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ABSTRACT
In this paper, we devise novel techniques for saving energy in
5G wireless systems. By means of anticipated transmission
rates we find user-cell assignments and scheduling policies
that help to identify energy-efficient network topologies.
In particular, the objective of this paper is to find a user-
cell association and rate allocation over time that provides
the requested Quality of Service (QoS) to all users while
attempting to reduce the energy consumption by identifying
the set of active cells consuming the least amount of energy.
We formalize this problem as a non-convex optimization
problem that accounts for the requirements of two emerging
application types, i.e., delay-tolerant and buffered delay-
sensitive applications. We use an energy consumption model
that specifically includes the static energy consumption and
the dynamic, load dependent energy consumption of cells.
We apply relaxation techniques to find feasible anticipated
schedules for rate allocation and user-cell assignments. Our
approach is characterized by its broad applicability, good
performance and low complexity making it amenable to
online implementation. We characterize achievable energy
saving gains by means of simulations in a realistic network
scenario under realistic traffic patterns.

I. INTRODUCTION

With the advent of the Internet of Things (IoT) billions
of new devices will be connected wirelessly to the mobile
communication system of the fifth generation (5G). A wide
spectrum of use cases mandates 5G to support extreme
objectives for delay, capacity and energy necessitating a high
network adaptability to varying user requirements. Todays
networks are operated in a static manner with fixed network
settings providing the maximum quality of service (QoS) at
all times. Eventhough such a mode of operation might satisfy
delay and capacity requirements, it will lead to unacceptable
high energy consumption in 5G networks. Therefore, it is of
utmost importance to develop mechanisms supporting energy
savings in both peak hours as well as in off-peak hours.

Most existing energy saving techniques, such as cell
deactivation or sleep mode, are designed for stationary users
and static user demands. These techniques usually have
bad performance in bursty traffic situations. The achievable
energy savings are nullified by short time increases of
traffic demand in certain areas. Proactive resource allocation
and user assignment (PRAUA) is a promising approach to

enable 5G to stand up to its high promises by improving
service quality and reducing energy consumption at the
same time. In particular, PRAUA helps ’smear’ the traffic
requirements in time and space allowing for the energy
savings techniques to be valid over a longer period of
time. Thereby, PRAUA exploits the knowledge about users’
mobility which can be obtained from side information or
estimated with sufficient accuracy due to the high regu-
larity in human mobility [1]. This information along with
learned path loss maps [2] is used to proactively build
user-cell assignment and resource allocation schedules that
greatly support energy savings in cellular communication
systems during off-peak hours. In particular, we develop
algorithms that schedule data transmissions for new service
applications when it is favorable for energy savings. The
developed mechanisms target two new service types enabled
by the storage capabilities at user devices: delay-tolerant
and buffered delay-sensitive applications. File transferis a
famous representative of the former one where it is required
to transfer a certain amount of data before a deadline time
with no limitations on the instantaneous transmission rate.
Buffered delay-sensitive applications include services like
stored content streaming (music/video). Such applications
require a constant instantaneous data rate where data can
be pulled either directly from the access network or from
a pre-filled buffer (depicted in Fig. 1). These two service
types allow to delay or bring forward the transfer of data
to users which is the fundamental concept we exploit for
energy savings. To increase the degrees of freedom for the
PRAUA by multi-connectivity to multiple cells and to exploit
the mutual information received from them we propose the
use of fountain coding [3]. This helps to find better solutions
for the problem at hand and increases the robustness of our
solution.

