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I. INTRODUCTION

The PAPR problem refers to frequent occurrence of peaks
in instantaneous power of the transmit signal that are con-
siderably higher than the average power. The PAPR problem
reduces power efficiency in transmitter as nonlinear distortion
needs to be controlled by back-off in power amplifier. This
problem is particularly a major technological bottleneck in
uplink, i.e. handheld devices, due to limited battery life. As the
research on waveforms in context of 5G [1] is actively pursued,
the PAPR problem has regained attention. A category of PAPR
reduction methods is based on invertible modifications to the
signal, to which the proposed method belongs.

Although the described problem is commonly referred to as
the PAPR problem, other metrics have as well been proposed
to measure it. For instance, Cubic Metric (CM) has been
reported to be superior to PAPR in determining the required
back-off. Different metrics can behave differently in terms of
reduction performance or mathematical tractability, which in
turn might enhance algorithm design.

The PAPR problem exhibits itself as a more challenging
problem when multiple antennas are used in the transmitter.
The distortion caused by high PAPR of multicarrier signals
causes two problems: in-band distortion and out-of-band dis-
tortion. The latter is often the bottleneck and in multiple
transmit antennas, the worst level of out-of-band radiation
dominates. In other words, the PAPR problem of nt anten-
nas transmitting independent data streams in parallel can be
characterized by the worst PAPR in each signaling interval.

There has been considerable work done on PAPR reduction
for OFDM signal, but relatively little on MIMO and more
advanced waveforms. In this work we are interested in de-
veloping a flexible and high-performance algorithm for PAPR
reduction and investigate its application to spatial diversity
MIMO schemes using FBMC with offset QAM, a well-known
and attractive model, and FBMC-QAM, a recently proposed
waveform to improve on the former.

II. CONTRIBUTION

a) Proposed method: The algorithm proposed in this
work provides PAPR reduction by choosing signs of complex
data symbols sequentially. By each sign decision, the goal is to
reduce the expected value of the PAPR random variable con-
ditioned on the already fixed signs. A sign selection approach
has been previously proposed [2], in which limited information
is extracted from the search space by essentially fixing all the

undecided sign variables to 0. In other words, sign decision is
made without considering contribution of data symbols with
undecided signs. In contrast, the proposed method exploits
the available information by considering expected values; an
approach similar to mathematical geometric programming. As
further explained in the following, the method allows for a
performance analysis which provides substantially better upper
bounds on reduction, in contrast to the deterministic worst-case
bound presented in [2] and similar works.

The process can be described by considering the probability
measure of PAPR, which is concentrated around its expected
value [3]. Each step of the algorithm shifts the probability
measure of the resulting PAPR to left, which has less ran-
domness due to fixed signs. By the last step, the PAPR is no
more random and is equal to the last expected value.

As a brief formalization, consider function f(C,X) where
C is the vector of complex data symbols and X is the
corresponding vector of sign variables. The objective is to
reduce PAPR by choosing sign x(j) such that

E[f(X,C)|x̂(0 :j),c]=min
x(j)

E[f(X,C)|x̂(0 :j−1), x(j), c], (1)

where ˆ denotes the previously decided sign variables. The
order of signs is determined as follows: Consider the sequence
J = {i}n1 and a permutation of it denoted as J ′ = {J ′i}n1 . The
sign x(j) refers to element xl of X such that l = J ′j . The
notation x(m : n) refers to x(m), x(m+ 1), . . . , x(n).

Clearly, calculation of conditional expectations is a key ele-
ment of the algorithm. In particular, with PAPR as the choice
for f , analytic calculation of the conditional expectations is
not available and estimation is required. It will be shown in
the following that estimation can be elegantly controlled by
the analytic tool provided by concentration inequalities.

