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Abstract—In order to cope with the large path-loss exponent of
mm-Wave channels, a high beamforming gain is needed. This can
be achieved with small hardware complexity and high hardware
power efficiency by Hybrid Digital-Analog (HDA) beamforming,
where a very large number M � 1 of antenna array elements
requires only a relatively small m � M number of A/D
converters and modulators/demodulators. As such, the estimation
of mm-Wave MIMO channels must deal with two specific
problems: 1) high Doppler, due to the large carrier frequency;
2) impossibility of observing directly the M -dimensional channel
vector at the antenna array elements, due to the mentioned
HDA implementation. In this paper, we consider a novel scheme
inspired by recent results on gridless multiple measurement
vectors problem in compressed sensing, that is able to exploit
the inherent mm-Wave channel sparsity in the angular domain
in order to cope with both the above problems simultaneously.
Our scheme uses past pilot-symbol observations in a window
of length T in order to estimate a low-dimensional subspace
that approximately contains the channel vector at the current
time. This subspace information can be used directly, in order
to separate users in the spatial domain, or indirectly, in order to
improve the estimate of the user channel vector from the current
pilot-symbol observation.

1 INTRODUCTION

Millimeter wave (mm-Wave) communication is a promising
technology for the next generation of WLANs and outdoor
cellular systems [1, 2]. In order to cope with the large path-
loss exponent of mm-Wave channels, a high beamforming gain
is needed. While large antenna arrays can be implemented
with a small form factor due to the small wavelength, it
is clear that conventional all-digital baseband processing as
proposed for large MIMO systems at lower frequencies [3–5]
is not a suitable solution here. In fact, because of the large
signal bandwidth available at mm-Waves, the demodulation
and quantization of the signal at each antenna array element
would require an enormous A/D front-end bit-rate, with corre-
sponding unacceptable hardware power consumption. For this
reason, a promising approach for mm-Wave communication
is the Hybrid Digital-Analog (HDA) beamforming, where the
beamforming function is achieved in two stages. The first stage
uses as analog reconfigurable beamforming network operating
in the RF domain, and achieves beamforming gain and some
coarser multiuser interference rejection while reducing the
signal dimension from M � 1 (number of antenna array
elements) to some m � M (number of RF chains and A/D
converters). The second stage, processes the m-dimensional

baseband signal in the digital domain in order to achieve
further multiuser MIMO spatial multiplexing gain [6, 7].

For multiuser spatial multiplexing, the base station needs to
estimate the M -dimensional channel vectors of all the users.
Channel estimation for mm-Wave MIMO channels must deal
with two specific problems: 1) potentially rapid variations of
the small-scale fading coefficients, due to the large carrier
frequency; 2) impossibility of observing directly the M -
dimensional channel vectors of the users at the antenna array
elements, due to the mentioned HDA implementation. Fortu-
nately, mm-Wave channels have a special feature that helps to
cope with both the above problems simultaneously, namely,
the resulting channel vectors are typically very sparse in the
angular domain, since only the Line-of-Sight path and/or a few
dominant multipath components convey significant power.

In this paper, we consider a novel scheme inspired by recent
results on gridless multiple measurement vectors problem
in compressed sensing, that exploits the inherent mm-Wave
channel sparsity in the angular domain in order to cope with
both the above problems. In this scheme, we exploit the past
pilot-symbol observations in a window of length T in order
to estimate a low-dimensional subspace that approximately
contains the channel vector at the current time slot. This
subspace information can be used directly, to separate users
in the spatial domain, or indirectly, to improve the estimate of
the user channel vector in the current time slot. Simulations
show very encouraging preliminary results, and in particular
confirm that the channel subspace information obtained over
a window of past measurements provides significant improve-
ments with respect to the conventional “one-shot” techniques,
that estimate the channel vectors by using only the current
pilot observation.

