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Abstract—The compression step in the uplink of Cloud Radio
Access Networks (C-RAN) and the resource allocation is studied
in this paper. In C-RAN, there are multiple Radio Units (RUs)
compressing and forwarding the correlated received signals
simultaneously to the Central Processor (CP) in the cloud, via
the fronthaul links with finite capacities. Due to the correlations,
Wyner-Ziv coding is used. Hence a joint optimization of the
quantizers is required at the CP. In this paper we aim to maximize
the achievable weighted sum rate by optimizing the quantizers
as well as the allocation of sum capacity to fronthaul links.
At first we extend the Information Bottleneck (IB) method for
the joint optimization of the quantizers used for compression.
It is a combination of the Alternating Information Bottleneck
method (AIB) and the Alternating Bi-Section method, which are
both proposed in this paper. Then we use them to optimize the
allocation of sum capacity.

I. INTRODUCTION

(This is just a short version of introduction. The details
will be available in the full version of the paper.)

It has been shown that a key feature of C-RAN is the
transfer of baseband information to the CP via the capacity-
constrained fronthaul links. Thus suitable compression strate-
gies have to be developed in order to alleviate the requirements
on the fronthaul links. There has been already some papers
considering the optimization of quantization noise levels, when
Compress and Forward (CF) or Noisy Network Coding (NNC)
is performed at RUs, e.g. [6] and [7]. While these works
consider only Gaussian codebooks, and treat the quantization
as Gaussian test channels, the compression is modeled by
adding Gaussian distributed quantization noise. Optimization
of the quantization noise levels evaluates the performance only
from the information theoretic perspective. In practice, the
users might use arbitrary codebook X with finite alphabet,
and the received signal is discretized and sampled firstly into
finite alphabet Y , then based on the compression scheme
PŶ |Y , it will be compressed into several quantization levels,
denoted by Ŷ . Usually |Ŷ| is much smaller than |Y| due to
the compression. In such scenario, the Information Bottleneck
(IB) method [8] is often used to optimize the quantizer PŶ |Y
in order to maximize the objective mutual information.

However the IB method is considered only for the single
quantizer case in most works. In C-RAN, where multiple
quantizers exist, the optimization of the quantizers depends not

only on its own channel configuration, but also on the other
quantizers’, since Wyner-Ziv coding is performed at the relays
(CF) or joint decompression and decoding is performed at
the destinations (NNC). Thus a joint optimization is required.
The CP with high computing capability in the C-RAN makes
this joint optimization to be possible. Then the question is
whether the IB method can still be used. In this paper, we
answer this question in the affirmative. We aim to maximize
the achievable weighted sum rate in the uplink of C-RAN,
where CF is performed at RUs. We propose an Alternating
Information Bottleneck (AIB) method and an Alternating Bi-
Section Method in order to achieve this goal.

It should be noted that the proposed AIB method and Al-
ternating Bi-Section Method is applicable only to the scenario
where the capacity of each fronthaul link is predetermined.
This may happen when the fronthaul are optical fiber links.
While the fronthaul might also be wireless, such that RUs
share the total capacity resource. In this case the allocation of
resource also influences the performance of the network. Based
on the proposed algorithms as well as the Outer Linearization
Method (OLM) [11], we propose an optimization scheme for
the resource allocation.

Part of the results have been submitted to ICC 2016, where
AIB method and Alternating-Bisection method are proposed.
This paper is an extension, where weighted sum rate instead
of sum rate, and the optimization of capacity allocation for
different objectives are considered.

The remainder of the paper is organized as follows: In
Sec. II we introduce the channel model considered and state
the problem mathematically. Our optimization algorithms of
the quantizers are presented and explained in Sec. III. The
optimization algorithm of capacity allocation is shown in Sec.
IV. Simulation results and conclusions are provided in Sec. V
and Sec. VI respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider the C-RAN model depicted in Fig. 1. L single-
antenna Mobile Users (MSs) send independent messages to
L single-antenna RUs. The RUs are connected to a CP in
the cloud via fronthaul links with finite sum capacity denoted
by Csum All messages need to be decoded at the CP. For



