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Abstract—We discuss the problem of direction-of-arrival
(DOA) estimation with 1-bit quantization. While 1-bit analog-to-
digital converters (ADC) allows to simplify the analog complexity
of a wireless receiver significantly, efficient processing in the
digital domain becomes non-trivial with such nonlinear mea-
surements. In particular, for parametric covariance estimation
problems like DOA estimation, where a multivariate Gaussian
variable is passed through an element-wise symmetric hard-
limiter, exact representation of the likelihood function is only
possible up to four real-valued dimensions. This makes a rig-
orous DOA performance analysis and the derivation of efficient
algorithms difficult when more than two sensors are involved.
In the final paper we present a replacement framework, which
aims at substituting the multivariate 1-bit output distribution
by an equivalent and matched representation with in the class
of the exponential family. This allows to approximate the Fisher
information measure and therefore the Cramér-Rao lower bound
(CRLB) for 1-bit DOA estimation with any number of sensors
in a conservative way. Further, by the presented framework
an unbiased estimator can be formulated, which asymptotically
achieves the pessimistic CRLB.

Index Terms—DOA estimation, 1-bit quantization, nonlinear
stochastic system, Fisher information, CRLB, exponential family.

I. INTRODUCTION

Concerning hardware complexity and energy consumption
of signal processing systems, the circuit forming the analog-
to-digital converter (ADC) at the receiver has been identified
as one of the bottlenecks [1]. While a high number of bits
b allows accurate representation of analog signals in the
digital domain and therefore good processing performance,
the power dissipation and production cost of the ADC device
scales exponentially O(2b) with the number of bits b. An
interesting approach is to reduce the resolution of the ADC
device and resort to simple ADC concepts without feedback.
In the extreme case the continuous analog waveform at each
receive sensor output is converted into a binary representation
by a symmetric hard-limiter. The limiter sets its output to 1
if the continuous input signal is positive and to −1 otherwise.
The circuit for such an ADC can be realized by a single
comparator. This allows to perform ADC in the most efficient
way. A serious drawback of hard-limiting 1-bit ADC is that
such a low-complexity device executes a highly nonlinear and
noninvertible operation on the receive signal. This is associated
with a performance loss. It is well established, that for certain

problems (univariate location parameter estimation) in the low
signal-to-noise ratio (SNR) regime the relative performance
gap between a symmetric hard-limiting 1-bit system and an
ideal receiver with infinite ADC resolution is 2/π (−1.96
dB) [2] and therefore moderate. Advanced problems with
multivariate input to the quantizer are less well understood.
Here the main problem is to find an appropriate representation
of the parametric likelihood function at the output of the
quantizer.

II. PROBLEM STATEMENT

A. Ideal Receiver (∞-bit ADC)

Consider a multivariate receive signal y ∈ RM which is
well represented by a multivariate Gaussian probability density
function

p(y; θ) =
1
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N
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with a single parameter θ ∈ Θ and covariance

Σy(θ) = Ey;θ

[
yyT

]
. (2)

The optimum unbiased estimator is easily obtained by maxi-
mizing the likelihood [3] given N data snapshots

Y =
[
y1 y2 . . . yN

]
, (3)

i.e.,

θ̂(Y ) = arg max
θ∈Θ

ln p(Y ; θ)
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, (4)

where

Σ̄y(Y ) =
1

N

N∑
n=1

yny
T
n (5)

is the sample mean of the receive covariance. As the
maximum-likelihood estimator is unbiased and asymptotically
efficient, it is possible to characterize it’s performance in
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an analytical way through the celebrated Cramér-Rao lower
bound [4], [5]

EY ;θ

[(
θ − θ̂(Y )

)2] ≥ (NFy(θ)
)−1

, (6)

where the Fisher information is defined by

Fy(θ) =

∫
Y

(
∂ ln p(y; θ)

∂θ

)2

dy. (7)

For the multivariate Gaussian model (1), we obtain [3, p. 47]
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B. Low-Complexity Receiver (1-bit ADC)

