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Non-cooperative power control for energy-efficient
and delay-aware wireless networks

Alessio Zappone, Member, IEEE, Luca Sanguinetti, Senior Member, IEEE, Mérouane Debbah, Fellow, IEEE

Abstract—This work studies the problem of power control for
energy efficiency maximization (measured in bit/Joule) in wireless
networks. Unlike most previous related works, a new formulation
is taken, which jointly considers the energy efficiency and the
delay of the communication, also enforcing quality-of-service
constraints. A non-cooperative game-theoretic approach is taken,
and feasibility conditions are derived for the game best-response
problems. Under the assumption that the feasibility conditions are
met, it is shown that the game admits a unique Nash equilibrium,
which is guaranteed to be reached by implementing the game
best-response dynamics. Based on these result, a convergent
power control algorithm is derived, which can be implemented
in a fully decentralized fashion.

Index Terms—Interference channel, power control, energy effi-
ciency, delay-aware communications, game theory, heterogeneous
networks.

I. INTRODUCTION

Currently, the percentage of the global world CO2 emissions
due to the information communication technologies (ICT)
is estimated to be 5% [1]. While this may seem a small
percentage, it is rapidly increasing, and the situation will
escalate in the near future with the advent of 5G networks. It
is anticipated that the number of connected devices will reach
50 billions by 2020 [2], and that a 1000x data rate increase is
required to serve so many connected devices [3]. However, it is
also clear that obtaining the required 1000x by simply scaling
up the transmit powers is not possible, as it would result in an
unmanageable energy demand, and in greenhouse gas emis-
sions and electromagnetic pollution above safety thresholds.
Instead, the data rate must be increased by a factor 1000,
at a similar power consumption as in present networks. This
requires a 1000× increase of the energy efficiency (EE), i.e.,
the efficiency with which ICT systems use energy to transmit
data [4]. This is of paramount importance for operators (e.g.,
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Paris-Saclay, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France.

M. Debbah is with the Large Systems and Networks Group (LANEAS),
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to save on electricity bills) and end-users (e.g., to prolong the
lifetime of batteries) and thus has motivated a great interest
in studying and designing power control strategies taking into
account the cost of energy.

The focus of this work will be on distributed algorithms
for energy-efficient power control, in which the mobile users
behave in a self-organizing, non-cooperative fashion. With
respect to centralized methods, distributed approaches allow
for a limited feedback overhead and require less computational
complexity. In the context of non-cooperative energy efficiency
maximization, [5] studies the Nash equilibrium (NE) problem
for a group of players aiming at maximizing their own EE
while satisfying power constraints in single and multi-carrier
systems. A quasi-variational inequality approach is taken in
[6], where power control algorithms for networks with het-
erogenous users are developed. In [7], [8] a similar problem is
considered, with regard to relay-assisted systems. However, all
of these previous works do not account for rate requirements,
and so the resulting users’ rates at the equilibrium could
be fairly low. Incorporating target rates changes the setting
drastically since any user’s admissible power allocation policy
depends crucially on the policies of all other users. First results
in this context are provided in [9] wherein Nash equilibria are
found to be the fixed points of a water-filling best-response
operator whose water level depends on the rate constraint and
circuit power, and in [10] which addresses the non-cooperative
energy-efficient maximization problem with reference to some
candidate technologies for 5G networks.

However, the aforementioned papers, as most previous
works, focus only on energy efficiency optimization, without
accounting for communication delays. Notable exceptions are
[11], in which non-cooperative energy-efficient maximization
is carried out subject to minimum delay guarantees and [12],
which proposes a new performance metric accounting at the
same time for both delay and energy efficiency. In light of the
described state of the art, this work makes the following major
contributions:
• The framework proposed in [12] is extended to include

quality-of-service (QoS) constraints in terms of minimum
bit error rate or minimum achievable rate. In addition,
a more general users’ signal to interference plus noise
ratio (SINR) expression is considered, which allows one
to encompass some of the emerging technologies for 5G.

• A non-cooperative game formulation is taken, and it is
proved that the energy-efficient non-cooperative power
control problem has a unique NE which can be reached
by a fully distributed algorithm based on the game
best response dynamics (BRD), provided some feasibility
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conditions are fulfilled.
• Numerical results are provided with reference to a mas-

sive multiple-input multiple-output (MIMO) system, to
show the merits of the proposed algorithm when used in
the context of candidate 5G technologies.