Fig. 1. The uplink of C-RAN with finite sum capacity fronthaul links [6].

simplicity, we consider only single antenna, but the algorithm
can be extended to the MIMO case. Thus the channel model
between the MSs and RUs is actually an L × L interference
channel. The received analog signal at the i-th BS is

Yi,analog =

L∑
j=1

hijXj + Zi, i ∈ {1, 2, ..L},

where Zi ∼ CN (0, σ2
n) is the independent Gaussian noise with

variance σ2
n, and hij denotes the complex channel coefficient

from the j-th MS to the i-th RU. Xi denotes the transmitted
signal of the i-th MS, it can use arbitrary modulation scheme
with available power Pi = E{|Xi|2}. The received analog
signal Yi,analog is firstly sampled and discretized1 into Yi with
finite alphabets Yi. Then each RU performs CF: Its quantizer
compresses the signal Yi into Ŷi based on the compression
scheme PŶi|Yi

. |Ŷi| is assumed to be much smaller than |Yi|.
Since the received signals of the neighboring RUs are statisti-
cally correlated, Wyner-Ziv coding is to be utilized. Then RUs
independently send compressed bits to the CP via the fronthaul
links. The CP employs successive two-stage decoding: It first
decodes all the compressed signals Ŷ = [Ŷ1, Ŷ2, ...ŶL]

T and
then decodes MSs’ messagesX = [X1, X2, ..., XL]

T based on
the decoded compressed signals. Compared to NNC, where
simultaneous joint decoding of compressed signals and the
desired messages over all received blocks is required, the
successive decoding nature of CF overcomes some difficulties
in the practical implementation of NNC, such as long delay
and high computational complexity. Moreover, we assume that
the modulation scheme of each MS and CSI are known to the
CP, and the design of the optimized quantizers can be feed-
backed to the corresponding RU.

1This discretization is actually a pre-quantization, then the discretized
signal should be further compressed by the quantizer due to limited fronthaul
capacity. In this paper we address the optimization of the quantizer used for
the compression.

B. Problem Statement

We aim to maximize the achievable weighted sum rate [2]
in the uplink of C-RAN as follows.

max
PŶ |Y

L∑
j=1

wjRj

Subject to I(Y ; Ŷ ) ≤ Csum,

(1)

where PŶ |Y =
L∏
i=1

PŶi|Yi
. Rj and wj denote the achievable

rate of j-th MS and its weight, respectively. Since from CP’s
perspective, the network is actually MIMO-MAC, the capacity-
achieving strategy in the MIMO-MAC is based on successive
interference cancellation (SIC). Moreover, according to [12],
the solution of (1) is given by the decoding order π that sorts
the weights in non-increasing order

wπ1
≥ wπ2

≥ · · · ≥ wπL
.

With this decoding order, the resulting maximization problem
is convex. Since the decoding order is fixed solely by the
weights, without loss of generality, we assume wL ≥ wL−1 ≥
· · · ≥ w1, i.e., x1 is decoded first and xL is decoded last. Thus
we have

Rj = I(Xj ; Ŷ |X1, X2, ..., Xj−1) ∀j ∈ {1, 2, ..., L} (2)

The constraint of (1) can also be expressed as

I(Yi; Ŷi|Ŷ1, Ŷ2, ..., Ŷi−1) ≤ Ci ∀i ∈ {1, 2, ..., L},
L∑
i=1

Ci = Csum.
(3)

where Ci denote the capacity allocated to i-th RU. It can be
predetermined or optimized by the CP. We see that when the
modulations schemes, the capacity of each fronthaul link and
all channel configurations are fixed, the weighted sum rate
depends only on how RUs compress their received signals.
While when the capacity of each fronthaul link is not fixed,
a simultaneous optimization of all quantizers and capacity
allocation is necessary. In the following sections, we firstly
assume that the capacity of each fronthaul link is fixed, and
propose algorithms to optimize all quantizers jointly. Then
based on the proposed algorithms, we propose an algorithm
for the optimization of capacity allocation.

