
1

Distributed Assignment and Resource Allocation for
Energy Efficiency in MIMO Wireless Networks

Alessio Zappone∗, Eduard Jorswieck∗, Amir Leshem†
∗Communications Theory, Communications Laboratory, Dresden University of Technology, 01061 Dresden,

Germany, {alessio.zappone, eduard.jorswieck}@tu-dresden.de
†School of Engineering, Bar-Ilan University, RamatGan, 52900, Israel, leshem.amir2@gmail.com

Abstract—This paper deals with the problem of distributed
resource allocation in multi-carrier MIMO networks, for energy
efficiency maximization. The user-subcarrier assignment is jointly
allocated together with the users’ transmit powers, subject
to the constraint that each subcarrier can be used by only
one user. To this end, a novel approach is proposed which
merges the popular Dinkelbach’s algorithm with the framework
of distributed auction theory. The resulting algorithm can be
implemented in a distributed fashion, with very limited feedback
overhead, and is guaranteed to converge to the global optimum
of the system energy efficiency, within a predefined threshold
which can be chosen arbitrarily small. Numerical results compare
the proposed distributed algorithm to the optimal, centralized
allocation, showing its merits both in terms of performance and
computational complexity.

I. INTRODUCTION

Energy efficiency is considered one key requirement of
future 5G cellular networks in order to keep the energy
consumption at today’s levels. While the energy efficiency of
a communication network can be optimized in a centralized
manner, it requires the presence of a central controller with
global channel state information (CSI) knowledge. This leads
to large overheads, especially in large networks with many
devices, which is anticipated to be the typical scenario for
5G networks. In order to minimize the overhead involved
in energy efficiency optimization it is desirable to perform
most of the computation locally at the mobile units. In this
case distributed protocols are needed to maximize the energy
efficiency of the network.

One canonical tool which has been widely used for dis-
tributed resource allocation is game theory [1], which has been
recently successfully used in wireless networks in [2]–[5]. In
the context of distributed, energy-efficient resource allocation
in multi-carrier systems, game theory has been used in [6] for
the uplink of an OFMDA network. A non-cooperative game is
formulated which is shown to have a unique Nash equilibrium.
In [7], the results of [6] are extended to relay-assisted MIMO
networks, proposing an interference neutralization approach.
A potential-game approach is proposed in [8] for MIMO
multi-carrier networks, which optimizes the product of the
mobile users’ individual energy efficiencies. A game-theoretic
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approach is used in [9] for energy efficiency maximization
in the uplink of a cognitive radio network. In [10], [11],
generalized games are used to include QoS constraints in the
energy-efficient resource allocation problem. Two limitations
of these approaches are that: 1) game-theoretic approaches
usually lead to suboptimal performance compared to central-
ized allocations; 2) previous studies mostly assume that every
user can transmit on all available subcarriers, thereby reducing
the joint subcarrier and power allocation problem to a simpler
power allocation problem. Instead, present Wi-Fi and uplink
cellular networks typically do not allow any frequency reuse
within a given cell. This makes the joint power and subcarrier
assignment problem a mixed-integer problem.

A promising answer to overcome these limitations lies in
the use of the auction framework [12] and in particular of its
distributed version [13], which makes use of an opportunistic
version of carrier sensing [14]. A similar opportunistic carrier
sensing approach was also proposed in [15], [16], in the
context of stable matching problems. These studies show
that the use of distributed auction together with opportunistic
carrier sensing enables to develop fully distributed, near-
optimal algorithms. However, this result was derived in the
context of rate maximization, which was the focus of all
mentioned works. It remains to be seen if it holds for energy
efficiency maximization, too.

Motivated by this background, in this work we provide an
energy-efficient analysis of the distributed auction approach.
Specifically, we consider a single-cell, multi-carrier system,
making the following main contributions:
• A fully distributed algorithm for energy efficiency maxi-

mization is developed, by combining fractional program-
ming theory with the tool of distributed auction. The
base station and the mobile units work in a master slave
mode, where the base station collects minimal amount of
information from the mobile units and sends in response
a parameter. The mobile units use this parameter to solve
a local problem using a fully distributed protocol based
on carrier sensing.

• The performance of the proposed distributed method is
compared with the global optimum solution, both in
terms of achieved energy efficiency and of overhead
requirements. It is shown that the proposed algorithm is
guaranteed to be globally optimal within a pre-defined
tolerance which can be made arbitrarily small, while at
the same time requiring much less feedback overhead.
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II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a single-cell multi-carrier wireless network with K
users and N available resource blocks. Each user is equipped
with NT antennas, whereas NR antennas are deployed at
the base station. Each user is allowed to transmit over one
resource block, and each resource block can be assigned to
only one user. Denote by Qk,n and Hk,n the NT × NT

transmit covariance matrix and the NR × NT propagation
channel of user k over resource block n, respectively. Finally,
define αk,n as the binary variable which equals 1 if user k
transmits on resource block n, and 0 otherwise. Given this
notation, the k-th user’s achievable rate on resource block n
is expressed as:

Rk,n = αk,nB log2

∣∣∣INR
+ ρHk,nQk,nH

H
k,n

∣∣∣ , (1)

wherein B is the subcarrier bandwidth and ρ = 1/σ2, with
σ2 the noise power at the receiver. In order to guarantee the
achievable rate in (1), user k needs to consume the following
power on resource block n:

Pk,n = αk,n(µk,ntr
(
Qk,n

)
+ θk,n) , (2)

wherein µk,n is the inverse of the amplifier efficiency on
resource block n, while θk,n is the static power dissipated
in all other hardware blocks associated to the n-th transmit-
receive chain.

