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ABSTRACT are stringent such that they lead to significant challenges

. L not only for the precoding of the transmitted data but also
In this paper we study the channel estimation problem fo y P g

; 2 : for the required channel estimation tasks [8], [11], [12],
a CP-OFDM based hybrid analog-digital massive MIMO 131"\, [g] an adaptive compressed sensing (CS) based
system. In contrast to a conventional MIMO system, two

. : i . channel estimation algorithm is proposed to estimate the
additional constraints need to be fulfilled. First, the agal . 2onql of a hybrid analog-digital massive MIMO system.

This CS based channel estimation algorithm has been further
"Witended in [11] by involving multiple measurement vectors
QMMV) to improve the channel estimation accuracy. The CS
based concept is also used in [12], where an adaptive multi-
rid sparse recovery approach is applied instead. Finally,

multi-user hybrid analog-digital system is considered in
13] and a minimum mean squared error (MMSE) approach
s developed to estimate the channel. Unfortunately, &l th
N X &bove papers deal with narrowband systems, or equivalently
design is proposed. Moreover, a non-linear channel estl 4t taging channel. Their results cannot be directly used i
mation counterpart is developed via two-stage compressed , icarrier system, or equivalently a frequency sevecti
sensing (CS). Initial simulation results show that the CS.,annel due to the faét that there is a common RF precoding
approach outperforms the LS approach. and decoding matrix for all the subcarriers. Hence, this
motivates us to design channel estimation algorithms ak wel
as training sequences for single user multi-carrier hybrid
massive MIMO systems.

equivalent RF precoding or decoding matrix for all subearri
ers. This also leads to a challenging channel estimatidn ta
and an optimal training design for the considered syste
We derive both linear and non-linear channel estimatio
methods. More specifically, a linear estimation via Ieasg

Index Terms— Massive MIMO, hybrid precoding,
mmWave, least squares, compressed sensing.

|. INTRODUCTION In this paper we develop channel estimation algorithms
: . , for a single user multi-carrier hybrid massive MIMO system.
Massive MIMO, which uses orders of magnitude morerpe cyclic prefix OFDM (CP-OFDM) based multi-carrier
antennas (€.g., 100 or more), can provide significant MIMQy, o4 jation scheme is used and training using pilot tones
gains [1]. When combined with millimeter wave (mmWave) s considered. To estimate the channel at the receiver side
technology, it will not only gain from large chunks of under- ;o study two different approaches, i.e., the least squares
utilized spectrum in the mmWave band [2] but will also ben- LS) approach, and the CS approach. The former one is
efit from a significantly reduced form factor of the massivey jinear method while the latter one can be interpreted as
MIMO array [3]. Hence, massive MIMO communication 5 o jinear method. In both cases we have to transmit
is a potential technique for future wireless networks [4]-multiple OFDM training symbols. Nevertheless, it is still

However, if a large number of RF chains is implemented (q,qsgipje to build optimal pilot tones in the minimum squared
steer the massive number of antenna elements, the involvegd, (MSE) sense of the LS estimate and one optimal

power consumption and the hardware cost are t00 high angot sequence design is provided in this paper. The CS
thgrefore are impractical. To exploit the MI.MO multlp.legw'\ approach exploits the sparsity of the channel model. Tadavoi
gain under a reasonable cost, one promising solution is ? training design based on random numbers, which might
deploy hybrid analog-digital precoding schemes, realizedegyit in practical implementation difficulties, we develo
using phase shifters or switches in the RF domain [Slg tyo-stage CS based channel estimation method, where

and digital precoding schemes, implemented in the digithe pilot sequences and the RF matrices use a DFT-like
tal baseband domain as in conventional MIMO. If analogy aining design. Our initial simulation results show thae t

precoding is achieved using phase shifters only, the analggg approach outperforms the LS approach.