An important aspect of such distortionless PAPR reduction
methods is undoing the modifications in the receiver. Two
points of view can be discussed. 1) A reliable transmission of
the required information, i.e. feed-forwarding of the modifica-
tions to the receiver. 2) Discarding the signs of data symbols
used in the algorithm and presenting a rate loss to account for
it. Both viewpoints shall be formally investigated.

b) Analysis: Such general trend of decisions on signs
results in the sequence of conditional expectations

z0 = EX(0:n−1)[f(X,C)|c]

zj = EX(j:n−1)[f(X,C)|x̂(0 :j−1), c]
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Fig. 1. Preliminary result for performance of the algorithm in single transmit
antenna settings for n = 64. The upper bounds on PAPR reduction are as
well shown for 16QAM and QPSK, where the latter is remarkably sharp.

zn = E∅[f(X,C)|x̂, c] = f(x̂, c). (2)

which gives z0 as the upper bound on zn, which is the reduced
value of f . This inequality can provide two general methods
for analytically investigating the performance of the algorithm:
Analysis of distribution of z0 by concentration inequalities and
estimation of the distribution of z0. A preliminary observation
in Fig. 1 shows simulation result for a single stream of data
with OFDM model and n = 64 subcarriers. Performance of
the method in [2] is included for comparison.

As mentioned before, estimation is required in calculation
of conditional expectations. While standard analysis of the
estimator for max operator in PAPR provides limited infor-
mation, concentration inequalities can be shown to complete
the algorithm in this regard. Consider the estimator

g(C,X
(k)
1 , . . . ,X(k)

q ) =
1

q

q∑
i=1

f(X
(k)
i ,C), (3)

where the first k signs are fixed. It will be shown that the
following concentration equality holds

P(|g(C,X
(k)
1 , . . . ,X(k)

q )− ḡ(C)| ≥ α)≤2 exp(−α
2pa
d2

nq

n−k
),

(4)
where ḡ(C) is expected value of g with respect to
X

(k)
1 , . . . ,X

(k)
q , d is the maximum distance between constel-

lation points and pa is the average power. Together with some
further analysis, it can be shown that this bound determines
the required number of shots q. The derived bound supports
the intuition that fewer shots are required for higher k.

Considering a spatial diversity MIMO scheme, one impor-
tant characteristic of this method needs to be mentioned. The
sign selections, in whatever order, must finally get to the last
sign variable because the trajectory of f itself is quite different
from E[f ]. The formalization above can be considered for each
stream. Then a strategy needs to be decided on how to proceed
with parallel streams. It is convenient to see sign variables as
resources. Streams with lower uncoded PAPR can be treated
with fewer signs. This is somewhat similar to directed SLM [4]
approach suggested by for OFDM. But the main difference and
challenge is that the number of signs must be chosen before-

hand. In dSLM, the worst case PAPR receives the next iteration
of the algorithm and the number of signs for each branch
changes somewhat randomly. As a preliminary approach, we
shall adopt this strategy and define J ′(i) = {J ′i}

σi
1 where σi is

the number of sign variables allocated to ith branch such that
σ =

∑
i σi is the total allocation and can be pre-determined.

All algorithm details, measure concentration and perfor-
mance bounds will be derived in the full paper.

c) Application to waveforms: One major candidate for
5G waveforms is FBMC with MIMO. The most important
component is that only purely real data symbols are allowed,
but by a spectral efficiency of 2. Therefore, QAM symbols
are broken into two pieces which constitutes what is referred
to as offset QAM (OQAM). Desirable localization of pulses
in frequency domain dictates some spreading in time-domain,
which leads to overlapping among the waveform components
pertaining to subsequent blocks of n data symbols. As opposed
to OFDM, the overlapping complicates the PAPR reduction
algorithm. Considering a joint PAPR reduction for several
n-blocks is a natural approach. Such approach might be
already compatible to frame-based transmission schemes and
the degradation in the boundaries can be neglected. The
FBMC approach and related performance bounds will be also
described in detail in the full paper.

The major difficulty in using FBMC from the equalization
and detection point of view is the so-called intrinsic inter-
ference [5], [6]. A recently proposed scheme for 5G called
FBMC-QAM [7] aims to eliminate the intrinsic interference is-
sue of FBMC-OQAM by using two prototype pulse shapes for
even-numbered and odd-numbered subcarriers. This facilitates
application of spatial multiplexing and diversity techniques
while maintaining high spectral efficiency, i.e. no CP is
required. Application of the proposed PAPR reduction method
to the FBMC-QAM signal model is expected to exhibit similar
behaviour. We derive algorithms and performance bounds for
this new method and finally compare all proposed waveforms.
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