The situation changes fundamentally if a nonlinear transfor-
mation

z = f(y) (9)

is involved. Then the derivation of an exact representation of
likelihood p(z; θ) can become a challenging problem. If we
consider an element-wise hard-limiter with 1-bit output

z = sign (y), (10)

where sign (x) is the element-wise signum function defined
by

[sign (x)]n =

{
+1 if xn ≥ 0

−1 if xn < 0,
(11)

the likelihood function for one output constellation is found
by evaluating the intergral

p(z; θ) =

∫
Y(z)

p(y; θ)dy, (12)

where Y(z) is the subset in Y which is mapped to z. Such an
integral is identified as the orthant probability of a multivariate
Gaussian variable (multivariate version of the Q-function).
Unfortunately, a general closed-form expression for the orthant
probability is an open mathematical problem. Only for the
cases N ≤ 4 solutions are provided in literature [6] [7]. The
problem becomes even worse, if one is interested in evaluating
the Fisher information measure

Fz(θ) =

∫
Z

(
∂ ln p(z; θ)

∂θ

)2

dz

=
∑
Z

(
∂ ln p(z; θ)

∂θ

)2

(13)

by summing the squared score function over the discrete
support of z. As Z contains 2M possible receive vectors direct
computation of F (θ) is prohibitively complex when M is
large. Due to this fact the literature on performance bounds
and efficient algorithms for parametric covariance estimation
with 1-bit quantization is limited. While [8] [2] are classical
references for signal processing with 1-bit quantizer, more
recently [9] covers the problem of signal parameter estimation
from coarsely quantized data with uncorrelated noise. [10] is
concerned with 1-bit DOA estimation, but has to restrict the
discussion to K = 2 sensors due to the outlined problem

(13). In contrast [11] studies estimation with a multivariate
model and dithering, where the threshold of the hard-limiter
is distributed randomly over the spatial or temporal domain.

III. ANALYSIS BY AN INFORMATION BOUND

In order to avoid intractable situations like (13), we have
recently developed lower bounds for the Fisher information
of nonlinear stochastic systems [12] [13], which extend the
results of [14] [15] for additive systems to the broader class
of non-additive systems. These are extremely useful, when the
radio front-end prior to the 1-bit quantizer is to be designed
[16]. In a final attempt we have generalized the result to [17]

Fz(θ) ≥
(
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ
, (14)

where

µφ(θ) = E [φ(z)] (15)

and

Rφ(θ) = E
[
φ(z)φT(z)

]
− µφ(θ)µT

φ(θ), (16)

with

φ(z) =
[
φ1(z) φ2(z) . . . φL(z)

]T
(17)

being a vector with L arbitrary transformations φl(z) of
the output variable z. It can be shown that the bound (14)
is tight if the output distribution p(z; θ) with parameter θ
is an exponential family distribution and φ(z) contains all
sufficient statistics of p(z; θ) [18]. In [17] we show how
such Fisher information bounds can be applied in order to
verify the quality of nonlinear devices based on calibrated
measurements and applied this approach for the estimation
theoretic analysis of nonlinear amplification devices, a Rician
model and a cubic polynomial. In our extended article [18], we
also discuss how to design unbiased estimates for nonlinear
systems which asymptotically perform according to the inverse
of the approximated Fisher information measure (14).

IV. OUTLINE OF THE FINAL PAPER

In the final paper we will review the bounding framework
(14) and apply it to the 1-bit DOA problem in order to analyze
the performance gap between an ideal ∞-bit receiver and a
1-bit receiver

χ(θ) =
Fz(θ)

Fy(θ)
. (18)

To this end, we will assume a real-valued model with K
sensors [19], where the parametric covariance obtains the form

Σy(θ) = γA(θ)AT (θ) + I2K (19)

with θ being the DOA parameter. The parametric covariance
is characterized by the steering matrix

A(θ) =
[
AT
I (θ) AT

Q(θ)
]T ∈ R2M×2 (20)
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containing the two submatrices (in-phase and quadrature chan-
nel)

AI(θ) =


ξ1(θ) ν1(θ)
ξ2(θ) ν2(θ)

...
...

ξK(θ) νK(θ)

 ∈ RK×2 (21)

AQ(θ) =


−ν1(θ) ξ1(θ)
−ν2(θ) ξ2(θ)

...
...

−νK(θ) αK(θ)

 ∈ RK×2, (22)

with entries

ξk(θ) = cos
(
(k − 1)π sin (θ)

)
νk(θ) = sin

(
(k − 1)π sin (θ)

)
. (23)

Making use of the results of [7], we will analytically derive
a specific version of (14) for the DOA problem and discuss
the obtained approximation quality. The obtained performance
analysis will cover a discussion of the behavior of χ(θ) for
different numbers of sensors K and different signal-to-noise
ratios γ2.
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