Notations: We denote vectors by boldface small letters
(e.g., x), matrices by boldface capital letters (e.g., X), scalar
constant by non-boldface letters (e.g., x or X), and sets by
calligraphic letters (e.g., X ). The i-th element of a vector x
and the (i, j)-th element of a matrix X will be denoted by
[x]i and [X]i,j respectively. We denote the Hermitian and the
transpose of a matrix X by XH and XT, respectively. The
same notation is used for vectors and scalars. We use T+ for
the space of Hermitian semi-definite Toeplitz matrices. For an
x ∈ CM , we denote by T(x) a Hermitian Toeplitz matrix
whose first column is x. We always use I for the identity
matrix, where the dimensions may be explicitly indicated for
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the sake of clarity (e.g., Ip denotes the p× p identity matrix).
For an integer k ∈ Z, we use the shorthand notation [k] for
the set of non-negative integers {0, 1, 2, . . . , k−1}, where the
set is empty if k < 0.

2 MODEL AND PROBLEM STATEMENT

2.1 Channel Model

Motivated by mm-Wave channel measurements and models
[2], we consider a simple propagation model for the wireless
scattering channel in which the transmission between a single-
antenna user and the M -antenna base-station array occurs
through p�M multipath components (see Fig. 1). The base-
station is equipped with a Uniform Linear Array (ULA), with
spacing d = λ

2 sin(θmax) between its elements, with λ being the
wave-length, and scans the angular range [−θmax, θmax] for
some θmax ∈ (0, π/2). We denote by a(θ) ∈ CM the array
response for the AoA θ ∈ [−θmax, θmax], whose k-th compo-
nent, is given by [a(θ)]k = ejk

2πd
λ sin(θ) = ejkπ

sin(θ)
sin(θmax) . We
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Fig. 1: Scattering channel with discrete angle of arrivals.

consider a discrete-time model, where the channel vector of a
user at time t is given by

h[t] =

p∑
`=1

w`[t]a(θ`), (1)

where θ` denotes the angle-of-arrival (AoA) of the `-th mul-
tipath component and where w`[t] is the corresponding small-
scale fading coefficient, assumed ∼ CN (0, σ2

` ). According to
the well-known Wide-Sense Stationary Uncorrelated Scatter-
ing (WSSUS) model, the coefficients w`[t] are WSS processes
with respect to t and mutually uncorrelated with respect to `.
The general wisdom of multiuser MIMO considers “one-shot”
or “instantaneous” estimation [3]. This consists of partitioning
the slot into a training phase and a data transmission phase.
The channel vectors are estimated during the training phase,
and these estimates are used in the data transmission phase. In
compliance with most of the recent “massive MIMO” literature
[5], we assume Time-Division Duplexing (TDD) and channel
reciprocity [4], such that the channel vectors of the users are
estimated during a training phase, in which orthogonal (uplink)
pilot symbols are transmitted by the users to the base-station.
The resulting estimates are used in data transmission phase to
receive data streams transmitted simultaneously by the users to

the base-station (uplink), or to transmit multiple data streams
from the base-station to the users (downlink). In both cases,
the data streams are separated in the spatial domain by linear
beamforming (spatial multiplexing).

As anticipated in the introduction, in mm-Wave channels the
“instantaneous” channel estimation may suffer from the fact
that the mm-Wave channels change rapidly in time. Therefore,
the ability of the beamformer to eliminate the multiuser
interference in the spatial domain may be impaired by the
“channel aging” phenomenon, i.e., by the time the channel
estimate is used, the channel has already significantly changed.
In addition, due to the discussed HDA implementation of
the base-station front-end, the whole M -dimensional received
signal in correspondence of the uplink pilot symbols cannot be
fully observed. Rather, only an m-dimensional projection (or
“sketch”) through the analog beamforming network (consisting
of m separate RF chains) is available.

While the channel vectors may change rapidly in time (up to
the limit of having i.i.d. channels across different time slots),
the WSS assumption implies that the scattering geometry,
expressed by the AoA’s {θ`}p`=1 and the multipath component
strengths {σ2

`}
p
`=1, remains invariant for a very large number

of slots. This is justified by the fact that the “small-scale
fading” channel gains w`[t] go through a full phase cycle
when the distance between transmitter and receiver varies by
one wavelength (e.g., 1cm at 30 GHz), whereas AoAs and
path strengths change only when the “large-scale” geometry
of the propagation between the transmitter and the receiver
significantly changes.1

In this work, for the sake of clarity, we focus on the channel
estimation problem of an individual user from uplink pilot
symbols sent periodically with a period τ , and accumulated
in an observation window of T slots, thus, in total there are
ν = T

