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Abstract—We study the influence of source-relay cooperation
on the outage constrained capacity bounds of the Gaussian relay
channel. As was observed, coherent source-relay transmission
does not lead to improvement for the decode and forward (DF)
achievable rate in the presence of Rayleigh fading. We show that
this is in sharp contrast to the case with known channel means.
Then, transmission gains highly from coherent source-relay to
destination transmission.

I. INTRODUCTION

The general concept of relaying was introduced by van
der Meulen in [1]. Until now, the general expression for the
capacity of the relay channel is not known. An important
contribution on the information-theoretic investigation of the
relay channel was provided by Cover and El Gamal in [2].
They provided upper and lower bounds for the capacity.
Among others, the decode-and-forward (DF) strategy and the
cut-set-bound (CSB) were defined to bound the capacity from
below and above, respectively.

In our study, we assume that only the receiving nodes have
full channel state information (CSI) while the transmitting
nodes have only access to the channels’ statistics or an es-
timate of the channel. The approach for evaluating the system
performance under such conditions varies upon the assumed
fading model. In this work, we assume slow fading of the
channel and therefore investigate the outage capacity of the
relay channel [3].

Bounds on the outage probability of the relay channel have
been studied by Kramer et al. in [4] for a full-duplex setup
and phase fading with a given rate. Høst-Madsen and Zhang
extended the results to a half-duplex setup in [5]. Other works,
e.g., [6], [7], focused their study on low-SNR regions.

Similar to [8], we consider the reverse problem, namely
deriving rate bounds for a restricted outage probability. This
work extends the results from the aforementioned paper and
provides a detailed discussion about the question when source-
relay cooperation is advantageous and supports communica-
tion.

While the work in [8] concentrated on the Rayleigh channel
model, in this paper, we assume either a line of sight (LOS)
component for the channel distribution, i.e., a Rician fading
model, or some known channel estimate.

The analysis of the Gaussian relay channel in [8] assured,
that the DF strategy does not benefit from cooperation between
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Fig. 1. Setup with multi-antenna relay

the relay and the source if Rayleigh channels between the
terminals are assumed. In particular, coherent source-relay
transmission does not result in increased DF rate for a small
outage requirement. The aim of our study is to show that the
situation is different for known channel mean or estimates. For
a wide class of such channels, cooperation leads to gains in
the outage constrained DF rates.

In the remainder of the extended abstract, we introduce the
model of the system, motivate the research and show some
preliminary results. Detailed derivations are omitted here but
will be presented in the final paper (see also Section VI).

II. SYSTEM MODEL

We assume a three-node Gaussian relay system as shown in
Fig. 1. The investigations are for a setup with single-antenna
source and destination and with multiple antennas at the relay.

The signals received at the relay and destination read as

yR = hSRxS + nR,

yD = hSDxS + hH
RDxR + nD. (1)

The noise components are independent of each other as well as
of the transmitter signals, i.e., nR ∼ NC(0, I), nD ∼ NC(0, 1).
Without loss of generality and optimality, we assume zero-
mean channel inputs xS and xR constrained with the available
power budget E[|xS|2] ≤ PS and E[||xR||22] ≤ PR.

In our work, we provide results for a channel model with
known mean or estimate. For example, we assume one direct
path and multiple scattered paths. Omitting the subscripts
referring to the links, the formal description reads as

h = h̄ + ĥ, ĥ ∼ NC(0, σ2
ĥ
I). (2)



The Rician K factor is defined as the ratio of the power of
the direct path and the power of the scatterers K =

||h̄||22
σ2
ĥ

.
We see the extension of the analysis in [8] to the channels

in (2) as an important input to the discussion on practical
applications of relaying systems. For example, in mmWave
systems, which are considered to be included in the 5G
standards, it is agreed that a strong LOS path is required for
maintaining connectivity between the terminals.

