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Abstract—We analyze the problem of estimating channel
vectors that are superpositions of many closely spaced steering
vectors. Such vectors describe single clusters of scatterers and
appear in realistic channel models. We question the practice
of approximating such vectors as superpositions of few steering
vectors in the context of sparse representations. We investigate
if, instead of using such oversampled DFT dictionaries in recov-
ery algorithms, performance gains are possible by using other
dictionaries that are more adapted to channel vectors.

Index Terms—Direction-of-arrival (DOA) estimation, Spatial
channel models, Dictionary learning

I. INTRODUCTION

Wireless communication systems with large numbers of
antennas are currently being investigated for use in future
standards [1]. The dimension of the channel vector or matrix
grows along with the number of antennas. Thereby, the
geometric structure of the channel vector is revealed, which is
that of a superposition of a number of propagation paths as
suggested by preliminary measurement campaigns [2], [3]. The
question arises whether for these systems, classical minimum
mean squared error (MMSE) or least-squares (LS) channel
estimation, both of which are agnostic to any kind of structure
in the channel vector, can be improved upon by incorporating
structural prior information.

Models used for simulating channels use superpositions
of many propagation paths that are due to several localized
clusters of scatterers. At least at the base station side, which is
typically situated at an exposed location, all scatterers within
the same cluster have the same angle to within few degrees,
e.g., ±5 degrees for urban macro cells and ±2 degrees for
urban micros cells in the 3GPP model [4]. On the other hand,
models used for estimating channels, use superpositions of few
distinct propagation paths, each of which is described by its
angle and delay, see, e.g., [5]–[7]. In both cases, the resulting
channel vector exhibits a low-dimensional structure, which can
possibly be exploited to improve channel estimation.

There are many different ways to describe this low-
dimensional structure and then there are different algorithms
that find a representation of the channel vector in such a
structure. The standard example is to assume that the channel
can be described with few columns of an oversampled discrete
Fourier transform (DFT) matrix, i.e., few steering vectors that
correspond to the angles of either the propagation paths or the
centers of the clusters of scatterers. However, this is neither
the only way to describe this low-dimensional structure, nor

is it necessarily the best way. For example, let the channel
h be generated by 20 equal-power sub-paths with random
coefficients at angles between −4.3101 and 4.3101 degrees
(the urban microcell scenario in [4]). Perform a Karhunen-
Loève expansion (KLE) of h and only retain the k strongest
components. By definition of the KLE, an approximation of
a realization of a channel vector in the subspace spanned by
those k vectors yields a smaller error (in the mean) than an
approximation in the subspace spanned by any (a priori fixed)
set of k DFT vectors. In this simple case, where clusters only
occur around zero degrees, there is, thus, a more appropriate
dictionary than the DFT dictionary.

The goal of the present paper is to compare different forms
of sparse representations suitable for use with 3GPP spatial
channel models (SCM). In particular, we investigate whether
sparse combinations of columns of the oversampled DFT matrix
are efficient to describe channels that are generated according
to the clustered-scatterers channel model or if there are other,
more efficient dictionaries.

II. PROBLEM FORMULATION

Let

a(θ) =
1√
N

(
1 exp[iπ sin θ] · · · exp[iπ(N − 1) sin θ]

)T
denote the normalized steering vector, i.e., the signal recorded
by an ULA of N sensors with inter-element spacing λ/2 at
a given time-instant if a source in the far-field of the array
and at an angle θ transmits a harmonic signal with wavelength
λ. Our goal is to find an efficient sparse representation of a
channel vector

h =
∑
θ∈Θ

yθa(θ) ∈ CN (1)

which is given as the superposition of steering vectors with
angles in the set Θ. We assume that the set Θ is large, i.e.,
there are many propagation paths, but localized, i.e., all angles
are relatively similar. For example, the angles in Θ can be
obtained by drawing P samples from a Laplace distribution
with mean δ and standard deviation σ and the coefficients yθ
are selected as unit modulus with random phase. This model
is used in the 3GPP SCM model [4]. The distribution of the
parameters δ, σ, and P depends on the chosen scenario, e.g.,
urban macro cell (P = 20, δ ∼ U [−40◦, 40◦], σ = 5◦), urban
microcell (P = 20, δ ∼ U [−40◦, 40◦], σ = 2◦), etc.



