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I. INTRODUCTION

The quality of the ranging data provided by a Global
Navigation Satellite Systems (GNSS) receiver largely depends
on the synchronization error, that is, on the accuracy of the
propagation time-delay estimation of the line-of-sight (LOS)
with respect to each satellite. In case the LOS signal is
corrupted by several superimposed delayed replicas (reflective,
diffractive, or refractive multipath), the estimation of the
propagation time-delay and thus the position can be severely
degraded using state-of-the-art GNSS receivers [1], [2], [3].
Especially, for high precision and safety-critical applications,
e.g. aviation, maritime, rail, precision farming, surveying or
automotive applications, multipath mitigation is very impor-
tant in order to enable robust and reliable positioning.

Several techniques have been proposed in the literature for
solving the multipath problem in GNSS using one antenna, see
e.g. [4], [5], [6]. When using antenna arrays high resolution
parameter estimation algorithms provide high accurate results
[7], [8], [9], but they entail rather high complexity in the
parameter estimation as multi-dimensional nonlinear problems
have to be solved. Furthermore, they also require the use of
accurate model order estimation algorithms [7].

In this work, we present an approach for which no multi-
dimensional nonlinear problem needs to be solved and also no
model order estimation is required. We derive a tensor-based
filtering approach using an antenna array and a compression
method based on canonical components (CC) with a bank of
signal-matched correlators [9] in order to mitigate multipath
and to estimate the time-delay of the LOS signal. First, we
resort to multi-dimensional filtering based on the principal
singular vectors of the received data tensor. In order to
separate highly correlated signal components in the multi-
dimensional signal subspace methods like forward-backward
averaging (FBA) [10], spatial smoothing (SPS) [11], and the
recently developed expanded spatial smoothing (SPS-EXP)
[12] are applied. Afterwards, time-delay estimation of the
LOS signal is performed with a simple interpolation based on
the multi-dimensional filtered cross-correlation values of the
bank of correlators.

The proposed pre-processing schemes require that the an-
tenna array response is left centro-hermitian. In case the array
response is not left centro-hermitian, signal adaptive array
interpolation methods can be applied to transform the array

response to a centro-hermitian array response [13].
The proposed approach is capable of separating highly

correlated and even coherent signals and is approaching the
respective Cramer-Rao lower bound (CRLB) for time-delay
estimation in the compressed time domain.

II. SIGNAL MODEL

In the following, we define the pre- and post-correlation
signal model for a multi-antenna GNSS receiver and we
introduce a compression method based on a bank of signal
matched correlators.

A. Pre-correlation Signal Model

The complex baseband signal of one GNSS satellite with
bandwidth B that is received by an antenna array with M
sensor elements can be given as

x(t) = s(t) + n(t) =

L∑
`=1

s`(t) + n(t) (1)

where s(t) ∈ CM×1 denotes the superimposed signal replicas

s`(t) = a (φ`) γ` c(t− τ`). (2)

a (φ`) ∈ CM×1 defines the steering vector of an antenna
array with azimuth angle φ`, c(t− τ`) denotes a periodically
repeated pseudo random (PR) sequence c(t) with time-delay
τ`, chip duration Tc, and period T = NcTc with Nc ∈ N. γ` is
the complex amplitude. Additionally, we assume temporally
and spatially white complex Gaussian noise n(t) ∈ CM×1. In
the following the parameters of the line-of-sight (LOS) signal
are indicated with ` = 1 and the parameters of the non-LOS
(NLOS) signals (multipath) with ` = 2, . . . , L. We define the
signal parameter vectors

η = [Re{γ}T, Im{γ}T,φT, τT]T (3)
η` = [Re{γ`}, Im{γ`}, φ`, τ`]T (4)

with γ = [γ1, . . . , γL]T, φ = [φ1, . . . , φL]T and τ =
[τ1, . . . , τL]T. The spatial observations are collected in K
periods of the PR sequence of N time instances, thus x[(k −
1)N + n] = x(((k − 1)N + n)Ts) with n = 1, . . . , N ,
k = 1, . . . ,K, and the sampling frequency 1

Ts
= 2B. The

channel parameters are assumed constant at least during the



k-th period of the observation interval. Collecting the samples
of the k-th period of the observation interval leads to

X[k] =
[
x[(k − 1)N + 1], . . . ,x[(k − 1)N +N ]

]
∈ CM×N (5)

N[k] =
[
n[(k− 1)N + 1], . . . ,n[(k− 1)N +N ]

]
∈ CM×N (6)

S[k;η] =
[
s[(k− 1)N +1], . . . , s[(k− 1)N +N ]

]
∈ CM×N (7)

S`[k;η`] =
[
s`[(k− 1)N +1], . . . , s`[(k− 1)N +N ]

]
∈ CM×N .

