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Abstract—We previously introduced a rate-balancing precod-
ing technique based on channel distribution information, which
significantly reduces the impact of pilot-contamination in the
downlink of a massive MIMO system. We now extend the rate-
balancing optimization problem for the precoders to multiple
power constraints, to be able to apply the technique in a
coordinated multi-point setting. For this problem, we derive
an efficient and adaptive method to find a globally optimal
solution based on transformation in the dual uplink. Finally, the
results are compared to the optimization with a single sum-power
constraint, where the beamforming vectors are simply scaled to
satisfy the constraints at each base station.

I. INTRODUCTION

Massive MIMO is currently drawing a lot of interest from
both, academia and industry, due to the promise of full mul-
tiplexing gains with simple linear signal processing methods.
This gain, however, is limited by the dimensionality bottleneck
imposed by the fixed coherence interval of the channel [1]–[3].

Not all is lost, though, since the well-known results on the
degrees of freedom achievable in a fixed coherence interval
only consider independently and identically distributed chan-
nel coefficients [1]. In fact, structure of the channel vectors in
form of second-order information can be exploited to break
out of the dimensionality bottleneck [2], [4], [5].

In [4], we introduced a precoding method based on second-
order information, which is a generalization of the pilot-
contamination-precoding in [5]. In [6], a rate-balancing for-
mulation based on the statistical precoding approach is opti-
mized under a single sum-power constraint. Per base-station
constraints, however, are more sensible in a coordinated multi-
point setting. The additional constraints lead to challenges in
the optimization, which we discuss herein.

The considered rate-balancing problem is similar to the one
introduced in [7] for a cell-free system. However, our formu-
lation is more general in that it exploits arbitrary correlations
of the channel coefficients of a user. In contrast to [7], we
solve the problem in the dual domain, which significantly
reduces the complexity. The proposed iterative method is also
applicable in an adaptive manner, i.e., in practice, we can
perform a single iteration of the algorithm each time the
covariance matrices are updated.

We demonstrate with numerical simulations, that significant
gains are possible by explicitly taking the per-base-station con-
straints into consideration as compared to a simple scaling of
the optimal beamformers with a single sum-power constraint.

II. SYSTEM MODEL

We consider a cellular network of L cells where each base
station is equipped with M antennas. The vector channel of
user k to the base station in cell ` is given by

h`k ∼ NC(0,C`k) ∈ CM .

In the coordinated multi-point case, the user k is served from
all base stations ` = 1, . . . , L simultaneously. Thus, we simply
consider the compound channel vectors

hk =

h1k

...
hLk

 ∼ NC

0,Ck =

C1k

. . .
CLk


 .

We assume that in each channel coherence interval all users in
the network transmit one of Ttr orthonormal pilot sequences
with the effective training SNR ρtr. Thus, for each user we
can acquire a least-squares estimate

ĥk = hk +
∑
n∈Ik

hn +
1
√
ρtr

wk

where Ik is the set of users in the network, which transmit
the same pilot sequence as user k and wk is additive white
Gaussian noise with i.i.d. zero-mean and unit-variance entries.

The idea behind channel-density-information (CDI) precod-
ing is to apply a deterministic transformation to the matched
filter estimate ĥk, i.e., the precoding vectors are calculated as

tk = Akĥk.

Note again, that the transformation Ak is deterministic and
only depends on the channel covariance matrices.

For CDI precoding, a lower bound on the achievable rate is
given by [8]

rk = log2(1 + γk)

with the effective SINR

γk =

∣∣E[hH
k tk]

∣∣2
1 + var[

∣∣hH
k tk

∣∣] +∑
n E[

∣∣hH
k tn

∣∣2] .
Since for zero-mean x and y

E[
∣∣xHy

∣∣2] = tr(E[xxH] E[yyH]) +
∣∣tr(E[yxH])

∣∣2
we get [4]

γk =
|tr(AkCk)|2

1 +
∑

n tr(CkAnĈnAH
n ) +

∑
n∈Ik

|tr(AnCk)|2



where
Ĉk = E[ĥkĥ

H
k ].

