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Abstract—This paper introduces generalization of unique word
OFDM (orthogonal frequency division multiplexing) signaling
scheme to multiple antennas (MIMO). As UW-OFDM represents
a virtual massive MIMO system, the quasi-maximum likelihood
(ML) detection algorithms initially introduced for massive MIMO
systems are adapted to MIMO UW-OFDM. Results show that
in an uncoded system MIMO UW-OFDM is able to exceed
ML performance of MIMO CP-OFDM. However, the complexity
penalty is not negligible. In case of a coded system, ML detected
MIMO CP-OFDM still performs better. MIMO UW-OFDM
represents a performance/complexity tradeoff between linear and
ML detected MIMO CP-OFDM.

I. INTRODUCTION

OFDM systems require insertion of a guard interval (GI)
into the time domain data frame in order to combat inter-
symbol interference caused by multipath propagation. Con-
ventional OFDM systems use the cyclic prefix (CP), which
is simply a copy of a data fraction, and is therefore random.
On the contrary, UW-OFDM signaling uses a deterministic
sequence in the GI, denoted as the unique word (UW) [1].
Frame structures of CP- and UW-OFDM are outlined in Fig.
1.
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Fig. 1: UW vs CP frame structure

As UW is a known sequence, it can be used for synchroniza-
tion or channel estimation purposes. The spectral efficiency of
UW system remains unaffected. It can be observed from Fig.
1 that UW is the part of the Discrete Fourier Transform (DFT)
interval, whereas CP is not. Therefore the length of the UW-
OFDM frame is reduced from TDFT + TGI to TDFT , thus
retaining the overall spectral efficiency [2].

More importantly, UW generation introduces a form of
coding across sub-carriers [3]. UW can be generated by both
systematic and non-systematic encoding [4].

The unique word signaling has been initially introduced for
single-antenna systems (SISO). The inherent coding across
sub-carriers allows much better BER performance compared
to SISO CP-OFDM [2], [4]. Due to coding, the UW-OFDM
system can also be viewed as a virtual MIMO system, where
the size of the virtual channel matrix is given by the number
of sub-carriers. Therefore, the MIMO maximum likelihood
(ML) detection (Sphere decoding (SD)) have been applied [5].

However, the exponential complexity of SD restricted its use
only to systems with low number of sub-carriers [5], [6].

UW-OFDM clearly outperforms CP-OFDM in SISO case
[1], [2], [4]. However, current standards employ MIMO with
Mt transmit and Mr receive physical antennas. This paper
generalizes UW-OFDM scheme to a MIMO system and com-
pares its performance against a MIMO CP-OFDM system.
The employment of multiple antennas increases the system
size further, and MIMO UW-OFDM can be regarded as a
virtual massive MIMO system. It is therefore impossible
to apply SD. Hence, it is resorted to quasi-ML algorithms
initially introduced for massive MIMO systems. In this work,
likelihood ascent search (LAS) algorithms [7], [8] are adapted
to MIMO UW-OFDM.

To the best of the authors knowledge, this is the first
analysis of MIMO UW-OFDM and its performance against
MIMO CP-OFDM. The contributions of this paper are as
follows. It is found that encoding the individual data streams
(relative to transmit antennas) by distinct non-systematic UW
generator matrices improves LAS BER performance. The soft
output LAS does not perform well in a MIMO UW-OFDM
coded system. Therefore, the LAS algorithm is modified to
take into account the log likelihood ratios provided by its
initial solution. The modified LAS and proposed soft output
computation deliver better performance in a coded system than
the original algorithm.

The rest of this paper is organized as follows. Section
II introduces systematic and non-systematic generation of
UWs [1], [4]. Sec. III discusses the generalization of UW
signaling to a MIMO system with Mt transmit and Mr receive
antennas. Section IV discusses linear and quasi-ML detection
for MIMO UW-OFDM, Section V provides simulation results,
and Section VI concludes the paper.