(8)
Thus, the signal can be written in matrix notation as

X[k] = S[k;η] + N[k] =

L∑
`=1

S`[k;η`] + N[k]

= A[k] Γ[k] C[k] + N[k] (9)

where

A[k] = [a(φ1), . . . ,a(φ`), . . . ,a(φL)] ∈ CM×L (10)

denotes the steering matrix, while

Γ[k] = diag{γ} ∈ CL×L (11)

is a diagonal matrix whose entries are the complex amplitudes
of the signal replicas γ = [γ1, . . . , γL]T. Furthermore,

C[k] = [c[k; τ1] · · · c[k; τ`] · · · c[k; τL]]T ∈ RL×N (12)

contains the sampled and shifted c(t) for each impinging
wavefront

c[k; τ`] = [c(((k − 1)N + 1)Ts − τ`), . . . , (13)

. . . , c(((k − 1)N +N)Ts − τ`)]T . (14)

In general ||c[k; τ`]||22 6= N for all τ`, however in many cases1

we can assume that ||c[k; τ`]||22 ≈ N, ∀τ` ∀k and if addition-
ally N ≥ Nc and N/Nc ∈ N we get c[k; τ`] = c(τ`), ∀k.
In the following we assume that the array response A[k] is
left centro-hermitian with

A[k] = ΠMA∗[k] (15)

where

ΠM =

 1

. .
.

1

 ∈ RM×M . (16)

B. Post-correlation Signal Model

A Fisher Information preserving compression applying a
bank of Q correlators at the output of each antenna is used.
We follow a canonical component (CC) method where the
information about the signal parameters are extracted from the
received signal by correlating with several delayed replicas of
the signal with relative delays associated to a regular grid [9].
Thus, the signal at the output of the q-th correlator of the
bank of correlators at the output of each antenna element with
q = 1, . . . , Q can be written

yq[k] = X[k](c[k;κq])
∗ ∈ CM×1 (17)

1e.g. in case of GPS C/A PR sequences with bandwidth B ≥ 1.023 MHz.

where κq denotes the time-delay for the correlator tap q. We
can define the output signal of the bank of correlators by

Y[k] = [y1[k], . . . ,yq[k], . . . ,yQ[k]] = X[k]Q[k] ∈ CM×Q

(18)
and the compression matrix

Q[k] = [c[k;κ1], . . . , c[k;κq], . . . , c[k;κQ]] ∈ RN×Q. (19)

Thus, we can write

Y[k] = A[k]Γ[k]C[k]Q[k] + N[k]Q[k]. (20)

The so-called thin singular value decomposition (SVD) or also
called economy size SVD of Q[k] in case Q � N is given
by Q[k] = UΣVH, where the columns of U ∈ CN×Q and
V ∈ CQ×Q only refer to the non-zero singular values and thus
all diagonal elements of Σ ∈ CQ×Q are larger than zero. We
define the compression matrix Qω[k], with QH

ω [k]Qω[k] = IQ,
that preserves the input noise properties at the output of the
bank of correlators using the thin SVD as follows:

Qω[k] = Q[k](ΣVH)−1 = U ∈ CN×Q (21)

Here, IQ denotes a Q×Q identity matrix.
In the following, we assume that the time-delays τ` , the

azimuth angles φ` and thus also the compression matrix Qω[k]
are constant with respect to K periods. This is a reasonable
assumption for GNSS e.g. for moving users in an urban city
center where the average life span of echoes is approximately
1 m [14]. Life span refers to the motion distance across which
a multipath signal is observable, i.e. active. In the latter case,
for an observation time of 30 ms (K = 30 for a GPS C/A
signal with N = 2046 and B = 1.023 MHz), a maximum
velocity of 100 km/h, and a spatial resolution of c/B ≈ 293
m, the multipath time-delays can be assumed constant, where c
denotes the speed of light. The time-delay of the LOS signal
τ1 in general can be assumed constant for an even longer
observation time. Also the azimuth angles of LOS and NLOS
signals φ` can be assumed constant for such an observation
time.

Thus, we can write

Ȳ[k] = AΓ[k]CQω + N[k]Qω (22)
= AΓ[k]CQω + Nω[k] ∈ CM×Q. (23)

Applying the vec-operator on matrix Ȳ[k], we get

ỹ[k] = vec{Ȳ[k]} = vec{AΓ[k]CQω}︸ ︷︷ ︸
=s̃[k]

+ vec{Nω[k]}︸ ︷︷ ︸
=ñ[k]

= ((CQω)T �A)γ[k] + ñ[k] ∈ CMQ×1 (24)

where � denotes the Khatri-Rao product. Collecting the data
samples during K periods, we obtain