Note that the last summand in the denominator is due
to interference during the training phase, so-called pilot-
contamination.

Since the covariance matrices Ck and Ĉk are block-
diagonal, the optimal transformations Ak have the same
structure. That is, we have

Ak =

A1k

. . .
ALk

 .

If we further assume, that for each base station, the covariance
matrices are jointly diagonalized by some unitary transfor-
mation, e.g., by transforming in the angular domain of a
uniform linear array [9], [10], we can work with the diagonal
covariance matrices. Thus, also the optimal transformations
Ak are diagonal (see Appendix) and the number of parameters
reduces from M2L to ML.

In general, by vectorization, the downlink SINRs can be
written as [4]

γk(a1, . . . ,aK) =
aH
k ckc

H
k ak

1 +
∑

n a
H
nBknan

(1)

where a has (ML)2 elements for general covariance matrices
Ck, M2L elements if we assume block-diagonal covariance
matrices and ML elements if the blocks can be approximately
jointly diagonalized. Correspondingly, the vectors ck contain
the stacked columns of Ck, the stacked columns of all blocks
C`k or the elements of the diagonal covariance matrices,
respectively. Due to the impractical complexity for the other
cases, the simulation results focus on jointly diagonalizable
channel covariance matrices.

III. PROBLEM FORMULATION

In our previous work, we demonstrated how the determin-
istic transformations Ak can be chosen to suppress pilot-
contamination [4] or provide a rate-balanced solution [6] in
a single-cell scenario. In the following, we extend the rate-
balancing formulation to the multi-cell case with per-base-
station power constraints and provide an algorithm to find the
optimal solution.

The average power constraint for base station ` is given by∑
k

tr(A`kĈ`kA
H
`k) ≤ 1. (2)

Analogously to (1), we can rewrite the power constraint in (2)
as ∑

k

aH
k Q`kak ≤ 1

with a positive semi-definite Q`k. Consequently, the rate-
balancing problem is stated as

max
a1,...,aK

r0 s.t. r0τk ≤ rk(a1, . . . ,aK) ∀k∑
k a

H
k Q`kak ≤ 1 ∀`

(3)

where τk denotes the rate factor for user k.
Instead of solving (3) directly, we solve a dual uplink prob-

lem (cf. [6], [11], [12]). To derive the uplink problem, we first
consider the downlink power-minimization problem, which is
very similar in structure to the rate-balancing problem, but
has the advantage of being convex. The power minimization
problem is given by

min
a1,...,aK

β s.t. r̄k ≤ rk(a1, . . . ,aK) ∀k∑
k a

H
k Q`kak ≤ β ∀`.

(4)

That is, we minimize the power factor β under fixed rate
targets r̄k. We rewrite the rate constraints as (cf. (II) and (1))

r̄k ≤ rk(a1, . . . ,aK)

⇔ 2r̄k − 1 ≤ γk(a1, . . . ,aK)

⇔ 1 +
∑
n

aH
nBknan ≤

1

2r̄k − 1
aH
k ckc

H
k ak

which allows us to apply Lagrange duality to get the dual
problem

max
µ,λ

λT1 s.t. γul
k (λ,µ) ≤ 2r̄k − 1 ∀k

µT1 = 1
µ ≥ 0, λ ≥ 0

(5)

where

γul
k (λ,µ) = λkc

H
k

(∑
n

λnBnk +
∑
`

µ`Q`k

)−1
ck (6)

and 1 is an all-ones vector. The uplink SINRs in (6) can also
be interpreted as the optimal SINRs

γul
k (λ,µ) = max

g1,...,gK

λkg
H
k ckc

H
k gk

gH
k

(∑
n λnBnk +

∑
` µ`Q`k

)
gk

with the optimal uplink filters

g?
k =

(∑
n

λnBnk +
∑
`

µ`Q`k

)−1

ck. (7)

Due to the monotonicity properties of the uplink SINRs, the
SINR constraints are all binding in the optimum and there is
a unique solution for λ ≥ 0. The maximization over µ in (5)
leads to a worst-case “noise-covariance” in the uplink domain.