II. SYSTEM MODEL

Consider the uplink of a wireless synchronous interference
network, with K transmitters and M receivers and let the
SINR of user equipment (UE) k take the following general
form:

γk =
pkαk

σ2
k + φkpk +

∑
j 6=k pjβk,j

. (1)

In (1), pk is the transmit power of UE k, αk is the k-
th link’s channel power gain, σ2

k is the noise power at the
receiver associated to UE k, {βj,k} are multi-user inter-
ference coefficients depending on the other links’ channel
coefficients as well as on global system parameters, and φk
is a self-interference coefficient which depends on the k-
th user’s channel and possibly on global system parameters.
The presence of non-zero coefficients {φk} makes (1) more
general than the traditional SINR expression encountered in
wireless networks, which can be obtained by simply setting
φk = 0. The SINR (1) arises in several relevant instances of
wireless communication systems such as hardware-impaired
networks, receivers with imperfect channel state information
(CSI) estimation, relay-assisted communications, and systems
affected by inter-symbol interference [7], [10], [13]. In par-
ticular, [10] shows how (1) arises when adopting candidate
5G technologies like cooperative communications and massive
MIMO. Indeed, it should be stressed that (1) is not limited to
single-antenna systems, but also models vector channels with
matched filtering or zero forcing detectors. Additionally, in
multi-carrier networks, (1) models the SINR achieved on each
transmit subcarrier individually and forms the basis for system
analysis and design [10]. In the considered system model, two
relevant performance metrics are the transmission delay and
the energy consumption of the communication.

As for the transmission delay, following the approach pro-
posed in [12], we consider a system in which packets arrive at
the transmit queue of UE k independently from one another
and from transmission success and failure events. Under
these assumptions, denoted by Sk(γk) and R the probability
of correct packet reception and the communication rate in
bit/s, respectively, the average time required for the reliable
transmission of a data packet is expressed as

cd,k =
1

R(Sk(γk)− λk)
, (2)

wherein λk is a delay parameter accounting for the additional
delay due to queuing and buffering at the transmit side.
Otherwise stated, the communication delay depends on both
the time necessary for the correct packet reception, and on the
waiting time to receive the packet from the upper layer. In
addition, let us explicitly observe that (2) represents a valid
delay only if Sk(γk)− λk > 0.

The trade-off between reducing energy consumptions and
obtaining fast and reliable communication is mathematically

captured by considering the cost-benefit ratio of the com-
munication, in terms of consumed energy and corresponding
amount of data reliably decoded at the receiver. This leads to
considering the quantity

ce,k =
µkpk + Pc,k
RSk(γk)

, (3)

wherein µk = 1/ηk, with ηk the efficiency of the transmit
amplifier of UE k and Pc,k is the static hardware power
dissipated in all other circuit blocks required to operate the
k-th communication link. Thus, (3) is measured in Joule per
bit, and represents the amount of the energy to be spent to
transmit a given amount of data, or, otherwise stated, as the
energy cost per reliably transmitted bit.1

As for the particular expression of Sk, depending on the
particular communication system, it can be a very involved
function, even not available in closed-form. However, several
approximations of the true probability of packet reception have
been proposed in the literature, one popular one being [7],
[12]:

Sk(γk) = 1− e−δkγk , (4)

with δk > 0 a parameter which can be chosen to refine
the approximation according to the different system under
analysis. However, the analysis to follow is not limited to
the expression in (4), and actually is much more general.
Specifically, in the sequel we make the following general
assumptions on S(γk):

1) Sk(γk) ≥ 0, for all γk ≥ 0, with Sk(0) = 0, i.e. a non-
negative amount of data is transmitted for any γk ≥ 0,
but no data is sent if no transmit power is used, and in
this case the energy cost (3) tends to infinity.

2)
Sk(γk)

γk
→ 0 for γk → +∞, i.e. by using an infinite

amount of power, the energy cost diverges.
3) Sk(γk) is increasing for all γk ≥ 0, i.e. more data can

be sent by spending more power.
4) Sk(γk) is concave for all γk ≥ 0.

It is easy to check that (4) fulfills Properties 1-4. In addition,
Properties 1-4 also hold if RSk(γk) is replaced by the channel
achievable rate W log2(1 + γk). Note that in this case the
measure units of both (2) and (3) do not change, since the
channel achievable rate can be regarded as an upper-bound to
the amount of bits which can be reliably transmitted per unit
of time. Indeed, the achievable rate in the context of energy
efficiency is also a very popular choice [5], [15].