II. UW-OFDM

A. Systematic generation of UW

In UW-OFDM available N = Nd + Nr sub-carriers are
shared by data and redundant symbols [1]. Nd sub-carriers
are occupied by data symbols and remaining Nr sub-carriers
are dedicated to redundant symbols. Therefore the frequency
domain symbol vector x̃ ∈ CN×1 can be denoted as consisting
of data and redundant parts x̃ =

[
d̃H x̃Hr

]H
, where dH ∈

CNd×1 is the part reserved for data, and xHr ∈ CNr×1 contains
redundancy. UW is generated in two steps [1]:

1) A zero UW is generated, such that the time domain
OFDM symbol vector is given as x =

[
xHd 0

]H
and

x = 1
NFHN x̃.



2) The nonzero UW xHu ∈ CNr×1 is added in the time
domain, resulting in x′ = x +

[
0 xHu

]H
.

The redundancy is added during the first step, and it is
considered in detail here. The IFFT operation on the frequency
domain symbol vector must yield

1

N
FHNP

[
d̃
x̃r

]
=

[
xd
0

]
(1)

Here, P is the introduced permutation matrix that allocates
data and redundant sub-carriers in such a way that energy
contribution of the redundant sub-carrier symbols is minimal.
The matrix in Eq. 1 can be renamed as 1

NFHNP = M =[
M11 M12

M21 M22

]
, where Mij are sub-matrices of an appropriate

size. From matrix multiplication in Eq. 1

M21d̃ + M22x̃r = 0

The generation of redundant sub-carrier symbols x̃r from the
data symbols follows directly as

x̃r = Td̃ (2)

where T = −M−1
22 M21, T ∈ CNr×Nd .

In style of the block coding theory, the frequency domain
symbol vector x̃ can be interpreted as a code word of a
complex RS (Reed-Solomon)-code [3]

x̃ = P

[
d̃
x̃r

]
= P

[
I
T

]
d̃ = Gd̃ (3)

where G ∈ C(Nd+Nr)×Nd is the code generator matrix that
introduces correlations within the symbol vector x̃.

The second step of signal generation adds UW in the time
domain, resulting in transmit UW-OFDM symbol vector x′.
The frequency domain version x̃u ∈ CNr×1 of the non-zero
unique word is obtained as x̃u = FN

[
0 xHu

]H
.

This allows the transmit time domain symbol vector to be
rewritten as

x′ =
1

N
FHN (x̃ + x̃u) =

1

N
FHN (Gd̃ + x̃u) (4)

The received frequency domain symbol vector is then given
as

ỹ = H̃dGd̃ + H̃dx̃u + ñ (5)

Next, after subtracting the known part H̃dx̃u, the system
equation for UW-OFDM is given as

ỹ′ = H̃dGd̃ + ñ (6)

The matrix H̃d is diagonal, containing the flat fading chan-
nel coefficients on the main diagonal. This matrix is defined by
the cyclicity of the UW-OFDM frame due to repeating UWs.
In that sense, the only difference between UW- and CP-OFDM
in terms of receiver is the presence of the generator matrix G.

B. Non-systematic generation of UW

As opposed to systematic UW generation, where the redun-
dancy is placed at dedicated sub-carriers, non-systematic UW
generation spreads the redundancy among all sub-carriers [4].
The generator matrix is now denoted Ḡ, and is given as

Ḡ = AP

[
I
T̄

]
(7)

where A ∈ R(Nd+Nr)×(Nd+Nr) is a non-singular real matrix,
and permutation matrix P is same as with the systematic UW
generation. The generator matrix still has to produce zeroes at
the positions of Nr symbols in the time domain analogous to
Eq. 1.