Note that the optimal value of the dual problem (5) is equal
to the optimal power factor of the primal problem (4). For
the rate-balancing problem we want β = 1 and optimal rate
targets for given balancing factors τk. This leads to the dual
rate-balancing problem (cf. [13])

min
µ

min
λ,r0

r0 s.t. γ̄k(r0) ≥ γul
k (λ,µ) ∀k

λT1 = 1, µT1 = 1
µ ≥ 0, λ ≥ 0.

where
γ̄k(r) = 2τkr − 1.

Since the SINR constraints are all binding, the optimal solution
for the inner problem satisfies

γ̄(r?0) = γul(λ?,µ)

1Tλ? = 1. (8)



where we stacked the SINRs into the vectors

γ̄(r0) =

 γ̄1(r0)
...

γ̄K(r0)

 and γul(λ,µ) =

γ
ul
1 (λ,µ)

...
γul
K(λ,µ)

 .

Different approaches have been suggested in literature to solve
this non-linear system of equations. For example, the equations
can be reformulated into a fixed-point form [12]. For the
power-minimization problem, the Newton-Raphson method is
known to converge globally with a feasible initialization [11].
In our proposed optimization method for the rate-balancing
problem, we also adopt the Newton-Raphson method and
ensure that the dual variables λ are always non-negative. In
our experiments, the algorithm always converged to the unique
solution of (9).

For a single power constraint, we simply have µ = 1.
However, since we consider one constraint per base station,
we find the optimal µ with a projected gradient method.

To this end, we obtain the gradient ∂r?0/∂µ by applying the
implicit function theorem to the optimality conditions in (8).
Defining

q` =
∂γul

∂µ`
, Ξ =

∂γul

∂λT
, and d =

∂γ̄

∂r0

the resulting linear system of equations for the derivative with
respect to µ` is given by[

Ξ −d
1T 0

][∂λ?

∂µ`
∂r?0
∂µ`

]
=

[
q`
0

]
. (9)

With
x = (ΞT)−11 (10)

the desired derivative is thus given by

∂r?0
∂µ`

= −xTq`
xTd

.

Note that the matrix on the left-hand side of (9) and thus the
vector x is the same for all µ`. Therefore,

∂r?0
∂µ

=
1

xTd
QTx with Q = [q1, . . . , q`].

The matrix Ξ also needs to be inverted for the Newton
steps on (8) which allows us to save some complexity in the
proposed optimization algorithm.

Due to the structure of the dual problem, we know that
the optimal uplink SINRs γul

k (λ
?,µ?) = γ̄k(r

?
0) are also

achievable in the downlink [13] with the beamformers

a?
k = pkg

?
k.

The downlink power allocation is found by simply solving the
system of equations

γk(p1g
?
1 , . . . , pKg?

K) = γ̄k(r
?
0) ∀k

which is linear in the pk. In fact, the linear system is given by

ΞT diag(λ)−1p =
1

ρul
1.

Consequently,

p =
1

ρul
diag(λ)x

with x from (10).
For a practical implementation, an adaptive algorithm is

preferred, such that we are able to update the transformations
Ak for small changes in the covariance matrices. The proposed
algorithm is described in Alg. 1. Since the optimal µ changes
only slightly from one coherence interval to the next, we can
use a fixed, small step size αµ for the gradient step.