A dictionary is a fat matrix D ∈ CN×M of unit-norm vectors,
e.g., an oversampled DFT matrix. For a given dictionary, we
are interested in evaluating

E
[
min
x
‖h−Dx‖22 s.t. ‖x‖0 ≤ k

]
(2)

where the expectation is with respect to the random variable
h, i.e., the set Θ and the coefficients yθ. By ‖x‖0 we denote
the cardinality of the vector x. By solving the optimization
problem within the expectation operator, we obtain the best
k-sparse representation of h in the given dictionary D and by
taking the expectation we obtain the mean approximation error
of the channel vector for the best k-sparse approximation in
the given dictionary.

Our first question is whether for a given parametrization of
the distribution of the channel vector h and a given sparsity
parameter k, there is a dictionary D other than an oversampled
DFT matrix, which has a smaller mean approximation error.
However, as it is computationally prohibitive to find the optimal
k-sparse approximation of h, we need to replace (2) with an
approximation

E
[
‖h−Dx(h,D)‖22

]
(3)

where x(h,D) are the coefficients of a suboptimal k-sparse
approximation of h in the dictionary D as found, e.g., by the
OMP algorithm, the IHT algorithm, or `1-minimization [8]–
[10].

The sparsity constraint ‖x‖0 ≤ k can also be written as
a union-of-subspaces constraint x ∈ Σk, where Σk are all
k-dimensional subspaces of CM spanned by k canonical basis
vectors. The vector h is then approximated in the union of
subspaces given as the image of Σk under D. Our second
question is whether there is another union-of-subspaces model
Γk, for which the expected approximation error

E

[
min
ĥ
‖h− ĥ‖22 s.t. ĥ ∈ Γk

]
is small. An example is the fusion frame formalism [11], where
ĥ is assumed to admit an approximation by k/k0 vectors, each
of which lies in a k0-dimensional subspace.

III. ALTERNATIVE DICTIONARIES

In this section, we present two approaches by which
alternative dictionaries are obtained. First, we show how the
KLE of the channel vector can be calculated for a fixed
cluster center δ and a small standard deviation σ. We obtain
an alternative dictionary by keeping only the M2 strongest
components and repeating this process for M1 different cluster
centers. Second, we show how dictionary learning can be used
to find a dictionary that is (sub-)optimally adapted to observed
channel vectors.

A. Dictionary derived from Karhunen-Loève expansion

Let θ be a Laplace random variable with mean 0◦ and
standard deviation σ with a probability density function (pdf)
pθ as shown in Fig. 1 (for σ = 2◦). We calculate the KLE
of a vector h distributed as in (1). Let yθ = exp[iπϕ]/

√
P

−10 −5 0 5 10
0

0.1

0.2

0.3

Angle θ

p
θ
(θ

)

Fig. 1. Probability density function of a Laplace random variable with 2◦

standard deviation. The dashed lines show the grid points of an orthogonal
DFT matrix with 64 columns
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Fig. 2. Cumulative variance for the 30 largest principal components

with ϕ ∼ U[−1,1] have unit modulus and uniformly distributed
phase. Clearly, E[yθ] = 0, E[|yθ|2] = P−1, and E[yθy

∗
θ′ ] = 0

for independent variables yθ and yθ′ . It follows that E[h] = 0
and the covariance matrix is given by

Var[h] = E[hhH ] =
∑
θ,θ′∈Θ

E[yθy
∗
θ′ ]E[a(θ)a(θ′)H ]

=
1

P

∑
θ∈Θ

E[a(θ)a(θ)H ]

= E[a(θ)a(θ)H ] .

We calculate the element on the nth off-diagonal of this matrix
analytically: Let b = σ[rad]/

√
2 denote the scale parameter of

the Laplace distribution of θ. We obtain

E[a(θ)a(θ)H ]m,m+n =
1

N

∫
pθ(θ) exp[−iπn sin θ] dθ

=
1

2Nb

∫
exp[−|θ|/b− iπn sin θ] dθ

≈ 1

2Nb

∫
exp[−|θ|/b− iπn θ] dθ

=
(
N(1 + (bnπ)2)

)−1
.



Algorithm 1 Generation of SCM dictionary
1) Input: Standard deviation σ, Number of cluster centers

M1, Dimension of approximating subspace M2

2) Calculate eigendecomposition from covariance matrix with
entries N(1 + (bnπ)2))−1 at nth off-diagonal, where b =
σ[rad]/

√
2

3) Let D0 be the matrix composed of eigenvectors corre-
sponding to the M2 largest eigenvalues

4) Set dm = −1 + (2m− 1)/M1 (uniform grid in [−1, 1])
5) Set Dm = diag(a(asin(dm))) ·D0 (rotate D0 to center

dm)
6) Set D = [D1 D2 . . . DM1

]

where we used sin θ ≈ θ for small θ. This approximation is
very accurate for small σ, e.g., σ = 2◦, because exp(−|θ|/b)
is rapidly decreasing, see Fig. 1.

