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I. INTRODUCTION

Sensor networks play an important role in environmental
monitoring, e.g., of water quality in water bodies, air pollution
[1], or earthquake detection [2]; but also in monitoring of,
e.g., chilled food transports [3]. These scenarios have in
common that the source of the quantity to be measured, i.e., a
pollutant, seismic event, or a heat source, can be assumed
point-shaped. Additionally, the propagation of the quantity
under measurement follows differential equations, which often
represent a diffusion process. A spatially distributed sensor
network is able to perform a scalar measurement of the
quantity of interest at different positions. Now, the task of this
sensor network is to make an estimation of the location of the
sources and/or obtain an estimate of the spatial distribution
of the quantity of interest, i.e., of its field. In contrast to
previous works using Compressed Sensing (CS) techniques
for the estimation of diffusion fields, e.g., [4], we will present
a flexible framework able to use different basis functions
and demonstrate its effectiveness using radial basis functions
(RBFs), which are also known as Gaussian kernels.

Based on this framework, in this extended abstract, we will
present a practical approach to perform an estimation for both
location and field, based on the measurements of a sensor
network. Due to space limitations, we will here restrict to the
system model and the results for a centralized estimation in a
data fusion center. In the final paper, we will also address the
task of distributed estimation within the network of sensors
(In-Network Processing).

II. SYSTEM MODEL

The solution of any differential equation can be expressed
using its specific so-called Green’s function, which can be
interpreted as the spatio-temporal impulse response of the
system. For a one-dimensional diffusion process without
boundaries, it reads [5]:

G(x, t) =
1√

4πkt
e−
||x||2
4kt , (1)

with diffusion constant k, Cartesian coordinate x and time
t > 0. If the M sources are assumed to have a point nature,

they can be modeled as spatial delta functions with a temporal
envelope am(t):

sm(x, t) = am(t) · δ0(x− xm), m = 1 . . .M. (2)

The entire field f(x, t) can then be obtained by superimposing
the spatio-temporal convolution of each of the sources with the
Green’s function:

f(x, t) =

M∑
m=1

sm(x, t)
x,t
∗ G(x, t). (3)

Taking into account the sifting property of the delta function,
only the temporal convolution remains:

f(x, t) =

M∑
m=1

am(t)
t∗ G(x− xm, t). (4)

If furthermore the sources are assumed to be activated at
t = 0 and to maintain the same amplitude am afterwards,
the convolution integral can be expressed as

f(x, t) =

M∑
m=1

am

t∫
0

G(x− xm, τ)dτ. (5)

This integral evaluates to

t∫
0

G(x− xm, τ)dτ

=

√
t

πk
e−
||x−xm||2

4kt +
||x− xm||

2k
erfc

(
||x− xm||

2
√
kt

)
, (6)

where erfc(·) represents the error function complement. For
this extended abstract we will restrict to the single time instant
t = T and furthermore omit the second term, i.e., restrict our
investigations to a purely Gaussian kernel1. Therefore, the true

1The authors are well aware that this will result in an approximation error,
in particular for the higher dimensional case, where the Green’s function’s
time dependency is different and the convolution integral (5) therefore yields
different results. E.g., for a two-dimensional diffusion process, an exponential
integral function is obtained for (6), which differs significantly from the
Gaussian kernel. However, the results shown later justify this approach. The
general suitability of different basis functions for the purpose of approximating
measured fields has been investigated in [6].



field f(x, t) is approximated by

f̃(x, t) =

M∑
m=1

am

√
T

πk︸ ︷︷ ︸
ãm

e−
||x−xm||2

4kT . (7)

Using (7), every measurement yj of the sensor j = 1, . . . , J
located at position xj can now be described by

yj =

M∑
m=1

ãme−
||xj−xm||2

4kT + nj , (8)

where nj accounts for any measurement error.
Please note that this kind of modeling as also very common

in the field of kernel adaptive filtering, e.g., [7]. Also, the
Kriging method [3], [8] uses a modified Gaussian kernel to
approximate the so-called variogram, i.e., the effect of sources
on the measurements.