Algorithm 1 Adaptive rate-balancing algorithm
1: for each coherence interval do
2: Calculate γul, g1, . . . , gK , Ξ, d, Q using λ, µ and r0
3: Apply LU-factorization to Ξ
4: Use backsubstitutions to get

x← (ΞT)−11

5: Calculate Newton steps

∆r0 ← −
xT(γ̄ − γul)

xTd
∆λ← Ξ−1(γ̄ − γul) +∆r0Ξ

−1d

6: Update r0 and λ

r0 ← r0 +∆r0

αλ ← max
α∈[0,1]

α s.t. λ+ α∆λ ≥ 0

λ← λ+ αλ∆λ

7: Perform projected gradient step for µ with projection
P(·) onto the unit-simplex

∆µ← 1

xTd
QTx

µ← P(µ+ αµ∆µ)

8: Calculate downlink power allocation

p← 1

ρdl
diag(λ)x

9: end for

IV. COMPUTATIONAL COMPLEXITY

As noted in [10], it is advantageous in terms of complexity
but also in terms of estimation accuracy to approximate the
channel covariance matrices by

C`k ≈ FH diag(c`k)F (11)

where F is some unitary transformation which approximately
diagonalizes the covariance matrices. Important examples are
uniform linear arrays and uniform rectangular arrays. For
typical physical channel models, the respective covariance ma-
trices are approximately diagonalized by the discrete Fourier
transform (DFT) matrix or a Kronecker product of DFT
matrices [2], [9], [10].



These approximations significantly reduce the complexity
of the proposed method, since for covariance matrices with
the structure in (11) the optimal A`k under per-base-station
constraints have the same structure (see Appendix), i.e.,

A`k = FH diag(a`k)F . (12)

Thus, if the approximation in (11) is applicable, we have

ck =

c1k...
cLk

 ∈ CLM

and

Bkn =

{
diag(ck � ĉn) + ckc

H
k for k ∈ In

diag(ck � ĉn) otherwise

Q`n = diag((e` ⊗ 1M )� ĉn)

with the element-wise multiplication � and the Kronecker
product ⊗. The optimal filters are consequently given by

g?
k =

(
diag(ĉk � (µ⊗1+

∑
n

λncn))+
∑
n∈Ik

λncnc
H
n

)−1
ck.

The computational complexity of the calculation is O(M3L3)
per user, however, by applying the matrix inversion lemma
(cf. Appendix), we reduce the complexity to O(|Ik|3 +
ML |Ik|2). Note that the weighted sum over all covariance
matrices, which needs O(MLK) operations, is the same for
all users.

The main complexity for the remaining steps is O(MLK2)
to calculate Ξ and O(K3) for the factorization. All other steps
need O(MLK) operations. The total complexity of one itera-
tion of Alg. 1 is thus O(MLK2+K3+

∑
k |Ik|

3
+ML |Ik|2).

Note that the complexity is linear in the total number of
transmit antennas ML and typically ML� |Ik|.

V. PER-ANTENNA CONSTRAINTS

The proposed algorithm can be extended to per-antenna
constraints in a straight-forward manner. As a consequence,
the number of dual variables is increased to ML, which leads
to a quadratic complexity in ML for the calculation of the
gradient ∂r?0/∂µ.

The per-base-station power constraints for the approximated
covariance matrices in (11) contain terms of the form

tr(FH diag(a`k)FFH diag(ĉ`k)FFH diag(a`k)
HF )

= tr(FH diag(a`k � ĉ`k � a∗
`k)F )

=aH
`k diag(ĉ`k)a`k.

The constraint for antenna m on the other hand sums over

eTmFH diag(a`k � ĉ`k � a∗
`k)Fem

=fH
m diag(a`k � ĉ`k � a∗

`k)fm

which due to the constant modulus of the entries in the DFT
basis vectors fm is equal to

1

M
aH
`k diag(ĉ`k)a`k.
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Fig. 1. Cumulative distribution of the achievable rates for one snapshot of
K = 70 uniformly distributed users in a network with L = 7 cells. Each base
station is equipped with M = 20 antennas and Ttr = 10 channel accesses are
used for training. The results are for per-base-station constraints. The dotted
graph shows the result for rate-balancing with a single sum-power constraint
scaled to meet the per-base-station requirements.

In other words, the per-antenna and per base-station constraints
are equivalent for the approximation in (11) and thus the
complexity does not increase when considering per-antenna
constraints.