precoding matrix should have only constant modulus entries

[6], [71, [8], [9]. Furthermore, when a wideband multi- Notation: Upper-case and lower-case bold-faced letters
carrier system is considered, equivalently we get the sam@enote matrices and vectors, respectively. The expeotatio
phase shifts for all subcarriers [10]. These two constsainttrace of a matrix, transpose, conjugate, Hermitian trasspo



and Moore-Penrose pseudo inverse are denotedfy, |W[m]||r = 1 for all m. Note that in our design the data
Te{-}, {35, {-}, {}Y, and {-}*, respectively. The Eu- symbols are not used for channel estimation.
clidean norm of a vector and the absolute value are denoted
by ||-|| and|-|, respectively. Théc, d)-th element of a matrix
is denoted by-). 4. The Kronecker product is. Thevec{-}
operator stacks the columns of a matrix into a vector. Th?l B. Ch | Model
unvec) x v{-} operator stands for the inverse function of " ~* annel hvode
vec{-}. The smallest following integer is denoted by. In our paper we consider an analytical channel model
consisting of a finite number of scatterers, i.&.,scat-
terers. Each scatterer contributes to a single propagation
ll. SYSTEM DESCRIPTION path between the BS and the UE, which accounts for
II-A. System Model one time delayr, and one pair of angle of arrival (AoA)
Or,e € [0,27) and angle of departure (AoD)r . € [0, 2)
We study a point-to-point massive MIMO system wherefor all ¢ ¢ {0,---,L — 1}. The discrete CTF of the UE on
a multi-antenna base station (BS) transmits data to a multthe n-th subcarrier is modeled as [14], [15]
antenna user equipments (UE). The BS hds transmit 1
antennas andVy RF chains. The UE had//y receive H, — Z %G(QR,Z)U/H(QT,Z) oI tn @
£=0

Our goal is to desigiW [m], F[m|, ands,[m], Vn,m,
such that the channel can be estimated at the receiver side.

antennas andVg RF chains. The number of RF chains is NEET,
assumed to be much smaller than the number of antenna
elements, i.e.Mr > Ny and Mg > Ng. A CP-OFDM H, €CMRr>MT

based multicarrier modulation technique is applied to caimb whereq, is the random complex gain of theth path, with

the multipath effect. The corresponding FFT sizeNg;.  zero mean andE{|a/|*} = 1. The vectorsa(fr,) and

Let s,[m] € CN= represent the transmitted pilot sequencea(fr () are the array steering vectors of the BS and the
on the n-th subcarrier in them-th OFDM symbol ¢ €  UEs, respectively. As in [7], a uniform linear array (ULA)
{k1,--- ,kn;} C{L,--- ,Ng}, m € {1,--- ,N;}). There- geometry is used at both ends. The inter-element spacing
fore, the training procedure consists 8f OFDM symbols of the ULA is equal to half of the wavelength. The array
each with Ny pilot tones. We haveVt > Ng. The training  steering vector consisting df/ elements is then defined as
pilots and the data are interleaved on all the subcarrieds an L , ) T
then pass through the IFFT filter. Furthermore, we assume @(d) = [1 e7727sn(@) ... em2r(M=D)sin@] = (3)

that the pilot tones are assigned equally spaced. A CP iy thermore, for notational simplicity (2) implies that =
length Ncp symbols is added, followed by an RF precoder,r \yhereT, represents the sampling period. In general the
F[m] ¢ C7r*7r using analog circuitry. We assume that geyeloped channel estimation algorithms in this paper can
the RF precoder is implemented using analog phase shifterig, applied for other choices of. Note that the proposed
Hence, constant modulus constraints should be fulfilled foélgorithms can be also applied when the ranlbfis higher

each element of'[;n] € CM, i, |(Flm))as| = 1 than one, e.g., considering clusters each withV, paths
forall a € {1,---, My} andb € {1,---,Nt}. Finally, [7].