Ỹ = ((CQω)T �A)Γ̃︸ ︷︷ ︸
=S̃

+Ñ ∈ CMQ×K (25)



with

Ỹ = [ỹ[1], . . . , ỹ[k], . . . , ỹ[K]] (26)

=



y1[1], . . . ,y1[k], . . . ,y1[K]
...

yq[1], . . . ,yq[k], . . . ,yq[K]
...

yQ[1], . . . ,yQ[k], . . . ,yQ[K]

 (27)

S̃ = [s̃[1], . . . , s̃[k], . . . , s̃[K]] ∈ CMQ×K (28)
Ñ = [ñ[1], . . . , ñ[k], . . . , ñ[K]] ∈ CMQ×K (29)
Γ̃ = [γ[1], . . . ,γ[k], . . . ,γ[K]] ∈ CL×K . (30)

We define the tensor S ∈ CK×Q×M collecting the signal
data and a tensor N ∈ CK×Q×M collecting the white noise
data, respectively. The three different matrix unfoldings of the
tensor S can be expressed as [15]

[S](1) = Γ̃
T

((CQω)T �A)T ∈ CK×QM (31)

[S](2) = (CQω)T(A � Γ̃
T

)T ∈ CQ×MK (32)

[S](3) = A(Γ̃
T � (CQω)T)T ∈ CM×KQ. (33)

Finally, we can write the tensor signal model

Y = S + N ∈ CK×Q×M . (34)

It is instructive to mention that the signal tensor S follows a
third-order Parallel Factors (PARAFAC) decomposition [15],
[16] with matrix factors Γ̃

T
, (CQω)T , and A.

III. PROPOSED TENSOR-BASED APPROACH FOR
TIME-DELAY ESTIMATION

In this section, we present different algorithms that use
multi-linear algebra in order to estimate the time-delay of the
LOS signal while mitigating the effect of the NLOS signals
(multipath). In the following, we assume that the receive
power of the LOS signal is larger than those of the NLOS
signals.

A. High Order Singular Value Decomposition (HOSVD)

Applying HOSVD on our signal model, we can write [15]

Y = R×1 U(1) ×2 U(2) ×3 U(3) (35)

with the data tensor Y and the core tensor R ∈ CK×Q×M ,
and the unitary matrices U(1) ∈ CK×K , U(2) ∈ CQ×Q, and
U(3) ∈ CM×M . Here, the operator ×n denotes the so-called
n-mode product of a tensor by a matrix [15]. Based on the
core tensor R ordering properties, we find that the n-mode
singular vectors u

(n)
i are ordered in the unitary matrices U(n)

in a decreasing order of the magnitude of its corresponding
singular values. Therefore, we can now define the vector q as

q =

((
Y ×1

(
u
(1)
1

)H
×3

(
u
(3)
1

)H)
ΣVH

)T

∈ CQ×1 (36)

where q represents the multi-dimensionally filtered cross-
correlation values at each tap of the correlator bank.

Based on q and a cubic spline interpolation using the
absolute value of its entries, we can derive the cost function
F (τ) and then estimate the time-delay of the LOS signal by
solving the problem

τ̂1 = arg max
τ
{F (τ)}. (37)

B. Forward Backward Averaging (FBA)

In general, LOS and NLOS signals are highly correlated
in case of GNSS. If a left centro-hermitian sensor array is
assumed, the separation of LOS and NLOS signals by an
adaptive multi-dimensional filtering as given in (36) can be
improved using FBA [10].

The extended 3-mode unfolding of Y can be given as

Z =
[

[Y ](3) ΠM [Y ]∗(3)ΠKQ

]
∈ CM×2KQ. (38)

Given the SVD

Z = U
(3)
FBAΣ

(3)
FBA

(
V

(3)
FBA

)H
(39)

we can select u
(3)
1,FBA ∈ CM×1 as the first column of U

(3)
FBA.

Consequently, we can use u
(3)
1,FBA instead of u

(3)
1 in (36) in

order to derive an improved space-time filtered vector of cross-
correlations denoted as qFBA.

C. Spatial Smoothing (SPS)

SPS [11] is another pre-processing scheme that can be used
to de-correlate the impinging wavefronts in case of a left
centro-hermitian or Vandermonde sensor array. To this end, a
uniform linear array (ULA) with M sensors can be divided
into Ls subarrays, each containing Ms = M − Ls + 1 sensor
elements. The selection matrix corresponding to the `s-th
subarray with `s = 1, . . . , Ls can be defined as

J
(M)
`s

= [ 0Ms×`s−1 IMs 0Ms×Ls−`s ] ∈ RMs×M . (40)

Therefore, the spatially smoothed extended 3-mode unfolding
of Y is given by

W =
[

J
(M)
1 [Y](3) · · ·J(M)

`s
[Y](3) · · ·J(M)

Ls
[Y](3)

]
∈ CMs×KQLs .