The cumulative sum of ordered eigenvalues of the covariance
matrix of h for N = 64 antennas is shown in Fig. 2. It
can be seen that a random channel vector h can be well
approximated by a low-dimensional subspace. By taking
the, e.g., eigenvectors corresponding to the eight strongest
eigenvalues of the covariance matrix, we obtain vectors for
a dictionary corresponding to a cluster of scatterers centered
at 0◦ and with standard deviation σ. We obtain the complete
dictionary by rotating this principal subspace, which is centered
at 0◦, to a total of M1 grid points. For reasons of symmetry
we choose equi-spaced grid points between −1 and 1 in the
sine-space of the angle. The algorithm is described in Alg. 1.
We refer to the matrix D, which is the output of the algorithm,
as the SCM-dictionary, i.e., the dictionary designed according
to the SCM.

B. Learning the best dictionary

In this section, we plan to describe the K-SVD algorithm [12],
which finds a suboptimal solution to the problem

min
X,D
‖H −DX‖2F s.t. ‖xi‖0 ≤ k ,

where the columns of the matrix H are realizations of channel
vectors according to the SCM and where xi denotes the ithe
column of X . Here, the dictionary D is subject to optimization
and the goal is to find a dictionary that is capable of concisely
describing the observed data H . A suboptimal solution is found
with an alternating optimization algorithm. The algorithm can
be initialized with an oversampled DFT matrix, D0 = DDFT.

IV. ALTERNATIVE SUBSPACES

In this section, we plan to describe alternative low-rank
descriptions of the channel vector. An example is given by the
fusion frame formalism [11].

V. SIMULATION RESULTS

We provide Monte Carlo estimates of the mean approxima-
tion error (3) for the different methods of obtaining a low-rank
approximation of channel vectors h that are generated according
to the SCM. In this extended abstract, the results are limited
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Fig. 3. Mean approximation error of order k = 8 for various SNR values
and based on channels with 2◦ angular standard deviation

to a comparison between the SCM dictionary and the DFT
dictionary and for the OMP and IHT algorithms. We plan to add
simulations for learned dictionaries as well as for other sparse
approximation algorithms, e.g., `1-minimization. Moreover, we
plan to add results obtained from using different forms of low-
rank approximations, e.g., the fusion frame formalism, where
the channel vector is approximated by few low-dimensional
subspaces (instead of k one-dimensional subspaces).

Let the number of antennas be N = 64 and let the vector h
be generated according to

h′ =
∑
θ∈Θ

yθa(θ) + v

h =
h′

‖h′‖

where we added noise v ∼ NC(0,SNR−1I) to test the
robustness of the methods from deviations of the ideal Laplace
model. The set Θ is obtained by first drawing the cluster center
δ from a uniform distribution on [−40◦, 40◦] and then drawing
P = 20 angles from the Laplace distribution centered at δ and
with standard deviation σ. The coefficients yθ are obtained by
drawing a phase ϕ ∼ U[−1,1] and setting yθ = exp[iπϕ]/

√
P

for each θ. The SCM dictionary D is obtained by running
Alg. 1 with σ = 2◦,M1 = N,M2 = 8, i.e., the dictionary
consists of M1M2 = 512 elements and is tailored to a
standard deviation of 2◦. The DFT dictionary is eight times
oversampled, i.e., it consists of 512 steering vectors on the
grid {−1,−1 + 2/512,−1 + 4/512, . . . , 1 − 2/512}, which
is uniform in the sine-space of the angle. In particular, both
dictionaries have the same size.

In this extended abstract, we provide simulation results for
the OMP and IHT algorithms as suboptimal estimators in (3)
and both are used with either of the dictionaries. We calculate
Monte Carlo estimates of the quantity

E
[
‖h−Dx(h,D)‖2

]
,
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Fig. 4. Mean approximation error for various orders k at SNR=40 dB and
based on channels with 2◦ angular standard deviation
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Fig. 5. Mean approximation error of order k = 8 at SNR=40 dB and for
channels with varying angular standard deviation σ

i.e., the error between the channel and the estimate. The curves
in Figs. 3–5 are based on 1000 realizations of channel vectors
for various SNR values, approximation orders k, and also for

different standard deviations σ to test the performance and
robustness of the various choices of dictionaries.

The results show that both dictionaries show similar per-
formance if the OMP algorithm is used, i.e., the dictionary
of steering vectors seems to be a good choice for the SCM
used here. In contrast, the IHT algorithm (we use a standard,
non-normalized version) is sensitive to the choice of dictionary
and shows better performance with the SCM dictionary.
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