the total power of the pilot tones in one OFDM symbol is

kg
- [ll. LEAST SQUARES APPROACH
limited such that ~ ||F[m]s,[m]||* < P for all m. Q

n—hy In this section we study the LS based training design,

. ) _ _ which is a commonly used channel estimation scheme, e.g.,
We consider a frequency selective quasi-static bloclfle]_ By inserting (2) into (1) we obtain

fading channel. Assume thaicp has the same length as the

maximum excess delay of the channel such that the inter- - e —jomtn -

symbol interference is avoided. After passing through th&nlm] = W [m] > Hye "N Flmlsy[m] + W [m]z,[m]
channel, first, an RF decod&[m] € CNr*Mr js used =0

at the UE. Afterwards, the CP is removed from the received = WHm|H,(w, ® (F[m]s,[m])) + WH[m]z,[m],
signal and by using the FFT filter the time domain signal is (4)
transformed into the frequency domain. Lidt, € CMrxMr
denote the discrete channel transfer function (CTFheh
subcarrier of the UE. It is assumed that the channel remains H,=[Hy -+ Hp_1]ecCMrxtMr
unchanged during the training procedure. The received pilo
signal on then-th subcarrier in then-th OFDM symbol is and 1T

given by [10] wo=[1 ... ] ek,

where we have

Yn[m) = WHm]H,, F[m]s,[m] + WH[m]z,[m], (1) By stackingy,, [m] next to each other along the frequency
domain (then-dimension) we obtain a matriyY’[m] =
where z,,[m] is the zero mean circularly symmetric com- [yx,[m] -+ ygy, [m]] € CV=*Ne which is expressed
plex Gaussian (ZMCSCG) noise with covariance matrixas
E{z,[m]zl[m]} = 021, for all n andm. In this paper Y[m] = WHm]H,Cm] + WH[m|Z[m],  (5)



whereC[m] € CFMrxNe is computed by where 3 > 0. Note that to make the best use of pilot tones

- o in the frequency domain we s&k = Nt in (9). One choice
Clm] = [wk, ® (Fm]s, [m]) Wiy, ® (F[m]syy, m]) fi. [m] which satisfies (9) is computed as
Let y[m]| = vec{Y [m]}, whereh,, = vec{H, } andz[m| = (1 (p— 1) Ny )L (A1)
vec{W"[m]Z[m]}. Then the vectorized version of (5) is (fe.[])a = P e NTNeT . (10)
expressed as ! My Nt
y[m] = (C*[m] @ WH[m])h,, + z[m)] (6) ivnatrfe El,lobééej\r/[ﬂ. All the derivations will be elaborated
To utilize the training resource along the time domain (the '
m-dimension), we staclyg[m] on top of each other as IV. COMPRESSED SENSING APPROACH
Ngr NtNg .
Ys = Prhy +2,€C ) (7) In contrast to the LS approach, the CS approach exploits
_ T o T T _ the sparsity in the delay domain. To apply the CS approach,
there Ys . Ly 1 vV = ~ we assume that the AoAs and the AoDs lie on uniform grids
(2T - ZT[NV]], and Gr > Mg and Gt > Mr. This is a common assumption
CT[1] © WH[1] in the literature, e.qg., [8], [11], [12], [13], [18]. Undehis
P - : € CNNeNRX LMy My assumption, the discrete CTF in (2) can be rewritten as
: L—1
CT [Nt} ® WH[Nt] H, = Z ARH:/,ZA%@_j%ﬁ, (11)
Conventionally, to recoveh, from (7) over one OFDM (=0
symbol, i.e., Ny = 1, the LS design requires that the where An — [a(f o alo c CMrxGr
(Nr N¢)-by-(L Mt Mg) matrix product(C™[m] @ W[m]) Ap = [G(RGT ) [. .(. R’;)(QT o)l e( éﬁ?E]GT and H,,, e

is of full column rank LM+ Mg, i.e., NkNy > LMt Mg.
However, it can be proven that this is not possible due to th
fact that there is only one RF precoding matrix for all the
subcarriers. Therefore, to recovef we have to use multiple
OFDM symbols as in (7). Similarly, this requires thag has By inserting (11) into (1) and applying some algebraic
full column rank, i.e.,NyNyNg > LMt Mg. To this end, manipulations we obtain

there should be no more thaxs; = Nt pilot tones in one

£9*Cr contains just one non-zero elememt//L. In
other words,H, , is sparse. Sincedr and A are fixed,
we only need to estimatéf,, ,.

