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Abstract—The power consumption of sensors is a crucial
point for developing large-scale sensor networks nowadays. Many
methods are proposed in the literature in order to optimize the
power allocation to the sensor nodes under several constraints
and different system aspects. In the present publication, we
present a uniform framework to enable the comparison of
different power allocation methods within the same scenario.
Furthermore, we compare the most significant methods with
each other via numerical simulations and show their performance
with respect to service lifetime, power consumption and system
reliability as well as computation complexity and implementation
effort.

Index Terms—Non-convex optimization; lifetime maximiza-
tion; passive radar; distributed sensing;

I. INTRODUCTION

The fast rise of 5th generation wireless systems (5G) pushes
massively the development of sensor networks for various
applications. In most of these applications, the sensor nodes
(SNs) are used for sensing the environment and monitoring
of targets. These tasks are performed independently and in a
distributed fashion by the SNs, which are rather weak in their
abilities, e.g., poor signal processing units, low signal-to-noise
ratio (SNR) regions for data transmission, and limited power
supplies or non-renewable energy sources. The bottleneck of
such networks, especially when the number of SNs is huge
and the size of each SN is tiny, is the limited service lifetime.
In order to prolong the lifetime, two different strategies are
pursued by the scientists. The first strategy is to minimize
the power consumption of each SN by smart hardware im-
plementations while the second one is to minimize the power
consumption or to maximize the lifetime of the whole network
by performing intelligent power optimization techniques. In
general, both strategies benefit from each other and are thus
conclusively justified for common applications. Since the first
strategy is specific for a single SN, a comparison of different
hardware implementations is less difficult compared to the
second strategy in which all SNs with many system parameters
are involved. These system parameters are usually scenario
dependent and hence can influence the system performance
massively. In addition, a comparison in real scenarios is further
exacerbated, since the important parameters are often random,
e.g., the position of the distributed SNs, the distances between
the SNs and the moving targets, the fluctuation of noise and
channel realizations, and so on. Hence, reliable frameworks
for comparing different methods of power minimization or

lifetime maximization techniques are rarely developed and
seldom proposed by scientists. We aim to close this gap by
establishing a solid framework in the present work, in order to
enable a fair assessment of different optimization techniques.

In practice, the mostly engaged power allocation technique
is the uniform scheme such that all SNs are allocated with
equal power. As an example, we can mention the neutrino tele-
scope ‘IceCube Neutrino Observatory’ at the Amundsen-Scott
South Pole Station [1] in Antarctica, where a network with
over 5000 nodes is implemented. The uniform allocation of
power is the simplest method, since neither a channel state in-
formation nor a complicated optimization procedure is needed
for the power distribution. For a smart optimization technique
usually an objective along with few system constraints as well
as a centralized unit or a decentralized approach for regulation
and controlling of the sensor network are needed. Furthermore,
the optimization procedure will be successful when additional
information is available such as the channel state information
or the statistical properties of involved random variables. In the
literature, the most well-known objectives are the minimization
of the mean squared error [2], [3] (MSE) and the maximization
of the data rate or system capacity [4]–[8]. The latter one is a
challenging approach, since a closed-form formula describing
the capacity of general sensor networks is missing in the
literature. Hence, the former approach receives more attention
for investigation. For example, in [9]–[15] the MSE approach
is applied to achieve optimal solutions in closed-form to the
power allocation problem. The optimization problems there
are subject to individual power and sum power constraints.
Furthermore, a fusion center is considered in order to combine
the independent observations of the SNs into a single reliable
estimate of the target. Apart from these techniques, several
powerful optimization strategies are proposed, which however
have a minor importance for the present work. Nevertheless,
we want to mention the work [16], where a cluster-based
approach and a centralized routing protocol is used to improve
the performance. Moreover, a theoretical upper bound is inves-
tigated in [17], which is in practice not achievable. Finally, a
further notable publication is [18] in which different heuristics
are proposed.

In the present work, our goal is the comparison of five
state-of-the-art optimization techniques for allocation of power
in sensor networks. We start with the uniform power alloca-
tion and end with an optimal power allocation which even



considers occasional node failures. We show the performance
of each optimization technique via numerical simulations and
discuss their advantages and disadvantages. Furthermore, the
computational complexity, the implementation effort and the
system reliability are our next focus.

