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Abstract—We study the optimization of the data rate achiev-
able with partial decode-and-forward in the Gaussian MIMO
relay channel and propose a new algorithm to find close-to-
optimal input covariance matrices. Although the optimization
is a non-convex problem in its original formulation, we can show
that a reformulated version with slightly modified constraint set
is convex. In particular, we replace a positive-semidefiniteness
constraint by a strict positive-definiteness constraint. This may
introduce an inaccuracy, but we conjecture this inaccuracy to
be small so that the obtained solutions are close to the global
optimal ones.

I. INTRODUCTION

The concept of relay networks was introduced by [1] and
is of great interest in recent research as the usage of a relay
can increase the achievable data rate compared to the direct
transmission. However, neither the capacity of a relay channel
nor the optimal strategy of the relay are known so far. In [2],
several strategies such as decode-and-forward and compress-
and-forward were proposed. In this work, we consider the
partial decode-and-foward (PDF) scheme (e.g., [3], [4, Section
9.4.1]), which is an extension of decode-and-forward.

For the PDF scheme, circularly symmetric Gaussian signals
have been shown to be the optimal input distribution [5], [6].
Although there are several suboptimal approaches to maximize
the achievable PDF rate (e.g., [7]) and solutions for special
cases (e.g., [8]), there is still no way to find the optimal
transmit covariance matrices for the PDF scheme in the general
case. Thus, it is not clear whether the gap between existing
solution methods and the cut-set upper bound [2] is due to the
suboptimal choice of the covariance matrices or rather inherent
to the PDF scheme. To answer this question, a globally optimal
solution of the PDF rate maximization is needed. In this work,
we take an important step towards finding such a solution.

The PDF rate maximization problem is non-convex, but
we can decompose the problem into an outer maximization
over a so-called innovation covariance matrix C (cf. [6])
and an inner problem to optimize the remaining parameters
for a fixed innovation covariance matrix. By restricting the
innovation covariance matrix to be strictly positive-definite
(i.e., all eigenvalues have to be greater than or equal to a
small positive constant ε instead of being greater than or
equal to zero), we obtain an approximated problem, for which
we can show that both the inner and outer problems can be
solved in a globally optimal manner by means of convex
programming. Even though the approximation introduces an
inaccuracy in scenarios where the optimal distribution requires

a rank-deficient innovation covariance matrix, we conjecture
the error to be small when choosing a sufficiently small ε.

To obtain a convex reformulation of the rate optimization,
we exploit that an arising subproblem is mathematically equiv-
alent to the maximization of the dirty paper coding sum rate
[9] in a broadcast channel (BC) with a shaping constraint based
on the innovation covariance matrix [6]. This problem can be
transformed into a convex minimax problem in a dual multiple
access channel (MAC) [10], [11].

In the proposed algorithm, we solve this subproblem by an
alternating gradient-projection method (cf., e.g., [12]). For the
outer problem of finding the optimal innovation covariance,
we use the cutting plane algorithm [13, Section 6.3.3].

II. SYSTEM MODEL

The Gaussian MIMO relay channel consists of a source S
with NS transmit antennas, a destination D with ND receive
antennas, and a relay R with NR antennas. The source trans-
mits data to the destination over a direct channel and with the
help of the relay. The channel matrices of the links source-
destination, source-relay, and relay-destination are given by
HSD ∈ CND×NS , HSR ∈ CNR×NS , and HRD ∈ CND×NR ,
respectively. Perfect channel knowledge is assumed.

A. Partial Decode-and-Forward

Using the partial decode-and-forward strategy [4, Section
9.4.1], the transmit signal xS of the source is a superposition
of two independent parts u and v, where u denotes the part
that is sent in cooperation with the relay, and v denotes the
part that is directly transmitted without the help of the relay
and causes interference at the relay. As proposed in [6], the
cooperative part u can be further decomposed into a part q
being independent of the relay transmit signal xR and a part
z being linearly dependent of the relay transmit signal:

xS = u+ v = AxR + q + v = z + q + v. (1)

As z has linear dependence with the relay transmit signal,
and the relay can, due to causality, only transmit data it has
previously received,1 z does not contain new information. The
remaining parts q and v containing new information are then
called innovation, and the covariance matrix C = Cv + Cq
is called innovation covariance matrix [6], where Cv and Cq
denote the covariance matrices of v and q, respectively.