VI. RESULTS

We compare the rate-balancing performance with matched-
filter precoding based on the MMSE channel estimation. That
is, for diagonal covariance matrices, we have

aMMSE
k =

diag(ĉk)
−1ck

cTk diag(ĉk)−1ck
.

We use a uniform power allocation for the MMSE approach
with joint scaling for all users to meet the power constraints.
Additionally, we show results for rate-balancing with a sum-
power constraint, where the precoders are also jointly scaled
to meet the per-base-station constraints. As a baseline we also
depict results for non-cooperative transmission, i.e., each user
is served only by the closest base-station with a matched filter
based on the local MMSE estimation of the channel.

Results are presented in Fig. 1 for one snapshot of K = 70
uniformly distributed users in a network with L = 7 cells. Due
to the even distribution of users in the network, the per-base-
station constraints do not significantly affect the performance.
The performance of the MMSE matched filter scaled to meet
the sum-power constraint is in fact almost identical to the case
with per-base-station constraints.

These results are expected, since even with the proposed
rate-balancing approach, there is a significant amount of
residual interference and even more so for the matched filter
approach. The joint scaling of the precoders has a notable
effect only if the noise power is comparable to the interference.
To illustrate this behavior, we depict the minimal achievable
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Fig. 2. Minimal achievable rates averaged over several snapshot of K = 70
uniformly distributed users in a network with L = 7 cells. Each base station
is equipped with M = 20 antennas and Ttr = 10 channel accesses are used
for training. The results for both, sum-power and per-base-station constraints
are depicted in the same style. The sum-power curves are strictly higher than
the per base-station ones, but in most cases, the difference is barely notable.
The dotted graph shows the result for rate-balancing with a single sum-power
constraint scaled to meet the per-base-station requirements.

rate averaged over several user placements with respect to the
transmit power in Fig. 2. We note that the relative gain of
explicitly taking all constraints into account is larger for low
transmit power and vanishes for high transmit power.

VII. CONCLUSION

We demonstrated in numerical simulations the performance
gains of explicitly taking per-base station power constraints
into account. The gains depend on the distribution of the user
terminals and the transmit power. Under favorable conditions,
simpler heuristics yield almost the same performance. Never-
theless, the proposed adaptive optimization algorithm allows
us to deal with multiple power constraints with a reasonable
amount of complexity. The proposed approach is particularly
interesting in a scenario with groups of distributed antennas.

APPENDIX

To show that the optimal transformation matrices Ak and
thus the optimal filter gk have the same structure as the
covariance matrices, we consider the optimal filters for general
covariance matrices. For general channel covariance matrices
Ck with ck = vec(Ck), we have

Bkn =

{
Ĉ∗

n ⊗Cn + ckc
H
k for k ∈ In

Ĉ∗
n ⊗Cn otherwise

Q`n = Ĉ∗
n ⊗ diag(e` ⊗ 1M ).

The optimal filter is thus given by

g?
k =

(∑
n

λnĈ
∗
k ⊗Cn +

∑
n∈Ik

λncnc
H
n + Ĉ∗

k ⊗ Γ (µ)
)−1

ck.

where Γ (µ) = blkdiag(µ1 I, . . . , µL I). For the interfering
users Ik = {a, b, c, . . .} define

Zk = [ca, cb, cc, . . .], λ̄k = [λa, λb, λc, . . .]
T

and
Sk = Ĉ∗

k ⊗
(
Γ (µ) +

∑
n

λnCn

)
.

With the matrix inversion lemma, we have

g?
k =

(
S−1
k −S

−1
k Zk(diag(λ̄k)

−1+ZH
k S

−1
k Zk)

−1ZH
k S

−1
k )ck.

Note that the optimal filter g?
k is a linear combination of terms

of the form

S−1
k cn = vec

((
Γ (µ) +

∑
i

λiCi

)
CnĈk

)
. (13)

Thus, for block-diagonal covariance matrices Ck, the optimal
Ak are also block-diagonal. Additionally, if each block C`k

satisfies (11) the optimal A`k are of the form (12), since Γ (µ)
is block-diagonal with scaled identities for the different blocks.
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