We start our investigations with the description of the
underlying system model and scenarios in the next section.
Subsequently, all optimization strategies are explained and
presented. Then, simulation results are shown and discussed.
Afterwards, we summarize our contributions in the conclusion.

Mathematical Notations:

Throughout this paper, we denote the sets of natural, real
and complex numbers by N, R and C, respectively. Note that
the set of natural numbers does not include the element zero.
Moreover, R+ denotes the set of non-negative real numbers.
Furthermore, we use the subset FN ⊆ N, which is defined
as FN := {1, . . . , N} for any given natural number N . We
denote the absolute value of a real or complex-valued number
z by |z|. The expected value of a random variable v is denoted
by E [v] while the probability that an event A is occurred is
described by Prob(A). Moreover, the notation V ? stands for
the value of an optimization variable V where the optimum is
attained.

II. THE SYSTEM MODEL

In this section, we use the same system model that is
elaborated in [11] for the most optimization strategies. This
system model is depicted in Figure 1 and is briefly presented in
the following. For a system in which occasional node failures
are allowed, we use an extended system model, which is
described in the next subsection. An overview of all system
parameters is given in Table I.

We assume a discrete time system with perfect time, phase
and frequency synchronization. A sensor network consisting
of K ∈ N independent and spatially distributed SNs is con-
sidered, where each SN receives random observations from a
jointly observed target in each observation process. If a target
signal r ∈ C with R := E [|r|2] and 0 < R <∞ is present,
then the received power at the SN Sk is a part of the
emitted power from the actual target. Each received signal
is weighted by the corresponding channel coefficient gk ∈ C
and is disturbed by additive white Gaussian noise (AWGN)
mk ∈ C with Mk := E [|mk|2] <∞. In this paper, we assume
that the sensing channel is constant, i.e., E [gk] = gk and
E [|gk|2] = |gk|2. The sensing channel is obviously wireless.

All SNs continuously take samples from the disturbed
received signal and amplify them by the amplification factors
uk ∈ R+ without any additional data processing. Thus, the
output signal and the expected value of its transmission power
are described by

xk := (rgk +mk)uk , k ∈ FK , (1)

and

Xk := E [|xk|2] = (R|gk|2 +Mk)u
2
k , k ∈ FK , (2)

Fig. 1. The system model of the distributed sensor network, which shows
the signal flow from a target signal over the sensor nodes to a fusion center.

respectively. The local measurements are then transmitted to
a fusion center which is placed at a remote location. The
data communication between each SN and the fusion center
can be either wired or wireless. In the latter case, a distinct
waveform for each SN is used to distinguish the commu-
nication of different SNs and to suppress inter-user (inter-
node) interferences at the fusion center. Hence, all K received
signals at the fusion center are pairwise uncorrelated and are
assumed to be conditionally independent. Each received signal
at the fusion center is also weighted by the corresponding
channel coefficient hk ∈ C and is disturbed by additive white
Gaussian noise nk ∈ C with Nk := E [|nk|2] <∞, as well. We
assume that the communication channel is also constant, i.e.,
E [hk] = hk and E [|hk|2] = |hk|2.

The noisy received signals at the fusion center are weighted
by the fusion weights vk ∈ C and combined together in order
to obtain a single reliable observation r̃ of the actual target
signal r. In this way, we obtain

yk :=
(
(rgk +mk)ukhk + nk

)
vk , k ∈ FK , (3)

and hence,

r̃ :=

K∑
k=1

yk = r

K∑
k=1

gkukhkvk︸ ︷︷ ︸
signal gain

+

K∑
k=1

(mkukhk + nk)vk︸ ︷︷ ︸
noise

.

(4)
Note that the fusion center can separate the input streams
because the data communication is either wired or performed
by distinct waveforms for each SN.

In order to obtain a single reliable observation at the
fusion center, the value r̃ should be a good estimate of the
present target signal r. Thus, the amplification factors uk and
the weights vk should be chosen such as to minimize the
average absolute deviation between r̃ and the true target signal
r. Hence, the amplification factors and the fusion weights
are the only optimization parameters to accomplish a given
optimization strategy.