OFDM symbol. As we haveMt > Nt and My > N, yn[m] = WH[m]Ag H, (w, ® A})F[m]s,[m]
this means that many training time slots (at legst/ 3 |) + WHm]z,[m], (12)

are needed. Finally, the LS channel estimate is computed Qypere
ilu = Pf“ys_ (8) H,=[H,, -~ H,5 1]¢€ CGrXLGT

The next question is whether it is possible to developSimilarly as in Section lll, to fully exploit the time-fregmcy
optimal pilot tones which minimize the MSE of the LS chan-resources, we can first stagk,[m] on top of each other
nel estimate. Moreover, we should haR& P, = oIy, @lOng the frequency domain, which yields
with a > 0 [17]. Inspired by [16], we describe such a design /T H
in the following. Let us divide theV; time slots intoN; g ylm] = (B [m] @ (WH[m]AR)) by + 2[m],  (13)
_frames, where each frame consists\af C_)FDM sy_mbols, where h, = vec{H,} € CLGrGT is a sparse vector con-
i, Ny = Nyr - Nygr. The RF decoding matrix stays tajning I < LGrGr non-zero elements. Theth column
constant during each frame while the RF precoding matricegt B[ ¢ CLCT* N is given by (wy,, @ AR)F[m]s;, [m]
used in different frames are the same. Our methodology igyr ) ¢ {1,--- , N;}. Then we canpstacly[m] aloné the
to first estimate the matrix produdﬁ/’fHu during efich time domain and obtain
frame ( € {1,--- , Ny r}) and then estimatéd,, by using

the combinedW, H,, over all frames. To this end, the ys = Pohy, + z, € CNRNeN (14)
concatenated matrig¥;" - - Wﬁt_R]Te(CNRNtRXMR where

should have orthogonal columns. One possible choice is to

T H
select from the first\/g columns of aNg Ny r-by-Nr Ne r B 1] @ (WH[1]Ag)

DFT matrix, which is further scaled by/\/MgrNg. Next, P, = ; € CNeNeNexLGrGr
we describe a specific design @f[i] = F[i]s,[i] € CMr BY[N,] ® (WH[N,]AR)
such that
Noor Net Np The formulation (14) fulfills a sparse recovery problem

be applied. To ensure th#t, can be uniquely and stably
determined, the matri¥?, should be constructed such that
= BILns, (®)  the restricted isometry property (RIP) is satisfied. In pcac

Z Cli]CM]i] = Z Z(U’k © Fi[i])(wr, ® fu {7 and thus any sparse approximation algorithm in [19] can
i=1

i=1 p=1



there are no algorithms which could check the RIP for aH, is not the same. We apply the single measurement
given matrix in polynomial time. But there are certain proba vector solution. Furthermore, to reduce the computational
bilistic constructions of matrices satisfying the RIP whilgh ~ complexity, we split equation (17) intd sub-equations and
probability, i.e., constructing® with randomly distributed each sub-equation is calculated as

elements or constructindg® to possess randomly selected

columns of a DFT matrix [14]. These two constructions Heum = WesARH, ¢ + Acym, € CNorNrxGr 1 (18)

are not suitable for our application. The former one can be .

achieved by determining the entries W [m], F[m], and Wwhere Heuy ¢ and Acum,¢ denote thel-th sub-matrix of
sn|m] to be drawn from Gaussian distributions. Obviously, H.,m and A.,.,, respectively. To solveld, ¢, in general
this relies on a random codebook, which is difficult to imple-we can vectorize both sides of (18) with respectH ,
ment in practice. Nevertheless, this feasible choice iseho and the following relation yields

as a benchmark in our numerical experiments. The latter

one requires a matrix decomposition which decomposes a heum,e = Pyhu + Scum ¢ € CNoRNROT (19)
matrix into a product of an arbitrary matrix and a matrix N N G e
with constant modulus entries. Such a matrix decompositiowhere Py = Ig, @ (WesAg) € Clenfnbrxtnér,

cannot be exact for an arbitrary matrix, even if it exists.  Peum ¢ = vec{ Heum ¢}, Buo = vec{H, ;}, and deym ¢ =
vec{Acum,}. Then h,, can be estimated by using an