III. OPTIMIZATION ALGORITHM AND QUANTIZER
DESIGN (FRONTHAUL CAPACITIES PREDETERMINED)

In this section we assume the capacity of each fronthaul
link is predetermined. Note that the fronthaul capacities are
finite. On one hand, in the compression step, the quantization
cannot be too fine, such that the compression rate exceeds the
frontfaul capacity, in that case, the compressed information
cannot be decoded at the CP. On the other hand, when the
quantization is too coarse, the capability of the fronthal link
is not fully utilized, the overall performance is limited by the
coarse quantization. Hence, an optimal tradeoff between the
compression rates and the achievable sum rate must be found.
The Information Bottleneck (IB) method is an effective method
to find this tradeoff as well as the corresponding optimized
quantizer.



Consider three variables X → Y → Ŷ forming a Markov
chain, where Ŷ is the compression of Y . When we want
the variable Ŷ to compress Y as much as possible (smaller
I(Y ; Ŷ )), while Ŷ captures as much of the information about
X as possible (larger I(X; Ŷ )), the IB method is an useful
tool. According to [8] and [9], with the IB method we
can compute the maximized I(X; Ŷ ) as the function of the
compression rate I(Y ; Ŷ ). In detail, the function

I(c) = sup
I(Y ;Ŷ )≤c

I(X; Ŷ )

can be computed and plotted. It has been proved to be a
concave and increasing function for c ∈ [0, H(Ŷ )]. The
IB method is a deterministic annealing approach such that
the whole curve I(c) is obtained through a third parameter
β, β > 0, where 1/β = dI(c)

dc corresponds to the slope of
the curve at the point (c, I(c)). Actually β is the Lagrange
Multiplier used in the IB method. We call it the tradeoff
factor between the compression rate c and the objective mutual
information. By choosing an arbitrary β > 0 as the input of
the IB method, the point on the tradeoff curve with slope 1/β
can be outputted. Since I(c) is concave and increasing, the
output compression rate c of the IB method increases with the
input β, the whole tradeoff curve can be obtained by ranging
the value of β from 0 to infinity and running the IB method
repeatedly. After obtaining this tradeoff curve, we can use the
Bi-Section method to find the specific value of β such that
at this point the compression rate c can be supported and the
objective mutual information is maximized.

In the uplink of C-RAN, a joint optimization among all the
quantizers has to be performed. In this section, we assume the
we extend the IB method to a so-called Alternating Information
Bottleneck (AIB) method, in order to find the optimal tradeoff
between all the compression rates and the sum rate of C-RAN.
Then we propose an Alternating Bi-Section method, based on
the AIB method, to locate the optimal point where the optimal
quantizers’ design can be found.

For the ease of illustration, we start with the 2 MSs
and 2 RUs case to show the optimization scheme and its
convergence. At the end of this section, we will show our
proposed optimization algorithms can be easily extended to
the case with more devices. According to (1), the problem
becomes

max
PŶ1|Y1

PŶ2|Y2

w1I(X1; Ŷ1, Ŷ2) + w2I(X2; Ŷ1, Ŷ2|X1),

Subject to I(Y1; Ŷ1) ≤ C1,

I(Y2; Ŷ2|Ŷ1) ≤ C2.

(4)

Let Rwsum = w1I(X1; Ŷ1, Ŷ2) + w2I(X2; Ŷ1, Ŷ2|X1). Firstly
we set up the tradeoff between the compression rate pair of
2 RUs and the corresponding maximized weighted sum rate
Rwsum in Sec. III-A. Then in Sec. III-B we locate the specific
point where the constraints in (4) is satisfied and the weighted
sum rate is maximized.

A. The Alternating Information Bottleneck (AIB) method –
Setting up the tradeoff between the compression rate pair(
I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)

)
and the maximized weighted sum

rate Rwsum, through the tradeoff factor pair (β1, β2)

Since the two quantizers need to be optimized jointly, the
IB method cannot be used directly to numerically compute the
optimal tradeoff. However we note that when one quantizer is
fixed, the remaining part just becomes into the form such that
the IB method can be readily used.