Fig. 2. The extended system model with presentation of occasional node
failure.

A. The Extended System Model
In the above system model, it is assumed that each SN

perfectly works and can be configured by a controlling unit,
e.g., the fusion center, at any time. This assumption is often
not valid in practice, since the SNs are usually too weak
and sensitive, and thus easily damaged. Hence, we update the
previous system model by an extended one, which is depicted
in Figure 2 and explained in the following.

We incorporate the binary random variables ak ∈ {0, 1} and
bk ∈ {0, 1} with the corresponding probabilities Prob(ak =
1) = ζk and Prob(bk = 1) = γk into the previous system
model, respectively. If ak of the kth SN is equal to one,
then this SN is sound and accurate, and will work normal.
In contrast, if ak is equal to zero, then the kth SN is brocken
or faulty and can act in two different ways. The first way is
described with bk = 0, when the SN is completely brocken
and cannot send any information. The second way is described
with bk = 1, when the SN is defect and faulty, and will
send useless information wk to the fusion center. The signal
wk ∈ C with the power Wk := E [|wk|2] < ∞ is assumed
to be zero-mean and can be interpreted as interference, which
cannot be suppressed at the fusion center. In summary, we
can distinguish between three operating modes i) The kth SN
is healthy with probability ζk, i.e., ak = 1 and bk ∈ {0, 1},
ii) it is brocken and silent with probability (1− ζk)(1− γk),
i.e., ak = 0 and bk = 0, iii) it is defect and acts as interference
with probability (1− ζk)γk, i.e., ak = 0 and bk = 1.

With this new setup, the output signal and the expected
value of its transmission power are described by

xk := (rgk +mk)ukak + bkwk(1− ak) , k ∈ FK , (5)

and

Xk = (R|gk|2 +Mk)u
2
kζk + γkWk(1− ζk) , k ∈ FK , (6)

respectively. This leads to the estimate

r̃ = r

K∑
k=1

gkukhkvkak

+

K∑
k=1

(
mkukhkak + bkwk(1− ak)hk + nk

)
vk .

(7)

B. Power Limitations of the System

As mentioned in the introduction, a smart hardware imple-
mentation of the SNs is highly necessary in order to prolong
the lifetime and enable an energy-aware operation of the SNs.
Following this trend, the average power consumption of each
SN is approximately equal to its average output power Xk,
if the input signal is negligible in comparison to the output
signal and if the nodes have smart power components with
low-power dissipation loss. We assume that equality between
Xk and the average power consumption of each node is
ensured. In the present work, we assume that the output
power-range of each SN is in average limited by Pmin ∈ R+

and Pmax ∈ R+ with 0 ≤ Pmin < Pmax. The lower limit Pmin
denotes the minimum power which is needed to guarantee the
awareness and presence of the SN while the upper limit Pmax
denotes the maximum allowed transmission power per SN due
to power regulation standards or due to the functional range
of the integrated circuit elements.

In addition, each SN is usually powered by weak energy
supplies, e.g., batteries, such that the operation time of the
entire sensor network is limited. Hence, it is wise to incor-
porate and consider a sum power constraint Ptot ∈ R+ with
KPmin ≤ Ptot ≤ KPmax. In this way, the sensor network shall
operate under the constraints

Pmin ≤ Xk ≤ Pmax , k ∈ FK , (8)

and
K∑

k=1

Xk ≤ Ptot . (9)

Note that the output power Xk is a function of the amplifi-
cation factor uk and thus we can adjust Xk in order to satisfy
given optimization strategies.

III. OPTIMIZATION STRATEGIES

In this section, we present five state-of-the-art optimization
strategies in order to enable a fair comparison and a fruitful
discussion.

A. Optimal Power Allocation

In order to obtain an accurate estimate r̃ of the target signal
r, we aim at finding estimators r̃ of minimum mean squared
error in the class of unbiased estimators. With the aid of (4),
we hence minimize the deviation

V := E
[
|r̃ − r|2

]
=

K∑
k=1

|vk|2
(
u2k|hk|2Mk +Nk

)
(10)

with respect to uk and vk under the unbiasedness

E [r̃ − r] = 0 ⇔
K∑

k=1

gkukhkvk = 1 . (11)

In addition, the optimization problem shall be subject to both
power constraints (8) and (9).