(41)
Given the SVD

W = U
(3)
SPSΣ

(3)
SPS

(
V

(3)
SPS

)H
(42)

we can get u
(3)
1,SPS ∈ CMs×1 which is the singular vector

corresponding to the strongest singular value.
Consequently, we can calculate a spatially smoothed multi-

dimensionally filtered cross-correlation vector qSPS ∈ CQ×1

using

qSPS =

((
Y ×3 J

(M)
1 ×1

(
u
(1)
1

)H
×3

(
u
(3)
1,SPS

)H)
ΣVH

)T

.

(43)
Note that Y ×3 J

(M)
1 selects the first Ms rows of the 3-mode

unfolding matrix [Y ](3). After cubic spline interpolation based
on the absolute value of the entries of qSPS, the estimation
of the time-delay of the LOS signal is obtained by solving
problem (37).



D. Expanded Spatial Smoothing (SPS-EXP)

The idea of expanded spatial smoothing (SPS-EXP) recently
proposed in [12] is to use a fourth dimension for the subarrays
instead of accumulating the spatially smoothed extended data
in the time dimension.

We define the 4-th order tensor YSPS−EXP ∈
CK×Q×Ms×Ls using

[YSPS−EXP](3) =
[

J
(M)
1 [Y](3) · · ·J(M)

`s
[Y](3) · · ·J(M)

Ls
[Y](3)

]
.

(44)
By applying HOSVD on YSPS−EXP, we can get the singular
vectors corresponding to the strongest singular values of
the SVDs of the unfoldings in K,Ms and Ls dimensions.
Thus, we can calculate an extended spatially smoothed multi-
dimensionally filtered cross-correlation vector as

qSPS−EXP =((
YSPS−EXP ×1

(
u
(1)
1,SPS−EXP

)H
×3(

u
(3)
1,SPS−EXP

)H
×4

(
u
(4)
1,SPS−EXP

)H)
ΣVH

)T

.

(45)

After spline interpolation based on the absolute value of the
entries of qSPS−EXP estimation of the time-delay of the LOS
signal can be performed as given in (37).

IV. SIMULATIONS

We assume a left centro-hermitian ULA with M = 8
isotropic sensor elements with half-wavelength spacing (∆ =
λ/2). For the SPS and SPS-EXP, we assume that the ULA
is divided into Ls = 5 subarrays, each containing Ms = 4
sensor elements. The received signal is a GPS C/A signal
with bandwidth B = 1.023 MHz and carrier frequency
fc = 1575.42 MHz. We consider a two-path scenario with
a LOS and one NLOS signal (L = 2). The number of
samples taken within one observation period k is N = 2046.
The number of observation periods K = 30 and we assume
that all the channel parameters are constant over K. The
azimuth angle difference between LOS and NLOS signal is
∆φ = 60◦. The signal phase for LOS and NLOS signals,
denoted by arg{γ1} and arg{γ2}, are assumed independent
and identically distributed (i.i.d.) for each Monte Carlo
simulation and drawn from a uniform distribution [0, 2π[.
We performed 2000 Monte Carlo simulations to derive the
root mean square error of the time-delay of the LOS signal
RMSE(τ1). The number of correlators in the bank is Q = 11.
The carrier to noise density ratio is C/N0 = 48 dB-Hz.
Thus, the pre-correlation SNR approximately is −15 dB, and
the post-correlation SNR approximately is 15 dB. The signal
to multipath ratio SMR = 5 dB. The expectation of the
Cramer Rao Lower Bound (CRLB) of the time-delay of the
LOS signal with respect to the random signal phases arg{γ1}
and arg{γ2} denoted by E[

√
CRLB(τ1)] is derived to be

used as a lower bound for comparison of the performance of
the proposed multi-dimensional filters and subsequent time-
delay estimation. The time-delay difference between LOS
and NLOS signal is normalized by Tc and is denoted by

∆τ/Tc. The RMSE(τ1) for the different methods presented
above, HOSVD, HOSVD with FBA, HOSVD with SPS, and
HOSVD with SPS-EXP as well as the E[

√
CRLB(τ1)] are

presented in Figure 1. The HOSVD with SPS-EXP shows
high resolution time-delay estimation of the LOS signal. An
advantage of such an approach is that no multi-dimensional
nonlinear problems need to be solved and also no model order
estimation is required.

V. CONTENT OF FULL PAPER

The full paper will include more simulation results for
different ∆φ and different SMR. In addition, the performance
of the algorithms will be assessed for different variations of
channel parameters of the LOS and the NLOS signals. A
simulation based comparison between the tensor approach and
a 2-D matrix approach will be included in order to show
the benefits of using a tensor-based approach. Finally, the
computational complexity of each proposed algorithm will be
studied in detail.
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