplink and downlink
channels simultaneously for K = 8 terminals. We assume a
symmetric link budget with ρD = 25 · ρU; that is, the total
transmit power of the base station is 14dB higher than the
transmit power of the terminals. The modulus parameters of
the terminal’s AR coefficients are set to αk = 0.9, ∀k. For the
SOBI algorithm we use a single time lag δ = 1 for the matrix
diagonalization.

As a reference case we simulate the Echo-MIMO scheme
[16]. This scheme does not require correlative filter at the
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Fig. 1. RMSEs of the uplink channel estimators versus uplink SNR γU for
K = 8, T/M = 1, γD = 25 · ρU

terminals, but relies on a separate uplink training phase in
order to learn the uplink channels. This channel knowledge is
then used to separate the uplink and downlink channel matrices
in the received signal Y . For the dedicated training phase
we assume the same uplink SNR ρU. Note that this training
requires additional K transmission resources in the uplink.

Figures 1 and 2 show the achievable root mean square
error of the channel estimators. The semi-blind approach
achieves higher uplink channel accuracies because it employs
M observations instead of K, as done by the Echo-MIMO
scheme. However, its performance saturates for high SNR due
to the limited sample support in the sample covariance matrix
estimation. In addition, the accuracy of the downlink channel
estimates strongly suffers from the correlative filtering, which
needs to be reverted at the base station and which causes a
noise amplication. With increasing training length τ , the error
floor gets smaller.

In order to illustrate the impact of the CSI quality on the sys-
tem performance, we conducted additional Monte Carlo sim-
ulations for the maximum ratio transmission in the downlink
and the maximum ratio combining in the uplink. We assume
the same uplink and downlink SNR for the training and data
phase. The achievable average SINRs are shown in Figures
3 and 4. Interestingly, the proposed scheme outperforms the
Echo-MIMO algorithm for low SNR regimes. Moreover, for
moderate SNRs the performance loss stays relatively small
and decreases with larger training lengths τ . Note that for
zero-forcing precoding/equalization (not depicted here), the
behavior is similar.

V. OUTLOOK FOR FINAL VERSION

We will provide extensive simulation results for differ-
ent channel models (i.e.; i.i.d. Rayleigh fading and the
QUADRIGA channel model [17]), and different configurations
for M , τ and αk in order to clearly assess the advantages and
drawbacks of the proposed scheme.
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Fig. 2. RMSEs of the downlink channel estimators versus uplink SNR γU
for K = 8, T/M = 1, γD = 25 · ρU
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Fig. 3. Average SINR of the uplink MRC equalizer (based on estimated CSI)
versus uplink SNR γU for K = 8, T/M = 1, γD = 25 · ρU
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