It is simple to show that this optimization problem is non-
convex and very hard to solve. Nevertheless, its optimal solu-
tion in closed-form is worked out in [11] and later extended



TABLE I
NOTATION OF SYMBOLS THAT ARE NEEDED FOR THE DESCRIPTION OF

EACH OBSERVATION PROCESS.

Notation Description
K number of sensor nodes;
k the kth sensor node;
FK the index-set of K nodes;
r, R the present target signal and its quadratic absolute mean;
r̃ the estimate of r;

gk , hk complex-valued channel coefficients;
mk , nk complex-valued zero-mean AWGN;
Mk , Nk variances of mk and nk;
uk , vk non-negative amplification factors and complex-valued

weights;
ϑk phase of vk;
φk phase of the product gkhk;

ak , ζk binary random variable and its expected mean to distin-
guish between healthy and brocken sensor nodes;

bk , γk binary random variable and its expected mean to distin-
guish the grade of defectiveness;

wk , Wk faulty signal and its power of kth sensor node;
xk , Xk output signal and output power of kth sensor node;
yk input signals of the combiner;

Pmin, Pmax lower and upper output power limitations of each sensor
node;

Ptot the total power consumption of the network.

in [19]. This solution yields the optimal amplification factors
u?k and fusion weights v?k which in turn specify the optimal
transmission powers X?

k . The ratio R
V ? is then equivalent to the

SNR of the entire sensor network and describes the quality of
the estimate r̃ at the output of the fusion center. This ratio will
help us to fairly compare different optimization strategies by
variation of different system parameters. To avoid confusion,
we hereinafter denote this ratio by SNRO.

B. Optimal Power Allocation with Occasional Node Failure

Now, we consider the more realistic system model in which
occasional node failure are allowed, cf. Subsection II-A. We
again are interested in finding estimators of minimum mean
squared error in the class of unbiased estimators. By using (7),
the objective for minimization is given by

V := E
[
|r̃ − r|2

]
=

K∑
k=1

|vk|2
(
u2k|hk|2Mkζk +Nk

)
+

K∑
k=1

|vk|2(1− ζk)|hk|2
(
Ru2k|gk|2ζk +Wkγk

) (12)

with respect to uk and vk under the unbiasedness

E [r̃ − r] = 0 ⇔
K∑

k=1

gkukhkvkζk = 1 . (13)

In addition, the optimization problem shall be subject to both
power constraints (8) and (9). Note that in contrast to the
objective in (10) the deviation in (10) is a function of the
parameters ζk and γk and has thus more degree of freedom.

Also this optimization problem is non-convex and even
harder to solve than the previous one. Its optimal solution

is characterized in our paper [20]. The optimal values u?k,
v?k, X?

k and V ? are obviously functions over ζk ∈ (0, 1) and
γk ∈ (0, 1). The SNR of the entire sensor network is again
described by the ratio R

V ? . We hereinafter denote this ratio by
SNROwF.

Note that both SNRO and SNROwF are functions over
Pmin, Pmax and Ptot as well as Mk, Nk, gk and hk. This means
that for the optimal allocation strategy all these parameters
must be known beforehand. However, this knowledge is often
not available so that such optimization strategies are rather
used for theoretical considerations. We will discuss in detail
the advantages and disadvantages later in Section V.

C. Uniform Power Allocation with Optimal Fusion Rule

The simplest power allocation strategy is the uniformly
distributed one. That means that the total power Ptot is equally
divided and shared between all SNs such that the output power
of each SN becomes

X?
k = max

{
Pmin,min{Pmax,

Ptot

K
}
}

(14)

From this we can calculate the optimal amplification factors u?k
by the relation (2). It remains to optimize the fusion weights. If
the goal is again to find estimators of minimum mean squared
error in the class of unbiased estimators, then we can minimize
the objective

V := E
[
|r̃ − r|2

]
=

K∑
k=1

|vk|2
(
u2k|hk|2Mk +Nk

)
(15)

for fixed amplification factors uk = u?k and with respect to vk
under the unbiasedness

E [r̃ − r] = 0 ⇔
K∑

k=1

gku
?
khkvk = 1 . (16)

As is easily to see, this optimization problem is a convex
program and can again be solved in closed-form. The opti-
mization of (15) will lead to the optimal fusion weights v?k and
the deviation V ?. However, this result is a particular solution
of the problem (10). To see this relation, we only need to
pretend Pmin = Ptot

K or Pmax = Ptot
K , due to equation (14), and

solve (10) with respect to both uk and vk which will then lead
to the same solution.