1. When the first quantizer PŶ1|Y1
is fixed, then we need to

find the optimal tradeoff between the compression rate c2 =
I(Y2; Ŷ2|Ŷ1) and max

PŶ2|Y2

Rwsum. Because of the chain rule,

Rwsum =w1I(X1; Ŷ1, Ŷ2) + w2I(X2; Ŷ1, Ŷ2|X1)

=w1I(X1; Ŷ1) + w2I(X2; Ŷ1|X1)

+w1I(X1; Ŷ2|Ŷ1) + w2I(X2; Ŷ2|Ŷ1, X1).

(5)

Thus, when the quantizer PŶ1|Y1
is fixed, it is suffi-

cient to compute the tradeoff between I(Y2; Ŷ2|Ŷ1) and
max
PŶ2|Y2

(
w1I(X1; Ŷ2|Ŷ1) + w2I(X2; Ŷ2|Ŷ1, X1)

)
. Then it is re-

duced to the similar problem that has been solved in [9]
by the IB method. This algorithm Function IB2 will be
shown in the full version paper. In this function, the fixed
quantizer P fixed

Ŷ1|Y1
is the input, which is an local invariable when

optimizing the quantizer PŶ2|Y2
. The Lagrange Multiplier

β2 > 0 is the tradeoff factor. We obtain different tradeoff points{
I(Y2; Ŷ2|Ŷ1), max

PŶ2|Y2

Rwsum

}
by inserting different values of

β2 to Function IB2. In Fig. 2, we fix an valid PŶ1|Y1
, by

ranging β2 from 0.1 to 50 and running function IB2 repeatedly,
the concave tradeoff curve in blue can be obtained.

2. Similarly, when the second quantizer PŶ2|Y2
is fixed,

the tradeoff points

{
I(Y1; Ŷ1), max

PŶ1|Y1

Rwsum

}
can also be

obtained with the IB method, as summarized in Function IB1
(will be available in the full version). The fixed quantizer
P fixed
Ŷ2|Y2

is the input and β1 > 0 is the tradeoff factor. The
concave tradeoff curve is plotted in red in Fig. 2.

Then we go back to the original problem (4). Since the
two quantizers should be optimized jointly, the optimiza-
tion of one quantizer always depends on the optimization
results of the other. Hence, we can obtain the tradeoff be-
tween the compression rate pair

(
I(Ŷ1;Y1), I(Ŷ2;Y2|Ŷ1)

)
and max

P ˆY1|Y1
P ˆY2|Y2

Rwsum by running these two functions al-

ternatively, such that the optimized quantizer outputted from
one IB function is the input fixed quantizer of the other,
until reaching the convergence. This Alternating Information
Bottleneck (AIB) method in summarized in Function AIB (will
be available in the full version).

The AIB method will definitely converge to the local
optimal point. Since the IB function i, i ∈ {1, 2}, will
converge to the point where Rwsum is maximized, for the
current fixed PŶj |Yj

. Then in the AIB method, we set the
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Fig. 2. Tradeoff between the sum rate and the compression rates. BPSK
modulation, w1 = w2 = 1, h11 = 1, h12 = 0.4, h21 = 0.6, h22 =
0.9, P1 = 1, P2 = 0.5, σ2

n = 1, |Ŷ1| = |Ŷ2| = 8, ε1 =
0.0003, β1, β2 ∈ [0.1, 50].

fixed PŶj |Yj
and the optimized PŶi|Yi

as the starting point
of the IB function j for the optimization of PŶj |Yj

, in order
to further maximize Rwsum Hence, for specific compression
rate pair, the corresponding Rwsum will not be decreased
in each iteration and converge to the local optimal point.
Since the problem is generally non-convex, similar to the IB
method, we can try different initial point in the AIB method
to get better results. When the AIB method converges, we
can obtain the specific tradeoff point between the compression
rate pair

(
I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)

)
associated with the input

tradeoff factor pair (β1, β2), and the corresponding maximized
weighted sum rate Rwsum, as well as the optimized quantizers.
By choosing different values of β1 and β2 and running the AIB
method repeatedly, different tradeoff points can be obtained.