τ training samples (see Fig. 2). The received signal at the
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τ τ

T

Fig. 2: Periodic pilot transmission for channel estimation.

i-th training period, i ∈ [ν], is given by yi = hi + ni, where
hi = h[iτ ] denotes the random channel vector of the user (at
time t = iτ ), and where ni ∼ CN (0, σ2I) is the additive white
Gaussian noise of the array. We define the training signal-to-
noise-ratio (SNR) by snr =

∑p
`=1 σ

2
`/σ

2. Once an estimate
of the channel vector hi is available, it is used in the data
transmission phase of the current slot Ti = [iτ, (i+1)τ−1] to
calculate the beamformer for the base-station receiver (uplink)
and/or the base-station transmitter (downlink).

1Strictly speaking, according to the widely accepted Wide-Sense Stationary
Uncorrelated Scattering (WSSUS) model, the second-order statistics of the
channel vector process are time-invariant, implying that AoAs and signal
strengths are strictly constant in time. As a mater of fact, the WSSUS model is
a local approximation, with coherence time much larger than the small-scale
fading coherence time.
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2.2 One-Shot Sparse Channel Estimation

Since by assumption we have p � M , the channel vector
hi, i ∈ [ν], has a sparse representation in the continuous
dictionary A = {a(θ) : θ ∈ [−θmax, θmax]} consisting of
the array responses for different AoAs θ, with the sparsity
being p

M � 1. Classical compressed sensing (CS) methods
[8, 9] can be used to estimate hi via a few, say m � M ,
linear projections of the received signal yi rather than the
whole components thereof. This feature is well-suited for the
HDA front-end implementation that supports a number of RF
chains and A/D converters much smaller than the number
of array elements. Let us denote the m × M measurement
projection matrix by B, where we assume that the rows of B
are orthonormal2. Also let xi = Byi = B(hi+ni), i ∈ [ν], be
the resulting m-dimensional projections. To recover the sparse
signal hi, we use the atomic-norm denoising algorithm [10]

ĥi = arg min ‖h‖A s.t. ‖xi −Bh‖2 ≤ ε, (2)

where ε ≈ mσ2 is an estimate of the noise power, and
where ‖h‖A denotes the atomic norm of h with respect to
the continuous dictionary of the array vectors A, defined by

‖h‖A = inf
{∑

`

c` : c` ≥ 0, and

∃ (θ`, φ`) s.t. h =
∑
`

c`e
jφ`a(θ`)

}
. (3)

In general, finding a closed-form formula or even efficiently
computing the atomic norm of a vector in a given dictionary is
a challenging task, and different methods have been proposed
for its approximation [10]. However, for the dictionary A,
it has been shown that the atomic norm can be efficiently
computed via semi-definite programming (SDP) [11]. This
results in the following SDP for estimating the sparse channel
vector hi:

ĥi = arg min
h∈CM ,v∈CM ,γ∈R+

tr[T(v)] + γ s.t.[
T(v) h
hH γ

]
� 0, ‖xi −Bh‖2 ≤ ε, (4)

where T(v) denotes an M × M Hermitian Toeplitz matrix
whose first column is v, and where ε = mσ2 is an estimate
of the noise power.

In this paper, we will use optimization (4) as the one-shot
sparse channel estimation algorithm since it uses only the
observation xi on the current slot i and does not exploit the
previous training samples in a window of duration ν consisting
of
{
xj : j ∈ {i− ν, i− ν + 1, . . . , i− 1}

}
.

2.3 Time Variation of the Channel Vectors

For the sake of simplicity, we assume that the multipath
component coefficients evolve according to first order Markov
processes given by

w`[t] = α` w`[t− 1] + σ`

√
1− α2

` i`[t], (5)

2Since B is the projection matrix corresponding to the RF beamforming
receiver, it can be designed to satisfy row orthonormality.

where i`[t] is the innovation process for w`[t], which is a
Gaussian process with a covariance E[i`[t]i`′ [t

′]] = δ`,`′δt,t′ ,
and where α` is the coefficient of first order auto-regression
filter, which should be inside the unit circle to have a stable
filter, i.e., |α`| < 1. To obtain a stationary process, we assume
that w`[0] ∼ CN (0, σ2