1

N
FHNAP

[
I
T̄

]
d̃ =

[
xd
0

]
(8)

Introducing M̄ = 1
NFHNAP =

[
M̄11 M̄12

M̄21 M̄22

]
, Eq. 8 can be

fulfilled by choosing T̄ = −M̄−1
22 M̄21. The optimum value of

matrix A, such that Eq. 8 is fulfilled, is obtained in [4] by the
steepest descent algorithm. Two initializations are proposed:

1) Initialization with identity matrix

A(0) = I (9)

implying T̄(0) = T and

Ḡ(0) = P
[
I TH

]H
= G (10)

Therefore, iterative search starts with the systematic gen-
erator matrix, which is considered a reasonable choice.
After optimization, the resulting generator matrix is
obtained and denoted G′.

2) Random initialization. Each element of A(0) is a Gaus-
sian random variable with zero mean and variance one.

a
(0)
ij ∼ N(0, 1) (11)

The resulting generator matrix is in this case denoted as
G′′.

Different generator matrices introduce another degree of
freedom to the system Eq. 6. By considering the compound
matrix H̃dG as a synthetic channel matrix, SISO UW-OFDM
can be regarded as a MIMO system. SISO UW-OFDM there-
fore benefits from both inherent encoding and MIMO detection
algorithms. Obviously, these algorithms are not applicable
to SISO CP-OFDM. Therefore, it makes sense to generalize
UW-OFDM to a MIMO system and compare its performance
against MIMO CP-OFDM.

III. MIMO UW-OFDM

Consider a MIMO OFDM transceiver block diagram de-
picted in Fig. 2. There are Mt parallel data symbol vectors d̃m,
m = 1, . . . ,Mt, transmitted simultaneously over Mt transmit
antennas. Hence, on each k-th sub-carrier, k = 1, . . . , Nd, the
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Fig. 2: MIMO OFDM transceiver

Mt data symbols from the respective data symbol vectors are
transmitted simultaneously over Mt antennas. Therefore, the
data occupying sub-carrier k is a vector, given as

d̃(k) =

 d̃1(k)
...

d̃Mt
(k)


Mt×1

(12)

The overall vector of transmitted symbols with respect to sub-
carriers and transmit antennas is denoted as

d̃ =

 d̃(1)
...

d̃(Nd)


MtNd×1

(13)

where d̃(k) is as in Eq. 12. The generation of encoded
frequency domain symbol vector x̃ ∈ CNMt×1 is done as
in Eq. 3. The difference is that the generator matrix G has to
be augmented to correct size by the Kronecker product with
identity matrix IMt ,

x̃ = (G⊗ IMt)d̃ = Ǧd̃ (14)

where Ǧ ∈ CNMr×NdMt is the augmented generator matrix.
Random initialization introduced in Sec. II-B produces

different non-systematic generator matrices G′′. It allows
encoding individual streams with different generator matrices
G′′m , m = 1, . . . ,Mt. In this case the frequency domain
symbol vector is obtained as

x̃ = Ǧ′′s d̃ (15)

where Ǧ′′s is generated as follows

Ǧ′′s =

(
Ǧ′′1 ⊗


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+ . . . (16)

. . .+ Ǧ′′Mt
⊗


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1


)

The transformation to the time domain is performed by Mt

parallel IFFT blocks. Mathematically, this parallel operation
is expressed as the Kronecker product of the IFFT matrix and
identity matrix of size Mt - 1

N (FHN ⊗ IMt
).

The overall time domain symbol vector is obtained similar
to SISO case

x =
1

N
(FHN ⊗ IMt)Ǧd̃ (17)

Next, the vector of non-zero UWs is added to x, as in the
SISO UW case.

x′ = x +
[
0 xHu

]H
(18)

Where the vector of nonzero-UWs is given as

xu =

xu(Nd + 1)
...

xu(N)


MtNr×1

The frequency domain version of the unique word vector is
then given as

x̃u = (FN ⊗ IMt)
[
0 xHu

]H
(19)

leading to the following overall transmit symbol vector

x′ =
1

N
(FHN ⊗ IMt

)(Ǧd̃ + x̃u) (20)

At the receiver side, the frequency domain receive symbol
vector is given as

ỹ = H̃bǦd̃ + H̃bx̃u + ñ (21)

where H̃b is the block diagonal matrix. This matrix is obtained
with the same characteristics as in the case of MIMO CP-
OFDM, due to cyclicity of UW frames. It contains blocks
H̃b(k) ∈ CMr×Mt , filled with flat fading channel coefficients
relative to sub-carrier k, k = 1, . . . , N .