It should also be observed that, while Properties 1-3 stem
from natural physical considerations as explained above, Prop-
erty 4 is not necessarily fulfilled by all physically meaningful
functions Sk(·). Indeed, another popular approximation of the
probability of correct packet reception is

Sk(γk) = (1− e−γk)M , (5)

with M being the number of bits in the packet. Equations (4)
and (5) are closely related, and indeed both use the exponential

1The quantity in (3) can be seen to be the inverse of the so-called energy
efficiency of link k, which is a more widely used, yet equivalent, metric to
measure the efficiency with which energy is used to transmit data [14].
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function to approximate the true probability of correct packet
reception. However, (5) is not a concave function in γk and
therefore is not included in the framework developed in this
paper.

Finally, the problem of optimizing both the energy and delay
costs of the communication can be cast as a multi-objective
optimization problem in which the two objective to minimize
are (2) and (3) for each link, respectively [16]. Applying the
well-known scalarization technique, an overall cost function
for the generic link k can be formulated by taking a linear
combination of the delay and energy costs, namely:

ck = ρkcd,k + ce,k =
1

R

(
ρk

Sk(γk)− λk
+
µkpk + Pc,k
Sk(γk)

)
,

(6)
wherein ρk is a positive coefficient2 weighting the relative
importance of the delay cost cd,k with respect to the energy
cost ce,k.

Taking a distributed approach to the problem of power
control, each UE k aims at optimizing its own system per-
formance by locally minimizing its cost function (6). This
problem can be well-modeled by considering the network
UEs as independent decision-makers which engage in the non-
cooperative game in normal form:

G =
{
K, {Ak}Kk=1, {ck}Kk=1(pk,p−k)

}
, (7)

wherein K = {1, . . . ,K} is the players’ set, p−k =
[p1, . . . , pk−1, pk+1, . . . , pK ], while Ak is the k-th player’s
action set, which defines the feasible set in which player k
can choose his transmit power pk. In particular, the feasible
powers are limited by a maximum transmit power Pmax,k and
a minimum QoS constraint θk and therefore it holds:

Ak = {pk ∈ R : pk ≤ Pmax,k , Sk(γk) ≥ θk} (8)

Given the above notation, the best response (BR) of player k
to a given power vector p−k chosen by the other players is
determined as the solution of the problem

min
pk

ck(pk,p−k) (9a)

s.t. pk ≤ Pmax,k (9b)
Sk(γk) ≥ θk (9c)

The coupled problems (9) for k = 1, . . . ,K define the BRD
of G, and any fixed point, if any, of the BRD is a NE of G. The
main challenges posed by the game (7) can be summarized as
follows:
• Unlike what happens in regular non-cooperative games, in

which only the players’ cost functions are coupled in the
players’ strategies, both the cost functions and the action
sets of G are coupled. Indeed, Ak depends on the SINR
γk and therefore on the other players’ transmit powers. A
non-cooperative game in normal form in which both the
cost functions and the action sets are coupled is referred
to as a generalized non-cooperative game [17], [18], and
its analysis is typically more involved than for regular
non-cooperative games.

2Note that ρk is a dimensional constant measured in J/s, in order to ensure
that ρkcd,k has the same dimensions as ce,k .

• Unlike most previous related literature, the cost func-
tions ck are not given by the ratio of a convex over a
concave function (or vice versa for utility maximization
problems). This property was used in previous works
to immediately conclude that the cost functions were
quasi-convex (or quasi-concave for utility maximization
problems), which is one of the required conditions for
the existence of an NE. In our case, expressing (6) as
a single fraction does not lead to a cost function with
a convex numerator and a concave denominator. This
further complicates the analysis of (7).

• A third challenge in the analysis of (7) lies in the SINR
expression (1), which is more involved than the traditional
SINR expression in cellular networks, due to the presence
of non-zero coefficients {φk}k. This turns the k-th user’s
SINR γk into a fractional function of the k-th user’s
power, whereas instead, the canonical SINR expression
is linear in the useful power pk.

In Section III sufficient conditions will be derived which
guarantee the existence of a unique NE for the game (7), and
the convergence of its BRD.

III. DISTRIBUTED POWER CONTROL

Plugging the expression of the cost functions into (9), the
BRD of (7) is formulated as

min
pk

ρ̃k
Sk(γk)− λk

+
pk + P̃c,k
Sk(γk)

, ∀ k = 1, . . . ,K (10a)

s.t. pk ≤ Pmax,k , ∀ k = 1, . . . ,K (10b)
Sk(γk) ≥ θk , ∀ k = 1, . . . ,K, (10c)

where, without loss of generality, the amplifier non-ideality
factor µk has been included into ρk and Pc,k, i.e. ρ̃k = ρk/µk,
P̃c,k = Pc,k/µk, and the inessential constant R has been
neglected. Also, we assume θk > λk, recalling that the SINR-
range of interest is γk > S−1(λk).