` ) is initialized with the first realization
of the channel gain for the `-th scatterer. In this case, w`[t]
generated by (5) is a stationary Gaussian process for all t ≥ 0,
whose auto-correlation function is given by

r`[∆] = E
[
w`[t+ ∆]w`[t]

∗] = σ2
` α
|∆|
` . (6)

For simplicity, we assume that α` = α is the same for all `,
and α ∈ [0, 1) is real-valued and positive. Since hi is obtained
by sampling h[t] every τ seconds, the matrix-valued auto-
correlation function of hi is given by

E[hih
H
i′ ] = β|i−i

′|
p∑
`=1

σ2
`a(θ`)a

H(θ`) (7)

where β = ατ . Without loss of generality, we shall consider a
measurement window [ν] = {0, . . . , ν−1} of ν slots, and look
at the transmitter/receiver operations in slot Tν = [ντ, (ν +
1)τ − 1]. Therefore, the measurement window is referred to
as a block of “past observations”, while the measurement at
slot ν is the “current observation”. We define the coherence
time (or the settling time) of the channel by τc = 1

log(1/α) . We
consider three idealized cases of interest:

1) When T � τc, the channel process is almost constant
over a time significantly larger than T . It follows that
the channel on the current slot is approximately identical
to the channel over the whole past observation window.
In this case, predicting the channel on the current slot
from the past window is expected to be very effective.

2) When τ � τc ≈ T , the channel varies significantly over
the past observation window, but remains approximately
constant over each slot. Hence, one-shot estimation over
the current slot yields an accurate estimate in high SNR.
However, since channel estimation is performed before
beamforming (in fact, it is used to calculate the beam-
former) in mm-Wave communication it is reasonable to
expect that estimation occurs in low SNR (without array
beamforming gain). Hence, we are interested in using
the past observation window to improve the one-shot
estimation of the current channel.

3) When τc ≈ τ , the channel process varies significantly
over a slot (i.e., it is nearly i.i.d. over different slots).
In this case, one-shot estimation is ineffective due to
channel aging over the current slot, especially in the
donwlink case. Nevertheless, we can learn the channel
dominant subspace, i.e., the linear span of the atoms
that best represent the channel over the past observation
window, and still be able to separate the users in
the signal space based only on subspace information.
This is effective when such channel subspaces are low-
dimensional, as is the case for mm-Wave channels [7].

2.4 Exploiting Past Measurements
In order to illustrate the fact that both sparsity in the AoA

domain and time correlation can be used to improve channel
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estimation, we consider two extremes of cases 1) and 3) said
above. In the first case, the channel is exactly constant over
a an interval much larger than T , i.e., h[iτ ] = hi = h0 for
i ∈ [ν]. Hence, by simply averaging the training observations
xi for i ∈ [ν], we obtain

x =
1

ν

∑
i∈[ν]

xi = B

h0 +
1

ν

∑
i∈[ν]

ni

 . (8)

Applying the one-shot sparse estimator (4) to (8), we obtain an
estimate of hν ≈ h0 with an improvement in the observation
SNR by a factor of ν. Furthermore, because of the strong
correlation in time, the system does not even need to exploit
the observation on the current slot (this would only improve
the SNR by a marginal factor of (1 + 1/ν)). This means
that, for highly time-correlated channel dynamics, channel
prediction can be effectively exploited.

Now consider the opposite extreme case, where the channel
gains are i.i.d. over the sequence of slots. Let us consider
the sample covariance estimator Ĉx = 1

ν

∑
i∈[ν] xix

H
i . By the

consistency of the sample covariance, for sufficiently large ν,
we have

Ĉx ≈ BChB
H + σ2BBH = BChB

H + σ2Im, (9)

where we have assumed that the rows of B are orthonormal.
In our previous work [12], we showed that it is possible
to exploit the angular sparsity and the underlying Toeplitz
structure of Ch (for the ULA), such that the p-dimensional
signal subspace that contains hi with probability 1, namely,
Span{a(θ`) : ` = 1, . . . , p}, be efficiently estimated when the
projection matrix B has only m ≈ 2