Subtracting the known part H̃bx̃u from the receive symbol
vector, yields the MIMO UW-OFDM system equation

ỹ′ = H̃bǦd̃ + ñ (22)

IV. DETECTION

A. Linear detection

Linear detection seeks to find an estimate of the transmit
symbol vector by linearly combining the elements of the
receive symbol vector. It is employed in MIMO systems due
to its simplicity and sufficient BER performance. Among
linear schemes, linear minimum mean square error (LMMSE)
detection performs the best [9].

The LMMSE estimate for MIMO UW-OFDM system equa-
tion is given as

ˆ̃
dlmmse =

(
ǦHH̃H

b H̃bǦ +
Nσ2

n

σ2
d

I

)−1
ǦHH̃H

b ỹ′ (23)



where σ2
n is the noise variance, and σ2

d is the data variance
[10].

Due to correlation between sub-carriers introduced by gen-
erator matrix Ǧ, the LMMSE estimate is calculated once for
all sub-carriers and data streams. In case of MIMO CP-OFDM,
the system equation 22 lacks the generator matrix and is of
the form

ỹ = H̃bx̃ + ñ (24)

In this case, the LMMSE estimate is computed for N sub-
equations ỹ(k) = H̃b(k)x̃(k)+ñ(k) due to the block diagonal
structure of H̃b. However, it is to note that in the case of
MIMO UW-OFDM the size of the matrix to be inverted has
increased from Mr ×Mt to less favorable NdMr ×NdMt.

1) Soft output generation for LMMSE: In order to obtain
good performance in the coded system, reliability information
should be passed from the detector to the channel decoder.
The reliability information for each bit bij is expressed as log
likelihood ratio (LLR)

L(bi,j) = ln
Pr(bi,j = 1|ỹ′, H̃bǦ)

Pr(bi,j = 0|ỹ′, H̃bǦ)
(25)

= ln


∑

d̃∈χ1
i,j

p(ỹ′|d̃, H̃bǦ)

∑
d̃∈χ0

i,j

p(ỹ′|d̃, H̃bǦ)


where χ1

i,j and χ0
i,j are sets of all transmit symbol vectors

with bit position j at symbol i equal to 1 or 0 respectively.
The number of terms that have to be evaluated in Eq. 25
equals 2nbNdMt , where nb is the number of bits per modulation
symbol.

Using the max-log approximation (ln
∑
s
as = max as) [11],

Eq. 25 is simplified as given below

L(bi,j) ≈

(
min

d̃∈χ0
i,j

‖ỹ′ − H̃bǦd̃‖22 − min
d̃∈χ1

i,j

‖ỹ′ − H̃bǦd̃‖22

)
Nσ2

n
(26)

Now, a direct computation of probabilities and logarithm is
eliminated, but still 2nbNdMt Euclidean distances need to be
computed.

Further simplification was proposed in [12]. Instead of
computing LLR on the receive vector, the output d̂ of the
LMMSE is considered. The resulting LLR is now of the form

Ll(bi,j) ≈
1

σ2
e

(
min
d̃i∈χ0

j

| ˆ̃di − d̃i|2 − min
d̃∈χ1

j

| ˆ̃di − d̃i|2
)

(27)

where σ2
e is the diagonal element of the MMSE matrix Cee,

given as

Cee = Nσ2
n

(
ǦHH̃H

b H̃bǦ +
Nσ2

n

σ2
d

I

)−1
(28)

For example, in the case of 4-QAM and Gray mapping, the
LLRs are computed separately for in-phase and quadrature
components