B. The Alternating Bi-Section method – Locating the optimal
tradeoff point

After setting up the tradeoff numerically through the trade-
off pair (β1, β2), we need to locate the point such that the
constraints in (4) are simultaneously fulfilled. Obviously, in
order to fully utilize the fronthaul links, we need to find the
point where I(Y1; Ŷ1) = C1 and I(Y2; Ŷ2|Ŷ1) = C2, then
its corresponding maximized weighted sum rate Rwsum and
the quantizers PŶ1|Y1

, PŶ2|Y2
are the solution for (4). We

can find this point by exhaustively inserting different tradeoff
factor pairs (β1, β2) until finding the point where c1 = C1

and c2 = C2. Obviously this approach is rather inefficient.
In the scenario of one quantizer, since the compression rate c
increases with the input value of β, we can use the Bi-Section
method to find the specific value of β such that at the point of
the tradeoff curve with slope 1/β, c equals to the capacity of
the constraint link. The details can be found in [9]. While in
C-RAN, there’re multiple quantizers, the resultant compression
rate of a quantizer also depends on the compression rates of
other quantizers, the Bi-Section method can not be directly
used to locate each tradeoff factor individually. In Fig. 3,
we run the AIB function with different input tradeoff factor
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Fig. 3. Relationship between the input tradeoff factor pair (β1, β2) with the
output compression rate c1. The same channel setup of Fig. 2 is assumed.

pairs (β1, β2), and plot the output compression rate c1 as the
function of it. We see that c1 depends mainly on the value of
β1, such that when β2 is fixed, c1 increases with the value of
β1, which is the same as the conventional one quantizer case.
We say c1 is directly associated with β1. However, since the
design of the quantizers affects each other, β2 also slightly
influences c1 in a non-linear way, see the marked points in
figure. We say c1 is indirectly associated with β2. When we
use the Bi-Section method to locate β1 and β2 individually,
such that we locate β1 where c1(β1) = C1, then we fix this β1

and locate β2 until reaching c2(β2) = C2, the newly located β2

(c1’s indirect tradeoff factor) will make c1 slightly deviate from
the previous value and vice versa. Hence, the tradeoff factor
pair should be located jointly instead of individually with the
Bi-Section method. Similar to the AIB method, we propose an
Alternating approach to achieve this goal, called Alternating
Bi-Section method. It incorporates the AIB method. For a
specific target compression rate pair (C1, C2), it can compute
the corresponding associated tradeoff factor pair (β1, β2). This
Alternating Bi-Section method will be available in the full
version of the paper.

C. Extension to more MSs and RUs with multiple antennas

...similar to the 2 MSs case, will be available in the full
version.

IV. OPTIMIZATION SCHEME FOR THE CAPACITY
ALLOCATION

We assume that the capacity allocated to each fronthaul link
is fixed in the previous section, and proposed the AIB method
and the Alternating Bi-Section method for joint optimization
of the quantizers and location of the optimal tradeoff point.
In this section, we assume the fronthaul links are constrained
by the sum capacity, and address the problem of optimizing
resource allocation. We propose the algorithm by combining
the AIB method, the Alternating Bi-Section method with the
Outer Linearization Method (OLM). The algorithm is sketched
as below.

1. Start with a random valid capacity allocation, C(0) =(
C

(0)
1 , C

(0)
2 , ..., C

(0)
L

)
, such that

∑L
i=1 C

(0)
i = Csum. Set k =

0, fLB = −1 and fUB to be large enough. Set δ be the desired
tolerance.

At iteration k, repeat step 2 to step 4 until fUB−fLB ≤ δ.
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n = 1, |Ŷ1| = |Ŷ2| = 8, w1 = w2 = 1.

2. Use the Alternating Bi-Section method to compute the
tradeoff factor vector β(k) =

(
β

(k)
1 , β

(k)
2 , ..., β

(k)
L

)
associated

with the current capacity allocation C(k).

3. Insert β(k) to the AIB method, then compute current
maximized weighted sum rate R

(k)
wsum. Set fLB = R

(k)
wsum

and the subgradient g(k) =
(
1/β

(k)
1 , 1/β

(k)
2 , ..., 1/β

(k)
L

)
and

b(k) = R
(k)
wsum −C(k) · (g(k))T .

4. Solve the linear problem

max
s,C

s

s.t. C · (g(`))T + b(`) ≥ s, ` = 0, 1, ..., k − 1,
L∑
i=1

Ci = Csum

Let (s∗,C∗) be the maximizer, set fUB = s∗ and C(k+1) =
C∗. Set k = k + 1.