III. PROBLEM STATEMENT

The capacity bounds for the relay channel with perfect CSI
were given by Cover and El Gamal in [2]. Gaussian full-power
signaling maximizes the DF achievable rate as well as the CSB
expression for the Gaussian relay channel. Thus, the DF rate
and CSB expression can be written as (c.f. [8])

CCSB(h) = max
β

min
{
C

(1)
CSB(β,h), C

(2)
CSB(β,h)

}
, (3)

RDF(h) = max
β

min
{
R

(1)
DF (β,h), R

(2)
DF (β,h)

}
(4)

where

C
(1)
CSB(β,h) = log2

(
1 +

(
1− β2

) (
‖hSR‖22 + |hSD|2

)
PS
)
,
(5)

R
(1)
DF (β,h) = log2

(
1 +

(
1− β2

)
‖hSR‖22PS

)
, (6)

C
(2)
CSB(β,h) = R

(2)
DF (β,h) =

= log2

(
1 + [h∗SD,h

H
RD]C[hSD,h

T
RD]T

)
, (7)

with β = ||rSR||2√
PSPR

, the matrix C =
[
PS rH

SR
rSR RR

]
is the joint

covariance matrix of the source and the relay, RR = E[xRx
H
R ]

is the covariance matrix of the relay and rSR = E[xRx
∗
S].

Both the CSB expression in (3) and the DF rate in (4) can
be seen as the minimum rate of two links. In the first link, the
source is transmitting and either the relay and destination are
jointly receiving (for the CSB) or only the relay is receiving
(for the DF). In the second link (for both CSB and DF), the
source and relay are jointly transmitting and the destination
terminal serves as the receiver. In our work, we place emphasis
on the analysis of the joint source-relay transmission. The
degree of cooperation is modeled by β and the specifics of
the cooperation is included in rSR.

As pointed out in the introduction, we focus on setups
with imperfect channel knowledge and the outage capacity as
performance measure. Therefore, we define the DF rate bound
and CSB on the ε-outage capacity as

R
(out)
DF = max

ρ,β
{ρ ∈ R : pDF(ρ, β) ≥ 1− ε} , (8)

C
(out)
CSB = max

ρ,β
{ρ ∈ R : pCSB(ρ, β) ≥ 1− ε} (9)

where the probabilities inside (8) and (9) are defined as

pDF(ρ, β) = Pr

[
min
i=1,2

{
R

(i)
DF(β,h)

}
≥ ρ
]
, (10)

pCSB(ρ, β) = Pr

[
min
i=1,2

{
C

(i)
CSB(β,h)

}
≥ ρ
]
. (11)

Both, (8) and (9), are chance-constrained optimization
problems with unknown convexity properties. In [8], these
problems are studied for a single antenna at the relay terminal
and Rayleigh fading channels. As mentioned, we consider
the Rician fading channel model and extend the study to
multiantenna setups. In the full paper, we will further provide
a study that includes channel esitimation.

IV. SINGLE ANTENNA RELAY

We investigate the impact of source-relay cooperation on
the outage constrained DF rate (4) first for the single relay
antenna setup. To this end, we rewrite (7) as

R
(2)
DF (β,h) = log2

(
1 + |hSD|2PS + hRDPR + 2Re(h∗SDhRDrSR)

)
.

(12)

For perfect CSI, the rSR that maximizes (4) is available in
closed form and reads as (cf. [2])

rSR =
√
PSPR

h∗SDhRD

|hSD||hRD|
β (13)

where optimal β leads to equal R(1)
DF (β,h) and R(2)

DF (β,h), if
possible. Thus, the non-coherent transmission maximizes the
first rate expression since R(1)

DF (β,h) only depends on β2 and
(genie-aided) coherent transmission maximizes the second rate
expression. The situation becomes less obvious, when only the
channel statistic are available. Then, if we model the cross-
covariance as

rSR =
√
PSPR

h̄∗SDh̄RD

|h̄SD||h̄RD|
β, (14)

the expression Re(h∗SDhRDrSR) can be less than zero for certain
channel realizations. We note that the probability of this event
increases with decreasing Rician K-factor. The limit case, i.e.,
with K equal to zero results in Rayleigh fading channels. For
this channel we know from [8] that noncoherent transmission
is optimal. On the other hand, for K equal to infinity, we know
that the channel is perfectly known and thus the transmission
profits from cooperation. We expect that we will benefit in
various degrees from source-relay cooperation for Rician K-
factors in between.

Our Monte-Carlo simulations agree with this suggestion.
For the simulations, we use the line network model [8] and
set ε = 0.25. In Fig. 2, we show a 3D plot with the source-
relay distance on the x-axis, the Rician K-factor on the y-axis
and the benefit from cooperation on the z-axis. We see that for
each relay position, decreasing K results in a decrease of the
cooperation gain. We also see, that for large distances between
the source and the relay, i.e., dSR > 0.5, we get no benefit from
cooperation. This is because the first rate expression in (10)
becomes the main limiting factor in this region.