<{Ll(d̃i)} =
4

σ2
e

<{ ˆ̃
di} (29)

={Ll(d̃i)} =
4

σ2
e

={ ˆ̃
di}

B. Maximum Likelihood detection

Maximum likelihood detection is performed by minimizing
the Euclidean distance between the receive signal vector ỹ′

and transmit symbol vector d̃, as expressed in Eq. 30

ˆ̃
dML = argmin

d̃∈ANdMt

‖ỹ′ − H̃bǦd̃‖
2

2 (30)

where A is the modulation alphabet.
1) Sphere Decoding: Sphere decoding maps Eq. 30 to a

tree search. However, in the case of MIMO UW-OFDM, the
size of transmit symbol vector is NdMt × 1, leading to a
very large tree and prohibitive complexity. It has already been
mentioned that SD has been applied to SISO UW-OFDM [5],
[13]. However, the number of sub-carriers had to be restricted
to N = 24.

Therefore, SD will only be used for MIMO CP-OFDM
detection in this work. It will provide a ML performance
reference for MIMO-UW OFDM. The SD implementation
used in this paper is the one given in [14]. Soft output
generation is performed as in [15].

2) Likelihood Ascent Search: Likelihood Ascent Search
(LAS) is the quasi-Maximum likelihood detection algorithm
developed for massive MIMO systems [7], [8], [16]. Therefore,
it is a natural candidate for MIMO UW-OFDM.

The algorithm performs a sequence of local searches based
on an initial solution vector in order to arrive as close as
possible to the ML solution. In local search, a neighborhood of
the initial solution is defined as a set of vectors that differ from
initial vector in η positions. For example, the 1-neighborhood
of a vector d̃ =

[
1 −1 −1 1

]
contains the following

vectors

S1(d̃) ={
[
−1 −1 −1 1

]
,
[
1 1 −1 1

][
1 −1 1 1

]
,
[
1 −1 −1 −1

]
}

In general, the size of η-neighborhood is given as

|Sη(d̃)| =
(
NdMt

η

)
(31)

In case η = NdMt, the neighborhood contains all possible
solution vectors, and the search within this neighborhood
corresponds to the global search. It has been shown that the
local search provides good results for η ≤ 3 for massive
MIMO systems with hundreds of antennas [7].

A basic version, denoted 1-LAS, searches for the vector
from S1(d̃) with minimum ML metric and declares it the
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Fig. 3: Stateflow of 3-LAS algorithm

final ML solution. This solution, however, represents the
ML solution in 1-neighborhood, and most likely is a local
minimum.

The local minimum escape strategy is to perform limited
S2(d̃), and if necessary, S3(d̃) neighborhood searches. If these
searches increase the likelihood, the escape was successful and
1-neighborhood search starts over. This version is denoted as
η-LAS, and its flowchart is depicted in Fig. 3, for η = 3.
The first sub-stage (1-LAS) updates one symbol per iteration,
such that the likelihood increases monotonically from current
iteration to the next until a local minimum is reached. Next, the
second sub-stage performs a single two-symbol update in order
to further increase the likelihood. If it succeeds, the escape
from local minimum was successful, and next stage is initiated
with one-symbol updates.

Otherwise, the third sub-stage tries to increase the likelihood
with a single three-symbol update. If successful, the next stage
goes on with 1-LAS. If not, the algorithm terminates. The
LAS algorithm performing two sub-stages is refereed to as 2-
LAS, and in case of three sub-stages - 3-LAS. The number of
performed stages represents a tradeoff between performance
and complexity.