In order to develop a distributed power control algorithm, it
is necessary to characterize the properties of the generalized
non-cooperative generalized game (7). Specifically, we are
interested in answering the following questions:
• Are the best-response problems in (10) always feasible?
• Does the non-cooperative generalized game (7) admit an

NE? If yes, is there a unique NE?
• Is the BRD (10) guaranteed to converge from any initial-

ization point?
Specific answers to the above questions are provided by the
following propositions, whose proofs are omitted for the sake
of brevity in this extended abstract. More details will be
provided in the final version of the paper.

Proposition 1: A sufficient condition for the best-response
problem (9) to be feasible for any p−k is

Sk

(
αk
φk

)
> θk (11)

Pmax,k ≥
S−1k (θk)

(
σ2
k +

∑
j 6=k βk,jPmax,j

)
αk − S−1k (θk)φk

. (12)
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Proposition 2: Assume the best-response problem (9) is
feasible. Then, its solution is given by

p∗k = min{Pmax,max{Pmin,k, p̄k}} , (13)

with Pmin,k =
S−1k (θk)ωk

αk − S−1k (θk)φk
, while p̄k is the unique

stationary point of the objective (9a). Moreover, if the best-
response problem (9) is feasible for all k, then the non-
cooperative generalized game (7) admits an NE.

Proposition 3: Assume the best-response Problem (9) is
feasible for all k, and that Sk is such that for all k it holds

Sk(γk)S
′

k(γk)− γk(S
′

k(γk))2 + γkSk(γk)S
′′

k (γk) ≤ 0 . (14)

Then, the non-cooperative generalized game (7) admits a
unique NE, and the game BRD is guaranteed to converge to
the unique NE.

Based on the above results, a distributed power control
algorithm can be obtained by implementing the BRD (10) until
convergence.

Remark 1: At a first sight, it would seem that implementing
the BRD (10) in a distributed fashion is not possible, since
a player k needs to know the other players’ channels and
transmit powers to compute its best-response. More in detail,
each player k needs to know the parameter

ωk = σ2
k +

∑
j 6=k

pjβk,j , (15)

which depends on the interference coefficients {βk,j}j and on
the interfering powers {pj}j , which are not locally available
to player k. However, this issue can be overcome as explained
next.
Solving for ωk in (1), we obtain the following equivalent
expression for ωk:

ωk =
αkpk
γk
− φkpk . (16)

The advantage of this reformulation is that γk is locally
available for link k. Indeed, γk can be measured at the receiver
associated to UE k, and fed back by a return downlink
channel which is typically available in wireless communication
systems. We stress that such an approach does not require
any overhead communication between a given receiver and
the UEs associated to different receivers, but only between
a receiver and its associated UEs. Finally, as for the other
parameters αk and φk, they can be locally computed as
they only depend on the k-th UE’s own channel coefficient.
Bearing this in mind, the formal pseudo-code for the proposed
distributed power allocation algorithm is stated as in Algorithm
1, which is guaranteed to converge to the unique NE of G, by
virtue of Proposition 3.

IV. NUMERICAL RESULTS

In our simulations, we have considered a multi-cell system
with L = 4 cells, and 3 users per-cell, for a total of K = 12
users. Each cell is a square with edge 500 m which is served
by a base station (BS) with N = 128 antennas. In each
cell the users are randomly distributed, with a minimum
distance of 50 m from the service base station. All users

Algorithm 1 Distributed Power Control
Initialize pk to feasible values for k = 1, . . . ,K;
Compute αk and φk for k = 1, . . . ,K;
repeat

for k = 1 to K do
ωk = αkpk

γk
− φkpk;