We hereinafter denote the ratio R
V ? by SNRU.

D. Uniform Power Allocation with Optimal Fusion Rule and
Occasional Node Failure

Analog to the previous case, the total power Ptot is uni-
formly allocated to the SNs, which will result in X?

k as given
in (14). By pretending Pmin = Ptot

K or Pmax = Ptot
K we can

use the results for the problem in (12) in order to obtain the
optimal values u?k, v?k and V ?. We hereinafter denote the ratio
R
V ? by SNRUwF.

Note that any defect SN will have the output power X?
k =

bkWk, which can totaly differ from the adjusted one, i.e.,
X?

k = Ptot
K .



TABLE II
STANDARD VALUE OF SYSTEM PARAMETERS.

Parameter: K R Mk Nk Pmin Pmax Ptot

Value: 100 1 2 2 0.1 2 30

E. Best Single Node Selection

Another important system is the single node strategy, in
which only one powerful SN will consume the entire power
Ptot, while all other SNs are inactive. This system is important,
because it enables the comparison between a large-scale sensor
network with many weak SNs and a powerful single node
system which is established at the position of the most reliable
SN. The main question is which of the SNs is the most reliable
one? In [21], it is shown that the SN with the smallest ck is
the most reliable SN, where ck is defined by

ck :=

√
Nk(R|gk|2 +Mk)

|gkhk|2
. (17)

In this way, we can re-index all SNs, such that ck ≤ ck+1 for
all k ∈ FK−1 holds and select the first SN which should be
virtually replaced by a powerful node. This node obtains the
power X?

1 = Ptot and in turn u?1 by the aid of (2). Keeping
u1 = u?1 and uk = u?k = 0 fixed for all k > 1, we can use the
same objective and constraint as in (10) and (11), respectively,
in order to obtain the weight v?1 and the deviation V ?. The
entire SNR of this system is hereinafter denoted by SNRB.

IV. PRELIMINARY SIMULATION RESULTS

In this section, we set out to compare the solution of the
different optimization strategies from Section III via numerical
simulations. We consider different scenarios with randomly
distributed SNs to demonstrate the performance of all opti-
mization strategies.
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Fig. 3. The behavior of SNRO with respect to Ptot is visualized. All curves
show an increasing property in Ptot. In order to show a wide range of different
cases, we have simulated a reference curve with the default parameters
σ2
g := E[|gk|2] = σ2

h
:= E[|hk|2] = 2 with expectation over k. We usually

create a new curve by changing only the value of a single parameter which
is given in the legend.

A. Simulation Setup

In order to fairly evaluate the performance of all optimiza-
tion strategies with each other, we perform five simulations in
the same scenario and for the same sensor network. For all
five simulations all channel and noise realizations remain the
same to simplify subsequent comparisons. These realizations
are drown randomly from independent Gaussian distributions.
The target signal r is randomly generated with a uniform
distribution on {z ∈ C | |z| ≤ 1} in each simulation step. The
number of iterations per simulation point is always 100000
to guaranty the convergence of the simulations and to obtain
smooth curves. Table II shows the standard values of param-
eters, which will remain fixed for particular curves.

V. DISCUSSION OF RESULTS

VI. CONCLUSION

VII. FOR THE ANONYMES REVIEWER

Dear reviewer, thank you very much for reviewing our
paper. Because of heavy simulation frameworks and very high
number of parameters, we cannot present our results at the
moment. Hence, the last four sections and subsections (marked
in red color) are left empty. We apologize for this problem, but
hope that the first sections are satisfactory for presenting the
importance of the current work. In the finale version, we will
include all simulation results and discuss the different issues.
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