Next, 1-LAS search procedure is elaborated in detail [17].
The system equation (Eq. 22) is transformed to real-valued

domain as follows:[
<(ỹ′)
=(ỹ′)

]
=

[
<(H̃bǦ) −=(H̃bǦ)

=(H̃bǦ) <(H̃bǦ)

] [
<(d̃)

=(d̃)

]
+

[
<(ñ)
=(ñ)

]
(32)

The initial solution to 1-LAS is the LMMSE estimate,
quantized to the nearest neighbor d̃ ∈ A2NdMt .

d̃(0) = Q(
ˆ̃
dlmmse) (33)

The ML cost function after m-th iteration is given by

C(m) =‖ỹ′ − H̃bǦd̃(m)‖
2

2 (34)

= d̃(m)T ǦT H̃T
b H̃bǦd̃(m) − 2ỹ′T H̃bǦd̃(m) (35)

Assume the symbol position p = 1, . . . , 2NdMt is updated
in (m+ 1)-th iteration. The update rule is given as

d̃(m+1) = d̃(m) + λ(m)
p ep (36)

where ep is the unit vector with p-th entry set to one. The
value of λ(m) depends on the modulation used and can be
obtained analytically for any modulation scheme [17]. In case
of 4-QAM, it takes only two possible values

λ(m)
p =

{
−2 when d(m)

p = +1

2 when d(m)
p = −1

(37)

Defining matrix W = ǦH̃T
b H̃bǦ, the cost difference can

be written as

∆Cm+1
p = C(m+1) − C(m) = λ(m)2

p wpp − 2λ(m)
p z(m)

p (38)

where z(m)
p is the p-th entry of z(m) = ǦH̃T

b (ỹ′−H̃bǦd̃(m)),
and wpp is the (p, p)- th entry of matrix W .

Next, index s of position with minimum ML cost difference
{s, min

p=1,... ,2NdMt

∆Cm+1
p } is obtained. If ∆Cm+1

s < 0, the

solution vector and vector z are updated as follows.

d̃(m+1) = d̃(m) + λ(m)
s z(m)

s es (39)

z(m+1) = z(m) − λ(m)
s z(m)

s ws (40)

where ws is the s-th column of matrix W. If ∆Cm+1
s >

0, then 1-symbol update local minimum is reached, and the
search is terminated. The resulting vector d̃ is the solution of
1-LAS algorithm. An escape from local minimum is attempted
by performing two or three symbol updates. The respective
update procedures are similar and are described in detail in
[7], [17].

a) Soft output generation: Soft output generation is
proposed in [17]. The reliability information for each bit is
formulated as

R(bi,j) ≈
‖ỹ′ − H̃bǦ

ˆ̃
dj−i ‖

2

2 − ‖ỹ
′ − H̃bǦ

ˆ̃
dj+i ‖

2

2

‖(h̃bǧ)i‖
2

2

(41)



where ˆ̃
dj−i and ˆ̃

dj+i are the LAS solution vectors with j-th
bit of symbol i set to −1 or +1 respectively, (h̃bǧ)i is the
i-th column of H̃bǦ. It is to note that the soft output in Eq.
41 represents a very coarse approximation of max-log LLR in
Eq. 26, as other vectors belonging to χ1

i,j and χ0
i,j are simply

neglected.
The soft output in Eq. 41 is then efficiently reformulated

in terms of z and W, which are readily available after the
termination of LAS algorithm. Note that ˆ̃

dj−i and ˆ̃
dj+i differ

only in the i-th entry, and hence

ˆ̃
dj−i =

ˆ̃
dj+i + λi,jei (42)

Substituting Eq. 42 in Eq. 41 yields

R(bi,j) =

{
λ2i,j − 2λi,j

zi
wii

when bi,j = +1

−λ2i,j − 2λi,j
zi
wii

when bi,j = −1
(43)

It turns out that the quality of proposed soft outputs is not
adequate for coded MIMO UW-OFDM. The performance of
LAS in this case is worse than that of the LMMSE initial
solution. The problem with this version of LAS algorithm is
that it quantizes the LMMSE output, thus ignoring the LLR
provided by LMMSE (Eq. 27). Therefore, for use in the coded
system the LAS algorithm has to be modified.