√
M rows. As a matter

of fact, it is sufficient to let B have a single non-zero element
equal to 1 in each row, such that B induces a subsampling of
the array elements (antenna selection) in coprime locations.
In particular, ν of the order ∼ 50 − 100 samples seems to
be sufficient to precisely estimate this subspace for moderate
SNR values around snr ∼ 0 − 10 dB. Let U be the M × p
tall unitary matrix whose columns are basis of the estimated
signal subspace. We can improve the one-shot estimate the
channel vector hν = h[ντ ] on the current slot by solving the
following least-square problem

ŵν = arg min
w∈Cp

‖xν −BUw‖2, (10)

from which we can estimate the channel vector by ĥν = Uŵν .
If the power of the signal hν is not uniformly distributed in
different directions spanned by the columns of U, this estimate
can be further improved by weighted least-squares.

In this case, when the channel varies so fast that even
the aging over a single slot yields too much degradation of
the beamforming performance, the multiuser interference can
still be managed by exploiting only the subspace information
rather than the instantaneous estimate ĥν . For example, the
interference from a user with channel vector hν can be
eliminated by projecting onto the orthogonal complement of
its p-dim subspace. The drawback is that, compared with the
projection on the orthogonal complement of ĥν , which wastes
only 1 degree of freedom, one wastes p degrees of freedom

for zero-forcing a specific user. However, this results in a
negligible loss when p�M , especially when a whole group
of users spanning roughly the same subspace can be zero-
forced simultaneously [6, 7].

It is seen that, in both extreme cases of channel time
dynamics, the window of past observations provides very
useful information that can be exploited at the base-station
receiver (uplink) or transmitter (downlink). In Section 3, we
propose an algorithm that uses the training samples hi, i ∈ [ν],
to find an estimate of the p-dim signal subspace U, which
would be exploited in the ν-th training period. When this
information is used to enhance the channel estimation on the
current slot, we evaluate the performance of our algorithm by
looking at the correlation coefficient between the true and the
estimated channel vector, i.e., η(hν , ĥν) = |〈hν ,ĥν〉|

‖hν‖‖ĥν‖
. When

we use the subspace information to reject interference, we
shall look at the normalized residual signal power, given by
µ(hν ,U) =

hH
ν(IM−UUH)hν
‖hν‖2 .

3 ALGORITHM FOR SUBSPACE ESTIMATION

As a robust algorithm for subspace estimation, we use
a variant of RMMV (reduced multiple-measurement vector)
algorithm that we proposed in [12]. The main motivation
for this algorithm comes from the multiple measurement
vectors (MMV) problem in compressed sensing. We will
briefly explain the MMV problem and why it gives a suitable
formulation for subspace estimation in our case. We will also
briefly explain the motivation for using RMMV algorithm for
extracting the signal subspace.

Consider the channel vectors hi, i ∈ [ν], belonging to an
observation window of size T = ντ . As we explained in
Section 2.1, we assume that the scattering geometry of the
user remains invariant inside this window. This implies that, no
matter how the channel dynamics (slowly or quickly varying),
the channel vectors of the user inside the window have a sparse
representation in the continuous dictionary A consisting of
array responses for different AoA θ ∈ [−θm, θm]. In particular,
all the channel vectors hi, i ∈ [ν], have the same support in
A, which is given by the AoA {θ`}p`=1. This implies that
not only every individual channel vector is sparse over A,
but also all the channel vectors together have a joint (group)
sparsity structure. This problem has been vastly studied in
the compressed sensing literature and it has been shown that
exploiting the joint sparsity can further boost the performance,
e.g., reduce the number of required measurements (see [13–
15] and the references therein).

Different algorithms have been proposed in the literature
for exploiting the joint sparsity such as greedy algorithms
[13], convex optimization with a regularization to promote the
joint sparsity [14], subspace methods [15], and more recent
off-grid variants [16, 17]. In this paper, similar to the one-
shot estimation problem (4), we will focus on atomic norm
denoising for estimating the jointly sparse channel vectors
from the collection of sketches xi, i ∈ [ν], where the joint
sparsity is incorporated by considering the new dictionary

D = {a(θ)bH : θ ∈ [−θmax, θmax],b ∈ Cν}. (11)
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This approach has been used in [16, 17], where it has been
shown that, similar to the one-shot variant (4), the atomic
norm denoising can be formulated as an SDP. However, the
constraints of this SDP have dimension (M + ν)× (M + ν),
which increases by increasing the number of samples. As a
result, the computational complexity is quite high even for
moderate values M ≈ 64 and number of samples ν ≈ 100.