1Note that the rate expressions given in Section II-B are achievable using
a block-Markov coding scheme [4, Section 9.4.1].



B. Achievable Data Rates
The achievable data rate with the partial decode-and-

forward scheme and circularly symmetric Gaussian signals is
given as the minimum of two mutual information expressions

R = min{RA, RB} (2)

[4, Section 9.4.1], where RA and RB can be expressed as [6]

RA = log2 det(IND +HSDCvH
H
SD)

+ log2
det(INR +HSR(Cv +Cq)H

H
SR)

det(INR +HSRCvHH
SR)

(3)

RB = log2 det(IND +HSD(Cv +Cq)H
H
SD +HRHH). (4)

We have assumed the noise covariances CηR = INR and
CηD = IND w.l.o.g., and we use the joint channel matrix

H =
[
HSD HRD

]
. (5)

The joint covariance matrix of z and xR is denoted by

R = Cz
xR]

= E

[[
z
xR

] [
z
xR

]H]
. (6)

C. Problem Formulation
We aim at maximizing the achievable data rate under the

power constraints PS and PR on the transmit power of the
source and the transmit power of the relay, respectively. The
power constraints can be formulated as

E
[
‖xS‖22

]
= tr(Cv +Cq +DSRD

H
S ) ≤ PS (7)

E
[
‖xR‖22

]
= tr(DRRD

H
R ) ≤ PR (8)

with the selection matrices

DS =
[
INS 0NS×NR

]
and DR =

[
0NR×NS INR

]
. (9)

The optimization problem we consider is then given by

max
Cv�0,Cq�0

R�0

min {RA(Cv,Cq), RB(Cv,Cq,R)}

s. t. tr(Cv +Cq) + tr(DSRD
H
S ) ≤ PS

tr(DRRD
H
R ) ≤ PR (10)

where the notation A � 0 is defined in the sense of positive-
semidefiniteness.

III. PRIMAL DECOMPOSITION

The optimization problem (10) is non-convex in its original
form. However, we can reformulate the problem and show the
reformulated version to be convex, as long as the innovation
covariance matrix is strictly positive-definite. To do so, we
apply the concept of primal decomposition [14] to (10) with
the innovation covariance matrix C and the matrix R as
coupling variables. A similar approach was pursued in [6] as
part of a proof, but has not yet been considered for algorithm
design. We obtain the optimization problem

max
C�0,R�0

min {R?A(C), RB(C,R)}

s. t. tr(C) + tr(DSRD
H
S ) ≤ PS

tr(DRRD
H
R ) ≤ PR (11)

with RB(C,R) = log2 det(IND +HSDCH
H
SD+HRH

H) and

R?A(C) = max
Cv�0,Cq�0

RA s. t. Cv +Cq � C. (12)

Note that (12) is mathematically equivalent to the dirty paper
coding sum rate [9] maximization in a broadcast channel with
two users and with a shaping constraint based on the inno-
vation covariance matrix (cf. [6]). The problem of evaluating
R?A for given C is discussed in the next section. For R?A(C)
as a function of C, the following theorem holds.

Theorem 1. For a strictly positive-definite innovation covari-
ance C, the expression R?A(C) from (12) is concave in C, and
a (concave) subgradient is given by the optimal Lagrangian
multiplier for the shaping constraint Cv +Cq � C.

The proof (included in the full paper) is based on a sensi-
tivity analysis [15, Section 5.6] and on the fact that the BC
rate maximization can be transformed into a convex problem
with zero duality gap [10], [11].

Corollary 1. Let ε > 0 and add the constraint C � εI to (11).
Then, the resulting optimization problem is a convex program.