b) Proposed modified LAS for coded system: As LAS
is essentially an improvement of the LMMSE solution, the
LLR provided by LMMSE can be used as a-priori information.
Assuming 4-QAM with Gray mapping and as LAS operates
on real-valued system equation 32, di = bi. Hence, the initial
ML cost is given as

C(0) = ‖ỹ′ − H̃bǦd̃(0)‖
2

2 − ln(Pr(d̃(0))) (44)

where Pr(d̃) =
2NdMt∏
i=1

Pr(d̃i) is the a-priori probability of

transmit data vector d̃. Changing symbol at position p results
in the probability change for that symbol from Pr(d̃p) to
Pr(

¯̃
dp). Here, symbol ¯̃

dp represents the sign flipped version
of symbol d̃p. Therefore, the change in ML cost from iteration
m to m+ 1 is given as

∆Cm+1
p = C(m+1) − C(m) = (45)

= λ(m)2

p wpp − 2λ(m)
p z(m)

p + ln(Pr(d̃p))− ln(Pr(
¯̃
dp))

The probabilities of symbols at positions different from p
remain the same, and are therefore canceled out in the sub-
traction. Symbol probabilities Pr( ¯̃

dp) and Pr(d̃p) are easily
obtained from Ll(d̃i) as [18]

Pr(d̃p = +1) =
exp(Ll(d̃p))

1 + exp(Ll(d̃p))
(46)

Pr(d̃p = −1) =
1

1 + exp(Ll(d̃p))
(47)

After the modified LAS terminates, the soft outputs are

(a) H̃bǦ (b) H̃bǦ
′

(c) H̃bǦ
′′

Fig. 4: Virtual channel matrices

generated as

Lnew(d̃i) =

{
ˆ̃
di when sign(

ˆ̃
di) 6= sign(Ll(d̃i))

Ll(d̃i) when sign(
ˆ̃
di) = sign(Ll(d̃i))

(48)

In case LAS changes the symbol, its hard-decision value is
taken as the soft output. In case the symbol is not changed,
the LLR provided by LMMSE initial solution is used.

c) LAS performance improvement in case of Ǧ′′s : Sys-
tematic and non-systematic generator matrices alter the block
channel matrix H̃b in a different way. Figure 4 depicts the
virtual channel matrices for three possible cases.

In case of systematic generator matrix, virtual channel
matrix is of a block diagonal form. In case of the non-
systematic generator matrix, obtained from the systematic
one, virtual channel matrix H̃bǦ

′ still possesses the block
diagonal-like form. In case of the generator matrix obtained
from random initialization, the virtual channel matrix H̃bǦ′′

is a full matrix. This explains why the performance of the
uncoded system using matrix Ǧ′′ is superior to the one using
matrices Ǧ′ or Ǧ.

As far as LAS is concerned, its performance degrades
when the channel matrix is correlated [17]. This is essentially
the case for UW-OFDM, as the generator matrix introduces
correlations between diagonal blocks of H̃b. Therefore, by
using generator matrix Ǧ′′s , introduced correlation is less,
as this matrix is made of Mt distinct Ǧ′′. It is then to
expect that using Ǧ′′s would bring additional LAS performance
improvement.

V. RESULTS

A. Simulation parameters

Parameters of the UW-OFDM system are where possible
picked the same as in CP-OFDM based 802.11n standard. The
system parameters are summarized in Table I.



TABLE I: MIMO system parameters

OFDM system 802.11n UW
FFT size N 64 64

data subcarriers Nd 52 40
guard interval/ Ng / 16 16

redundant subcarriers Nr

red. subcarrier indices
{2, 6, 10, 14, 17, 21,

Ir {} 24, 26, 38, 40, 43,
47, 50, 54, 58, 62}

zero subcarriers Nz 8 8
zero subcarrier indices Iz {0, 29, 30,. . . , 35}

transmit antennas Mt 4 4
receive antennas Mr 4 4
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Fig. 5: LMMSE performance.