In [12], we proposed the RMMV algorithm, which has
pretty the same performance as the SDP proposed in [16, 17]
but its computational complexity does not increase with the
sample size ν. This algorithm first computes the sample
covariance matrix Ĉx, its singular value decomposition (SVD)
given by Ĉx = UΛUH, and the low-dimensional data given
by X̃ = UΛ. It is not difficult to check that X̃ = XVm,
where X = [x0,x1, . . . ,xν−1] is the matrix of the whole
sketches, with the SVD X = UDVH, and where Vm is
the ν × m matrix consisting of the first m columns of V.
Note that X̃ is an m ×m matrix, whose dimension depends
on the dimension of the sketches rather than the number of
observations ν. It is not difficult to see that, similar to the
columns of X, the columns of X̃ still keep their MMV format,
i.e., they have the same support over the projected dictionary
given by BD = {B a(θ)bH : θ ∈ [−θmax, θmax],b ∈ Cν}.
The RMMV algorithm is obtained by applying the atomic
norm denoising to the low-dimensional data X̃, and has the
following SDP formulation [12]:

C∗y = arg min
T∈T+,W∈Cm×m

Tr(BTBH) + Tr(W)

subject to

[
BTBH X̃

X̃H W

]
� 0, (12)

where T+ denotes the space of all M×M Hermitian Toeplitz
matrices, and where C∗y is an estimate of the sample covari-
ance of the whole data y, whose dominant subspace gives an
estimate of the signal subspace of Ch (the covariance matrix
of the channel vectors).

4 SIMULATIONS

In this section, we assess the performance our proposed
algorithm via numerical simulations. We use τ as in Section
2.1 for the period of training symbols, and τc for the coherence
time of the channel. When τ ≈ τc, the resulting channel vec-
tors are approximately independent from each other, whereas
when τ � τc, the channel vectors are fully correlated.
Channel Model. We consider a simple model for the channel
consisting of p = 3 multipath components with the AoAs
{0,+20,−20} degrees, and with equal power in each compo-
nent.
Array Model and Sampling Scheme. For simulation, we use
an array with M = 64 antennas. We take m = 16 orthogonal
sketches of the array input signal, thus, the sampling ratio is
ρ = m

M = 0.25. We use an m ×M random binary sampling
matrix B, which selects m array elements randomly (random
antenna selection). In particular, each row of B has only one
1 is a random antenna location, and has 0 elsewhere.
Window Size. We use a window of size ν = 50, where the
signal subspace or the channel vector hν at the last instant ν
is estimated from all the channel vectors hi, i ∈ [ν].

Performance Metric. We consider two performance metrics
as explained in Section 2.4. When the goal is to use the past
observations to enhance the channel estimation on the current
slot, we use the correlation coefficient between the true and the
estimated channel vector, i.e., η(hν , ĥν) = |〈hν ,ĥν〉|

‖hν‖‖ĥν‖
, and plot

the CCDF (complementary cumulative distribution function)
of 20 log10[1/η(hν , ĥν)]. Fig. 3 shows the simulation results
for this case.

When we use the subspace information to reject interfer-
ence, we consider normalized residual signal power, given by
µ(hν ,U) =

hH
ν(IM−UUH)hν
‖hν‖2 , where U is the estimated signal

subspace, and plot the CCDF of 10 log10[1/µ(hν ,U)] as a
performance measure. Fig. 4 shows the resulting performance.
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Fig. 3: Comparing the performance of MMV method with the traditional One-shot channel estimation for different SNR and
different channel coherence time τc. Window size ν = 50, number of array elements M = 64, dimension of the sketches
m = 16, and sampling scheme is random antenna selection (the sampling matrix B is a binary matrix with only one 1 in each
row).
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Fig. 4: The fraction of the power of the hν rejected by projecting onto the estimated subspace for different values of SNR and
for different values of channel coherence time τc.