Proactive scheduling has been considered in [4] to im-
prove the QoS of users traveling through the service area
of several cells. The presented framework plans the re-
source allocation over a certain time horizon for fixed user-
cell assignments to maximize the throughput to users. The
authors of [5] propose a predictive framework for video
streaming applications to increase the energy-efficiency in
wireless networks. The problem is composed as a mixed
integer linear program (MILP) where decisions on multiuser
rate allocation, video segment quality, and base station
transmit power are jointly optimized. A heuristic multi



Fig. 1. Toy-example of a buffered delay-sensitive application
schedule.

stage algorithm is used to derive solutions for the MILP
problem by first allocating rates to users and then deter-
mining the segment quality and active base station set. The
reasoning is based on the observation that efficient rate-
allocation schemes provide power savings. Other analytical
justifications for the perfomance are not given. The work in
[6] is most closely related to ours. By proactive resource
allocation and video quality decisions the authors reduce
the energy consumption of the whole network by solving
a mixed integer non-linear problem (MINLP). An algorithm
is proposed that decomposes the association and resource
allocation problem in a master problem and several sub-
problems to make the problem tractable. Thereby, the authors
leverage energy costs and video quality taking into account
backhaul costs. The resulting integer programs are solved
directly by mathematical solvers and the authors argue to
achieve decent scalability. However, this is achieved by
assuming the allocation of an equal number of resource
blocks to all users in the master problem.

In contrast to the above work, we explicitly incorporate
the user-cell assignment in the optimization framework and
target energy savings with a guaranteed QoS level instead of
maximizing the QoS. Furthermore, we use mathematically
justified relaxation techniques instead of heuristics to derive
solutions ensuring good scalability. In the following we
summarize the main contribution of our work:

• We propose an optimization framework that exploits the
knowledge of user-cell trajectories and learned path-loss
maps. It finds user-cell association and rate schedules
that provide the requested QoS of users and reduces the
energy consumption of future cellular communication
networks.

• Our model for energy consumption is general enough to
capture static energy consumption (cooling, basic power
conversion etc.) as well as dynamic load dependent
energy consumption.

• We exploit the end user devices’ storage capabilities to
implement delay-tolerant and buffered delay-sensitive
applications with PRAUA.

• With the introduction of PRAUA we stretch the appli-
cability of cell sleep and switching on/off techniques in
the time horizon leading to improved energy savings.

• The use of fountain coding is proposed to improve the
QoS of users while being able to deactivate more cells.

• We present relaxation techniques that are able to give
good solutions to this problem in reasonable time mak-
ing it amenable for online implementation. Thereby, it
has theoretical justification for its good performance.

II. SUMMARY

In the following we sketch the basic idea of our approach.
We exploit the possibility to preload and store data on user
devices which will serve as an enabling concept to save
energy in the communication system by disengaging certain
cells1. By delaying the service provision of some users we
may avoid to activate cells that are only needed when the
traffic demand is of bursty nature. The result is a service use
at user level that receives and buffers data in high capacity
cells whereas it avoids access to cells that are overloaded
or switched of for reasons of energy savings. We use the
predicted routes of users and the learned path loss coverage
maps to find such a user-cell association and rate allocation
policy under the exploitation of the users’ buffers. When a
user is predicted to pass an area without coverage it will be
allocated more resources right before, so that the data can
be loaded in the buffer for a delay-sensitive non-realtime
application (bridging the coverage hole). For a delay-tolerant
applicaton the user can be denied service in certain coverage
regions when either before or after the provided service is
high enough. To enable the multi-connectivity of users with
low coordination overhead we propose to use fountain codes
[3] for mutual information combining. In the concept of
fountain coding a potential infinitely long stream of encoded
symbols is generated from a finite set of data symbols.
Decoding is possible as soon as a particular amount of code
symbols is received error free with no requirement for a
consecutive order.

II-A. Scenario and System Model

We consider a cellular heterogeneous communication sys-
tem employing an OFDM-based resource allocation. We are
interested in switching off capacity units of the network, e.g.
sectors, cells or the entire base station2; the corresponding
decisions are performed at a central network controller. The
set of all cells is denoted byM = {1, 2, ...,M}. Each cell
i has total number of resource blocksBi to allocate to its
users. There areN users in the system to be served and we
denote the set of all users asN = {1, 2, ..., N}. The time
is divided intoK time slots of equal duration∆k. For each
time slot, the objective is to find a resource allocation and
user-cell association. Each user is equipped with a buffer and

1Notice, that we are considering only capacity cells for deactivation.
Basic coverage for other users and services has to be securedat all times.
We consider therefore a basic coverage by some legacy network.