Proof: The pointwise minimum of concave functions is
concave [15, Section 3.2.3], RB is jointly concave in C and
R, and R?A is concave for C � εI, cf. Theorem 1. [deleted two sentences]

IV. INNER PROBLEM: BROADCAST SUM RATE
MAXIMIZATION WITH SHAPING CONSTRAINT

Although the broadcast sum rate maximization (12) is a
non-convex problem, it can be solved by transforming it into
a convex minimax problem in the multiple access channel.
According to the duality framework presented in [10], [11],
the BC problem with shaping constraint corresponds to a MAC
problem with a worst-case noise optimization, and we obtain

min
Cη�0

tr(Cη)=
∑

kMk

max
(Σk�0)∀k∑

k tr(Σk)=
∑

kMk

RMAC((Σk)∀k,Cη) (13)

where the MAC rate RMAC is concave in the transmit co-
variance matrices Σk of the individual users k and convex
in the noise covariance matrix Cη at the receiver. Both the
transmit covariance matrices and the noise covariance matrix
are subject to a power constraint. Note that RMAC depends
on the shaping matrix C via the the uplink channel matrices,
which are a function of C (see derivation in the full paper).

V. PROPOSED ALGORITHM

For finding the optimal C and R in (11) with the additional
constraint C � εI, we use the cutting plane algorithm
[13, Section 6.3.3]. The algorithm successively refines linear
approximations of a concave function. To obtain such ap-
proximations, we can use the subgradient of R?A(C) derived
in Theorem 1 and the gradient of RB(C,R), which can be
calculated explicitly (see full paper).

To solve subproblem (13) for fixed C (dependence on C via
the uplink channel matrices), we use an alternating gradient
projection algorithm as proposed by [12]. This means, we
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Fig. 1: Histogram of rate gain over IAA [7] for NS = NR =
ND = 2, PS = 100, PR = 10, d = 0.8 and ε = 10−5PS.
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Fig. 2: Average rate compared to IAA [7] and cut-set bound for
NS = NR = ND = 2, PS = 100, PR = 10, and ε = 10−5PS.

perform gradient steps and projections onto the constraint set
for the inner rate maximization and for the worst-case noise
optimization in an alternating manner until convergence.

VI. RESULTS AND CONCLUSION

To evaluate the performance of the proposed algorithm, we
compare the results to the inner approximation approach (IAA)
from [7] and to the cut-set bound. As in [7], we assume a line
network, where the relay lies on a line between source and
destination. The distances source-relay, relay-destination, and
source-destination are given by dSR = d, d ∈ (0, 1), dRD = 1−
d, and dSD = 1, respectively. The channel matrices are given
by HAB = d

−γ/2
AB H̃AB with γ = 4 and A,B ∈ {S,R,D}. The

individual elements of each H̃AB are independent and complex
Gaussian distributed with zero mean and unit variance.

The histogram in Figure 1 shows the difference Rproposed −
RIAA for 200 i.i.d. channel realizations with two antennas at
each terminal and distance parameter d = 0.8. It can be seen
that the IAA and the proposed algorithm converge to the same
value in many cases. However, there are also cases in which
the proposed algorithm achieves a higher rate, meaning that the
local optimum found by the IAA method is not the global one
in these cases. Figure 2 shows the results for the same scenario
with various values of d. By using the proposed method as
a benchmark, we can conclude that the IAA has a close-to-
optimal perfomance on average, which had not been clear in

the first place since the IAA is only a locally optimal method.
On the other hand, we can observe that the gap to the cut-set
bound (as seen in Figure 2 for d ≥ 0.5) cannot be closed with
the proposed algorithm.

Unlike existing suboptimal approaches to solve the PDF
rate maximization problem, the proposed algorithm is not a
local approach. Instead, we solve a slightly modified problem
in a globally optimal manner. Thus, the proposed algorithm
finds the globally optimal solution in cases where the optimal
innovation covariance matrix has full rank, and we conjecture
that it finds a close-to-optimal solution in the other cases if a
sufficient small ε is chosen. If this conjecture holds, the results
reveal that the gap to the cut-set bound in Figure 2 is not due
to the potentially suboptimal choice of the covariance matrices
in existing algorithms, but inherent to the PDF scheme or
inherent to the fact that the CSB might not be a tight bound
to the capacity of the relay channel in general.

To settle this conjecture, it should be studied in future
research whether Theorem 1 can be extended to the rank-
deficient case in order to derive a method to find the globally
optimal PDF rate without the approximation used in this paper.
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