Figures 3, 4, and 5 give an insight into the results for
three values of the Rician K-factor, i.e., K ∈ {0.25, 1, 4}.
We compare the outage constrained DF rates when only the
channel statistics are available at the transmitters [and rSR is
as in (14)] with two extreme cases. The first one assumes
perfect CSI at the transmitters and thus rSR as in (13). In the
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Fig. 2. Gain of source-relay cooperation with respect to the source-relay
distance and the Rician K-factor for ε = 0.25
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Fig. 3. Outage constrained DF rates for source and single antenna relay
cooperating as well as for the noncoherent transmission. K = 0.25, ε = 0.25
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Fig. 4. Outage constrained DF rates for source and single antenna relay
cooperating as well as for the noncoherent transmission. K = 1, ε = 0.25

second one, noncoherent source-relay transmission is applied.
Similarly as in Fig. 2, we see that gains from cooperation
are possible only when the relay is close to the source,
i.e., dSR ≤ 0.5. Moreover, the transmission profits from the
knowledge of the channel statistics only if the channel mean
is sufficiently strong, i.e., for higher values of K.

V. MULTIANTENNA RELAY

Next, we consider the multiantenna relay setup. The source-
relay cooperation is then modeled with the vector rSR and
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Fig. 5. Outage constrained DF rates for source and single antenna relay
cooperating as well as for the noncoherent transmission. K = 4, ε = 0.25

the relay transmit strategy is defined by the relay covariance
matrix RR. For perfect CSI, the rSR and RR that maximize
(7) are given in closed form by

rSR =

√
PSPR

NR

h∗SDhRD

|hSD|‖hRD‖2
β, (15)

RR =
hRDh

H
RD

‖hRD‖22
PR (16)

where optimal β leads to equal R(1)
DF (β,h) and R(2)

DF (β,h), if
possible.

If only the channel statistics are available, we follow the
strategy from Section IV and model rSR as

rSR =

√
PSPR

NR

h̄∗SDh̄RD

|h̄SD|‖h̄RD‖2
β. (17)

We investigate the system performance for two relay transmit
strategies. In the first one, we match RR to the channel mean
h̄RD, i.e.,

RR =
h̄RDh̄

H
RD

‖h̄RD‖22
PR. (18)

In the second one, we set the covariance matrix to a scaled
identity matrix

RR =
PR

NR
I. (19)

For high values of the Ricean K-factor, we expect that the
system achieves better performance with rank–one RR as in
(18) since the channel mean is “close” to the channel itself.
In contrast, for low values of K, we expect better results with
the scaled identity RR in (19). Figures 6, 7, and 8 agree with
this suggestion. We also observe that the transmission profits
from cooperation depending on the value of K similarly to
the single antenna setup. Moreover, compared to the single
antenna setup, the cooperation helps in the transmission for a
larger range of dSR, i.e., even for dSR = 0.5.
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Fig. 6. Outage constrained DF rates for source and (multiantenna) re-
lay cooperating as well as for the noncoherent transmission. K =
0.1, ε = 0.25, NR = 4
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Fig. 7. Outage constrained DF rates for source and (multiantenna) relay coop-
erating as well as for the noncoherent transmission. K = 4, ε = 0.25, NR =
4
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Fig. 8. Outage constrained DF rates for source and (multiantenna) re-
lay cooperating as well as for the noncoherent transmission. K =
15, ε = 0.25, NR = 4

VI. OUTLOOK

In the final paper, we will further investigate the gains of
source-relay cooperation. We will extend the work on the
single-antenna and multiantenna setup at the relay terminal.
We will provide a detailed description of choices for rSR
for the multiantenna setup and analyze the optimal choice of
β. We will also investigate setups with very high number of
antennas at the relay. Moreover, we will present results if the

channel model in (2) stems from estimation. For the CSB
expressions, we will extend the loosened CSB expressions
from [8] to the case with single and multiple antennas at
the relay terminal and channel mean/estimation at the trans-
mitting nodes. For the DF rates, we will give closed form
outage probability expressions. We will also provide detailed
derivations of the computations required for the simulations
in this extended abstract.
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