_ Instead, we propose a two-stage sparse recovery alggrpitrary sparse approximation algorithm, e.g., the OMP
rithm with a more structured design procedure. We use gjqorithm [5].

similar training procedure as described in Section lll,,i.e

dividing the total training OFDM symbols intd; r frames The remaining question is how to creat® and Py,
each with Ny OFDM symbols. In the first stage, i.e., which fulfill the RIP. Again, a general design rule does not
in each frame, we estimate the matrix produdiz ; =  exist. We resort to heuristic solutions. More specificatty,
WHARH, € CVrxLGr ysing the CS approximation algo- create P; we use the same design as in Section Ill, i.e.,
rithm. This is motivated by the following facts. First, each Ny = Nt and equation (10) is applied. Fé#, the entries of
row of Hy, involves at mostL < LGt non-zero elements. W, are drawn randomly from a Gaussian distribution and
Second, let us staci, [m] next to each other and obtain the then normalized such thatW;|r = 1 for all j. Further

following equation details regarding the CS approach will be provided in the
_ T _ full paper.
Y, =P -Hg ; + Zj, (15)

whereZ; = (W Z[(j — )Nip +1] -~ WJ-HZth,T]]T, V. SIMULATION RESULTS

Y, = [Y[(-DNo+1] - Y[Na)]T e

The proposed algorithms are evaluated using Monte-
Carlo simulations. The maximum allowable poweis fixed
Py =[B[l] --- B[Nyp]]" € CNiNorxLGr, to unity. The SNR is defined &NR = 1/(Nppro?). For
’ computational simplicity, we seVprr = 64. Moreover, we
If Nth’T < LGt or even Nth,T < LG, then (15) set Nf = Nr, Nt7T = L]\/[T/NT and Nth = MR/NR.
is a sparse recovery problem and more precisely, a MMVhe LS method, the CS method using (14), and the two-
problem [20]. To solve (15), in this abstract we considerstage recovery method are denoted as "LS", "Direct CS”,
only the orthogonal matching pursuit (OMP) algorithm for and "Two-Stage CS”, respectively. The simulation resulés a
a single measurement vector case. Thereby, we estimaddtained by fixing the channel realization but averaging ove
H{ . column-wise. A direct solution to (15) via the M- 10 noise realizations.
omP algorithm in [20] is also possible and the performance

J,
(CNth,T XNR,’ and

will be demonstrated in the full paper. In the second stage * ~0
we recoverH, using the estimateddr ;. Without loss of - Two-Stage 3
. Kol . irect
generality, Hr ; can be rewritten as 10
Hy;=W/'ARH, + A, (16) 2
. . w10
where A ; represents the residual error. Again, we can stack g

Hy,; on top of each other and obtain

ﬁcum = WCSARHZI + ACum € (CNt'RNRXLGT (17)

~

A ~ T 6
107
where licum = |:111’£1 e 1157NtYR] y

T T 17T R 2 : ' ' '
Acum _ [Al ANt,R.] , and W, _ 20 10 0 10 20 30

SNR [dB]
(Wi oo W )T e CVrNRxMe I N, g N < Gr, .
recovering H, from (17) is still a MMV sparse recovery Fig. 1. Achievable NMSE vs. SNR fob/t = 64, Mg = 16,
problem. However, the sparse profile on each column ofVT = 16, Ng =8, and L = 4.




Our initial results in Fig. 1 show that the CS methods

perform better than the proposed LS approach.

More simulation results and further insights will be
provided in the full paper, e.g., the performance of a MMSE
estimator using the proposed training design, the impact of
imperfect channel knowledge on the achievable sum rate,
and the impact of imperfect AoA and AoD positions on the
performance of channel estimation.
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