The validation and explanation of the algorithm will be
given in the full version.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed algorithms and use them to study C-RAN.

For the 2 MSs and 2 RUs case, we set different target
compression rate pairs (c1, c2), and use the Alternating Bi-
Section method to obtain the tradeoff plane between the
compression rate pair

(
I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)

)
and the cor-

responding maximized weighted sum rate Rwsum, as shown in
Fig 4. It is a convex and increasing plane of the compression
rate pair. The maximum achievable sum rate increases when
either compression rate increases. Thus if the capacities of the
fronthaul links become larger, the sum rate will be more and
more close to the theoretical limit 0.7892.

Then we consider a 3MSs-3RUs C-RAN. We set w3 =
3, w1 = w2 = 1. At first we use the proposed algorithms
to optimize the quantizers as well as the capacity allocation,
in order to maximize the sum rate (case 1). Then we fix
this capacity allocation, and use the AIB method and the
Alternating Bi-Section method to optimize the quantizers only,
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Fig. 5. Relationship between achievable rates with sum capacity of fronthaul.
h11 = 1, h12 = 0.3, h13 = 0.2, h21 = 0.2, h22 = 1, h23 = 0.3, h31 =
0.2, h32 = 0.1, h33 = 0.5, σ2

n = 1, |Ŷ1| = |Ŷ2| = |Ŷ3| = 8.

so as to maximize the weighted sum rate, under the current
capacity allocation (case 2). At last, we optimize both the
quantizers and the capacity allocation for maximizing the
weighted sum rate (case 3). The results is shown in Fig. 5.
From the figure we see that when the quantizers and capacity
allocation are optimized in order to maximize the sum rate,
the individual rate of the third user R3 is the smallest, while
the achievable sum rate is maximized. Moreover, R1 and R2

are the largest in these 3 cases. While when we want to put
more weight on R3 by setting w3 = 3, only optimizing the
quantizers is not sufficient, the improvement of R3 in case 2
compared to the former case is not significant. This is because
the received signals at different RUs are the superposition of
the signals from all users, only optimizing the quantization will
not impose a prominent impact on individual rates. In order
to further improve the individual rate with larger weight, it
is necessary to consider a simultaneous optimization of both
capacity allocation and compression. From the figure, we see
that by comparing with case 1, the improvement of R3 in case
3 is much more significant than that of case 2. While this
improvement is at the cost of the larger decrease of R1, R2

and sum rate Rsum.

We consider the same model of Fig. 5, and assume the
sum capacity available is 3 bits/cu, the optimal capacity
allocation obtained from the proposed algorithm for different
optimization objectives is shown in Fig. 6. We see that when
the quantizers and the capacity allocation are optimized for
maximizing the sum rate, only 18% of the capacity is allocated
to the third RU. While when we want to maximize the
weighted sum rate (w3 = 3, w1 = w2 = 1), 38% of the
capacity should be allocated to the third RU. The reason is
that the signal from the third user at the third RU is the
strongest, while at the first RU it is the weakest. Moreover,
the observation of the superposed signal is more reliable at
the first and second RU than that at the third RU. Thus, when
the capacity allocation is optimized for maximizing the sum
rate, the capacity allocated to the third RU should be the least,
while it should be the most when the achievable rate of the
third user has larger weight.

More numerical results will be available in the full version
of the paper.



Fig. 6. Optimal capacity allocation for different objectives

VI. CONCLUSION

In this paper we proposed the Alternating Information
Bottleneck (AIB) method, which extends the conventional
Information Bottleneck (IB) method to the multi-quantizer
case. It can numerically compute the optimal tradeoff be-
tween the multiple compression rates and the objective mutual
information. Then we proposed the Alternating Bi-Section
method, which incorporates the AIB method. It is an effective
tool to design optimal quantizers when the multiple compres-
sion rates are constrained by limited capacities. Based on these
two algorithms, the optimization for the capacity allocation
is proposed. The algorithms are suitable for the centralized
optimization of the compression step in C-RAN.
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