2In the text that follows we will use cells as a placeholder forany type
of network element.



we denote the buffer level (in bits) of userj in slot k by d
(k)
j

with d
(0)
j = 0 (empty buffer at start). In this work we assume

a sufficiently large buffer and refer to the technology specific
spectral efficiency per resource block of the link from celli

to userj in slot k asω(k)
i,j .

Assumption 1:A reliable estimate of the users’ routes
and the supported spectral efficiency per resource unit along
those routes is available at the central controller.

The task of our optimization framework is to provide a
schedule of resource allocations satisfying the QoS require-
ments of users while trying to reduce the energy consump-
tion. If a userj is served by celli in slot k we denote the
effective transmit data rate asr(k)i,j := b

(k)
i,j ω

(k)
i,j where b(k)i,j

is the number of resource units allocated to userj by cell
i in slot k. We collect the rates allocated by celli to all

users at timek in vectorr(k)
i =

[

r
(k)
i,1 , r

(k)
i,2 , ..., r

(k)
i,N

]T

. We

further useR(k) =
[

r
(k)
1 , r

(k)
2 , ..., r

(k)
M

]

to refer to all rates
allocated over all cells to all users in slotk.

Definition 1 (Instantaneous Cell Load):Given the rate
assignment matrixR(k) for slot k, the load of cell i,
denoted byρ(k)i

(

R
(k)
)

∈ [0, 1] or simplyρ(k)i for notational
simplicity, is defined to be the ratio of the number of resource
blocks allocated to users served by celli ∈ M in slot k to
the total number of resource blocksBi available at this cell,

i.e., ρ(k)i =
∑

j∈N
b
(k)
i,j

Bi
.

We useρi := [ρ
(1)
i , . . . , ρ

(K)
i ]T ∈ [0, 1]K to denote

the vector of cell loads at celli for all time slots and
denote the collection of all cell loads over time byP :=
[ρ1, . . . ,ρM ]T ∈ [0, 1]M×K . A consequence of Definition 1
is the following fact:

Fact 1: The load at celli satisfiesρ(k)i > 0 if and only if
(iff) cell i serves at least one user in slotk.

In other words,|ρi 1|0 = 0 iff cell i serves no user in all
time slotsK, where1 ∈ R

K is a vector of ones and| · |0
is the l0-norm3. If |ρi 1|0 = 0 cell i can be deactivated for
energy saving reasons.

Buffered delay-sensitive applications:In the case of a
buffered delay-sensitive application each user has a strict per
time slot data rate requirementrmin

j . Whenever the schedul-
ing algorithm allocates a higher data rate to a user in time
slot k, i.e., r(k)i,j > rmin

j , then the additional transferred data

is saved in the users bufferd(k)j = d
(k−1)
j +∆k(r

(k)
i,j − rmin

j ).
If the user is not allocated a sufficiently high rate in slot
k it loads the missing data from its buffer. In this case the
buffer level decreases asd(k)j = d

(k−1)
j − ∆k(r

min
j − r

(k)
i,j ).

In every time slotk users require the minimum data rate
either streamed from a cell or loaded from its buffer which

3For a scalarx ∈ R, the l0-norm is defined as|x|0 := 1 if x 6= 0 and
|x|0 := 0otherwise.

is stated as4

∑

i∈M

r
(k)
i,j +

d
(k−1)
j

∆k

≥ rmin
j . (1)

The buffer level of userj at the end of time slotk is therefore
described by

0 ≤ d
(k)
j = d

(k−1)
j +

∑

i∈M

∆kr
(k)
i,j −∆kr

min
j . (2)

Since each base station has onlyBi resource units to allocate
to users we have the condition

∑

j∈N

b
(k)
i,j

Bi

=
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i . (3)