The recorded 10000 multipath channel realizations are used
in all simulations. The channel coefficients are obtained from
the standardized 802.11n channel model (model C) [19]. The
channel is assumed constant for 100 OFDM symbol vectors.
Modulation is 4-QAM with Gray mapping. In case of a
coded system, information bits are encoded by (133, 171)
convolutional code with constraint length 7 and code rate 1/2.
At the receiver side, the detected bits are decoded by soft
decision Viterbi decoder.

B. Simulation results

The bit error rate (BER) results for LMMSE detection are
depicted in Figure 5. MIMO UW-OFDM clearly outperforms
802.11n in both uncoded and coded systems. In an uncoded
system, using generator matrix Ǧ′′ provides maximum gain
over 802.11n. In a coded system, UW system with generator
matrix Ǧ′ outperforms 802.11n the most. The performance
of these generator matrices in coded and uncoded systems
coincides with the SISO OFDM case [4].

Figure 6 depicts the gain due to 1-LAS compared to the
LMMSE initial solution. It can be observed that UW system
with Ǧ′′ approaches sphere decoded 802.11n closer than the
one with Ǧ′, due to the better performing initial solution.
Individual encoding of data streams with Ǧ′′s further improves
1-LAS performance. It should be noted, that the performance
of LMMSE initial solutions for Ǧ′′ and Ǧ′′s is exactly the
same.
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Fig. 6: 1-LAS vs LMMSE, uncoded.
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Fig. 7: M-LAS vs SD, Ǧ′′
s , uncoded.

Figure 7 depicts performance of three versions of LAS
algorithm against sphere decoded 802.11n in an uncoded
system. It can be observed that the performance of LAS
improves with the number of stages, and with 3-LAS, 802.11n
is outperformed by 6 dB at BER of 10−6. Unfortunately, the
complexity penalty associated with 3-LAS is not negligible.
3-LAS simulation takes two orders of magnitude more time
than the SD 802.11n simulation on the same host. The reason
is the size of S3(d̃) neighborhood (Eq. 31) that is getting very
large, considering parameters given in Table I.

Figure 8 illustrates the problem with initially proposed
soft output computation (Eq. 43) for the coded system. In
this case, the performance of 1-LAS degrades with respect
to the LMMSE solution. As previously mentioned, ignoring
reliability information provided by LMMSE, causes this be-
havior. The proposed modified 1-LAS (Eq. 48) improves the
performance of the initial LMMSE solution.

Finally, figure 9 depicts performance of LAS using genera-
tor matrix Ǧ′ with respect to SD 802.11n performance. It can



Eb=No, dB
0 5 10 15 20 25 30 35 40

B
E
R

10-6

10-5

10-4

10-3

10-2

10-1

100

Modi-ed 1-LAS

1-LAS

LMMSE

Fig. 8: Proposed modified 1-LAS vs 1-LAS, Ǧ′, coded.
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be observed that, again, performance of LAS improves with
the number of stages. However, performance of SD 802.11n
cannot be achieved, and there is still a loss of 0.6 dB at BER
of 10−6 for 3-LAS.

VI. CONCLUSION

This work addressed the generalization of UW-OFDM to
the MIMO case. It has been shown that simple quasi-ML
algorithms initially introduced for massive MIMO systems
are applicable to MIMO UW with minor modifications. Sim-
ulation results indicate that MIMO UW-OFDM outperforms
MIMO CP-OFDM in case of linear detection in both coded
and uncoded systems. In case of quasi-ML detection, MIMO
UW-OFDM is able to outperform SD MIMO CP-OFDM in the
uncoded system. In a coded system, ML MIMO CP-OFDM
performance cannot be achieved.

It can be concluded that MIMO UW-OFDM can be used as
an intermediate solution between LMMSE MIMO-CP OFDM
and ML MIMO CP-OFDM. In case of 1-LAS, MIMO UW-
OFDM exhibits lower complexity than ML MIMO CP-OFDM,

and is able to achieve close to ML MIMO CP-OFDM perfor-
mance in both coded and uncoded setups.
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