pk = min{Pmax,max{Pmin,k, p̄k}};
end for

until Convergence

have the same maximum feasible power Pmax and hardware-
dissipated power Pc = 10 dBm. The receive noise power
is σ2 = FBN0, wherein F = 3 dB is the receive noise
figure, B = 180 kHz is the communication bandwidth, and
N0 = −174 dBm/Hz is the noise spectral density at the
receiver. All channels are generated according to Rayleigh
fading model with path-loss model as in [19]. Both hardware
impairments at the mobile users, and channel estimation errors
at the BSs are assumed and modeled following the model in
[10], with channel estimation accuracy factor τ = 0.3 and
the hardware impairment factor ε = 0.1. It was shown in
[10] that such a scenario leads to an SINR expression which
takes the same form as in (1), for particular expressions of the
coefficients {αk}k, {φk}k, {βk,j}k,j . The exact formulae of
the coefficients can be found in [10]. Here it suffices to remark
that, according to the general assumptions made in Section II,
{αk}k and {φk}k depend only on the k-th user’s own channel
and on global system parameters, whereas {βk,j}k,j depend
on the interfering users’ channels. For all k = 1, . . . ,K, the
delay parameter has been set to λk = λ = 0.5, the weight
factor to ρk = ρ = 1 J/s, while the adopted efficiency function
was:

RSk(γk) = R(1− e−γk) , (17)

with the communication rate R = 100 kbit/s.
In Fig. 1 we compare the achieved value of the cost function

(6), averaged over the K users, versus Pmax, for the following
schemes:

(a) Algorithm 1, with θk = θ = 1 − 10−6 for all k. In
case one best-response is unfeasible, we relax the QoS
constraints to θ = 0;

(b) Algorithm 1, with θk = θ = 1 − 10−4 for all k. In
case one best-response is unfeasible, we relax the QoS
constraints to θ = 0;

(c) Algorithm 1, without QoS constraints, i.e. θ = 0.
As expected, the results indicate that the minimum cost
function is obtained when no QoS constraints are enforced.
Instead, enforcing QoS constraints inevitably degrades the
performance in terms of the cost function (6). In particular,
it is seen that for low values of Pmax, all schemes perform
similarly, but this happens because in this range the QoS are
not feasible and therefore are relaxed, falling back to the
unconstrained case. Instead, for larger values of Pmax, the
cost function increases as the QoS constraint becomes more
demanding, since the more demanding the QoS constraint
is, the more the feasible sets of the best-response problems
shrink. However, enforcing the QoS constraints allows one to



5

Pmax [dBW]
-30 -25 -20 -15 -10 -5 0

µ
J/

b
it

0.178

0.1782

0.1784

0.1786

0.1788

0.179

0.1792

0.1794

0.1796

(a) Algorithm 1 with θ = 1− 10−6

(b) Algorithm 1 with θ = 1− 10−4

(c) Algorithm 1 with θ = 0

Fig. 1. K = 12;N = 128; ε = 10−1; τ = 0.3. Average cost versus Pmax

for: (a) Algorithm 1 with θ = 1−10−6; (b) Algorithm 1 with θ = 1−10−4;
(c) Algorithm 1 with θ = 0.

TABLE I
K = 12;N = 128; ε = 10−1; τ = 0.3. AVERAGE NUMBER OF REQUIRED

ITERATIONS TO REACH CONVERGENCE VERSUS Pmax FOR: (A)
ALGORITHM 1 WITH θ = 1− 10−6 ; (B) ALGORITHM 1 WITH

θ = 1− 10−4 ; (C) ALGORITHM 1 WITH θ = 0.

QoS θ = 1− 10−6 θ = 1− 10−4 θ = 0
Pmax = −28 [dBW] 3.11 3.11 3.11
Pmax = −24 [dBW] 3.91 3.91 3.91
Pmax = −20 [dBW] 4.38 4.36 4.34
Pmax = −16 [dBW] 4.93 4.90 4.80
Pmax = −12 [dBW] 5.20 5.10 5.06
Pmax = −8 [dBW] 5.35 5.41 5.29
Pmax = −4 [dBW] 5.89 5.71 5.74
Pmax = 0 [dBW] 6.17 6.01 5.83

guarantee minimum probabilities of correct packet reception to
each user in the system. For the case at hand, Scheme (a) and
(b) ensure a probability of error lower than 10−6 and 10−4,
respectively.

Next, we analyze the computational complexity of Algo-
rithm 1. A similar scenario as in Fig. 1 has been considered,
reporting in Table I the average number of iterations required
by Algorithm 1 to converge, for Schemes (a), (b), and (c).
The rule ‖p(n)−p(n−1)‖2/‖p(n)‖2 ≤ 10−4 is used to declare
convergence, with p(n) the vector of the players’ powers after
iteration n of Algorithm 1. It is seen that convergence occurs
after a handful of iterations, which tends to increase for larger
Pmax, since increasing Pmax results in a larger feasible set.
This shows that the proposed non-cooperative approach has a
very limited computational complexity, thereby lending itself
to a simple implementation in practical systems.
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