The philosophy of [9] is generalized to a two-dimensional
grid, i.e., the possible source locations are quantized to
N · L possible coordinates and follow the form xm =
(nm∆1, `m∆2) + x0, with nm = 0, . . . , N − 1, `m =
0, . . . , L− 1 and x0 an arbitrary offset. This offset, as well as
N , L, ∆1 and ∆2, needs to chosen properly and according to
the scenario.

Every sensor measurement yj is now interpreted as su-
perposition of the effect of N · L hypothetical sources with
amplitudes âm, m = 1, . . . , NL:

yj =

N ·L∑
m=1

âme−
||xj−xm||2

4kT . (9)

Combining these equations for all sensors j = 1, . . . , J , the
equation system

y = Φâ (10)

is obtained, with

y =


y1
y2
...
yJ

 , â =


â1
â2
...

âN ·L

 , (11)

and measurement matrix

Φ =


e−
||x1−x1||

2

4kT e−
||x1−x2||

2

4kT . . . e−
||x1−xN·L||

2

4kT

e−
||x2−x1||

2

4kT e−
||x2−x2||

2

4kT . . . e−
||x2−xN·L||

2

4kT

...
...

. . .
...

e−
||xJ−x1||

2

4kT e−
||xJ−x2||

2

4kT . . . e−
||xJ−xN·L||

2

4kT

 .
(12)

(10) can be solved for â, e.g., by a least squares approach2.
This will ensure minimum error between measured values and
reconstructed field at sensor location, but usually not result in a
smooth interpolation between the sensors. Since the underlying
physical process is assumed to only exhibit few sources, a

2If the measurements yj possess a common, but unknown offset, this can
be accounted for by augmenting the vector â by this offset coefficient and
extending the matrix Φ by an all-ones column.
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Fig. 1. Field to be estimated with sensor locations denoted by circles

−1 −0.5 0 0.5

−1

−0.5

0

0.5

−2

−1

0

1

2

·104

Fig. 2. Estimated coefficients â for the LS criterion

sparse estimate for â is expected to show a better performance
in the sense of reproducing the original field.

III. PRELIMINARY RESULTS

Fig. 1 shows an exemplary field with 3 disk shaped sources
and a combined diffusion and convection process that has been
generated using the COMSOL CFD software [6]. This field is
sampled by J = 200 sensors placed randomly at the positions
denoted by circles. One possible least squares solution of the
underdetermined equation system (10) for N = L = 100,
T = 1 and k = 0.01 yields the coefficients â as shown in
Fig. 2. Here, the solution with the smallest number of nonzero
elements was chosen. The reconstructed field according to (7)
is shown in Fig. 3. It obviously shows no resemblance to the
original field, which also can be quantified by means of the
mean square error (MSE) between original field and estimate,
which has been obtained by comparing both fields on the same
100× 100 grid also used for estimation. For the LS criterion,
an MSE of 1.26× 104 is obtained.

If the estimation of â is performed in a Compressed Sensing
fashion, i.e., its sparsity is enforced within the estimation
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Fig. 3. Estimated field using the LS criterion
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Fig. 4. Estimated coefficients â using the OMP algorithm for a sparsity of 4

criterion, a better recontruction of the field can be achieved.
In this extended abstract we will present results obtained
using the Orthogonal Matching Pursuit (OMP) [10] algorithm.
Fig. 4 shows the coefficients â obtained by the OMP algorithm
with a prescribed sparsity of 4. The resulting recontructed field
is shown in Fig. 5. This field follows the shape of the original
field in a better way, which also is reflected in a much smaller
MSE of approx. 0.48.

IV. OUTLOOK

In the final paper we also present results for the LASSO
algorithm and other basis functions such as splines [6]. fur-
thermore, we will show how the proposed algorithm can be
distributed onto nodes of a wireless sensor network in order
to achieve a decentralized estimation.
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Fig. 5. Estimated field using the OMP algorithm for a sparsity of 4 with
estimated point sources indicated by crosses and their amplitudes
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