Delay-tolerant applications:For delay-tolerant applica-
tions users are typically interested in maximizing throughput
at the expense of delay. Hence, the QoS requirement of user
j is fulfilled if the requested amount of dataDj can be
transferred within a predefined number of time slotsK. To
satisfy the users QoS constraint it suffices to guarantee

M
∑

i=1

K
∑

k=1

∆kr
(k)
i,j ≥ Dj , (4)

which can be interpreted as an average per slot data rate
requirement̄rj =

Dj

K
= 1

K

∑K

k=0 ∆kr
(k)
i,j . The buffer level

of userj is implicitly included in (4).

II-B. Problem statement

We are now in the position to state the optimization
problem that aims at finding the optimal set of active cells,
user-cell assignments and rate allocations while consuming
the least amount of energy. The objective functionE :
[0, 1]M×K → R+ is a combination of static and dynamic
sources of energy consumption. In more detail, each active
cell has static energy consumption ofei per time slot and
a load dependent part which is captured by a concave or
convex functionfi : [0, 1]K → R+. The total network energy
consumption is thus given by

E(P ) =
∑

i∈M

K ei |ρi 1|0 + fi (ρi) . (5)

The above model assumes that cells are deactivated before
the first time slot and stay inactive for allK time slots. The
model can easily be adapted to modes of operation where
so called micro-sleeps of cells are allowed. Such a mode of
operation and the comparison with the former mode will be
presented elsewhere.

The complete optimization problem forbuffered delay-

4Note, that this definition allows users to be served by multiple cells as
well as the buffer in a time slot. In such cases fountain coding is used to
implement mutual information combing.



sensitive applicationscan be written as

min.
∑

i∈M

K ei |ρi 1|0 + fi (ρi)

s. t.:
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i ∀i, k

∑

i∈M

r
(k)
i,j +

d
(k−1)
j

∆k

≥ rmin
j ∀j, k

d
(k−1)
j +

∑

i∈M

∆kr
(k)
i,j −∆kr

min
j = d

(k)
j ∀j, k

0 ≤ d
(k)
j ∀j, k,

(6a)

(6b)

(6c)

(6d)

(6e)

where the optimization variables arer(k)i,j ∈ R+ andρ
(k)
i ∈

[0, 1]. Thereby, (6b) assures that cells are not overloaded and
(6c) guarantees that users receive the required instantaneous
data rate. Constraint (6d) represents the flow of data in and
out of the users’ buffer.

Problem (6) can be written in a more compact form as

min.
∑

i∈M

K ei |ρi 1|0

s. t.:
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i ∀i, k

k
∑

l=1

(

∑

i∈M

r
(l)
i,j − rmin

j

)

≥ 0 ∀j, k,

(7a)

(7b)

(7c)

since the buffer level at the end of time slotk can be stated
as the data surplus of the aggregated data transmitted up to
time slotk.

The problem formulation fordelay-tolerant applications
uses (4) and we deduce

min.
∑

i∈M

K ei |ρi 1|0

s. t.:
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i ∀i, k

K
∑

k=0

∑

i∈M

r
(k)
i,j =

Dj

∆k

∀j

(8a)

(8b)

(8c)

with the optimization variables beingr(k)i,j ∈ R+ andρ(k)i ∈
[0, 1]. The main difference to problem 7 is in constraint (8c)
where an average data rate per user is required.

Problem 7 and problem 8 exhibit similar structure as the
problem considered in [7]. Thus, we can apply similar refor-
mulation techniques in combination with the Majorization-
Minimization method to derive algorithms that find good
solutions in reasonable time.

III. OUTLOOK

In the full version of this paper we will detail on the
algorithms to find solutions to Problem 7 and Problem 8
in a computationally efficient way. Furthermore, we use a

realistic simulation setup for dense urban communication
scenarios from the METIS project [8], [9] to evaluate the
energy saving gains and compare them with a base line ap-
proach. Preliminary simulation results indicate large energy
saving potential.
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