The system global energy efficiency (GEE) is defined as the
ratio between the system achievable sum-rate and total power
consumption [17]. Based on (1) and (2), this leads to:

GEE =
B
∑K

k=1

∑N
n=1 αk,n log2

∣∣∣INR
+ ρHk,nQk,nH

H
k,n

∣∣∣∑K
k=1

∑N
n=1 αk,n(µk,ntr

(
Qk,n

)
+ θk,n)

.

(3)
It should be remarked that the GEE in (3) is measured in
bit/Joule, and represents the system benefit-cost ratio in terms
of amount of bits reliably transmitted, and corresponding total
consumed power.

In this context, the GEE maximization problem can be cast
as the problem of finding the optimal assignment {αk,n}k,n
of the K users to the N available resource blocks, as well
as the optimal users’ transmit covariance matrices {Qk,n}k,n
in order to maximize (3). Mathematically, the problem is
formulated as the mixed-integer optimization program:

max
α,Q

B
∑K

k=1

∑N
n=1 αk,n log2

∣∣∣INR
+ ρHk,nQk,nH

H
k,n

∣∣∣∑K
k=1

∑N
n=1 αk,n(µk,ntr

(
Qk,n

)
+ θk,n)

(4a)

s.t.
K∑

k=1

αn,k = 1 ,∀ n = 1, . . . , N (4b)

N∑
n=1

αn,k = 1 ,∀ k = 1, . . . ,K (4c)

αk,n ∈ {0, 1} ∀ k = 1, . . . ,K , n = 1, . . . , N (4d)

tr
(
Qk,n

)
≤ Pmaxk

,∀ k = 1, . . . ,K , n = 1, . . . , N ,
(4e)

wherein α = {αk,n}k,n and Q = {Qk,n}k,n, with k =
1, . . . ,K and n = 1, . . . , N . In (4), Constraints (4b) and
(4c) ensure that each resource block is assigned to only
one user and that each user transmit on only one resource
block, Constraint (4d) accounts for the binary nature of the
assignment variables, while Constraint (4e) represents a per-
user maximum power constraint.

The main goal of this paper is to provide a fully distributed
algorithm to solve Problem (4) in a near-optimal way. This will
be accomplished in the coming Section III. The global solution
of (4) is also derived by a centralized approach, which will be
used for benchmarking purposes.

III. DISTRIBUTED GEE MAXIMIZATION

Problem (4) is an instance of a single-ratio fractional
problem, and therefore it can be tackled by means of frac-
tional programming tools [17]. One challenge in deriving a
distributed solution of (4) is related to the particular structure
of the objective which is the ratio of two sums, thereby making
it difficult to separate the terms associated to different users
or resource blocks. However, this difficulty can be overcome
by exploiting one fractional programming method, namely
Dinkelbach’s algorithm.

The theoretical foundation of Dinkelbach’s algorithm is the
following result from [18].

Proposition 1. Consider Problem (4) and denote by F its
feasible set. Define also the auxiliary function F : λ ∈ R →
F (λ) as

F (λ)= max
(α,Q)∈F

K∑
k=1

N∑
n=1

Rk,n(Qk,n, αk,n)−λPk,n(Qk,n, αk,n).

(5)
Then, a pair (α∗,Q∗) is a global solution of (4) if and only if
F (λ∗) = 0, with λ∗ being the maximum value of the objective
of (4), i.e. λ∗ = GEE(α∗,Q∗).

In words, this result establishes that solving a fractional
problem is equivalent to finding the zero of the auxiliary
function F (λ). One remark is in order.

Remark 1. The original result from [18] assumed that the
numerator and denominator of the fractional function to
maximize be continuous, and the constraint set compact. These
assumptions are clearly not fulfilled for Problem (4), since the
assignment variables are discrete. However, in our case the
result is still valid. Indeed, the continuity and compactness
assumption in the original results from [18] were required
to make sure that both the original fractional problem and
the auxiliary function F are well-defined. For the case at
hand, this is still true, because both (4) and (5) admit a
maximizer. Indeed, since the objectives are continuous in Q
and the set of the feasible Q is compact, it holds that for each
fixed assignment ᾱ, an optimal Q̄ exists. In turn, this implies
the existence of a solution for both (4) and (5), because the
number of possible subcarrier assignments is finite.

Dinkelbach’s algorithm is an iterative algorithm able to find
the zero of the auxiliary function F (λ), by solving a sequence
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of problems of the form in (5), updating the parameter λ after
each iteration. The formal pseudo-code is reported here.

Algorithm 1 Dinkelbach’s algorithm
Set ε > 0; j = 0; λj = 0; F (λj) = c > ε;
while F (λj) ≥ ε do

(α∗,Q∗) = arg max
{α,Q}∈F

K∑
k=1

N∑
n=1

{
Rk,n(Qk,n, αk,n) −

λPk,n(Qk,n, αk,n)
}

;

F (λj)=

K∑
k=1

N∑
n=1

{
Rk,n(Q∗k,n, α

∗
k,n)−λPk,n(Q∗k,n, α

∗
k,n)

}
;

λj+1 =

∑K
k=1

∑N
n=1Rk,n(Q∗k,n, α

∗
k,n)∑K

k=1

∑N
n=1 Pk,n(Q∗k,n, α

∗
k,n)

;

j = j + 1;
end while

At a first sight, Proposition 1 does not seem to make (4)
easier, since it requires to solve a sequence of mixed-integer
problems of the form of (5). However, unlike the fractional
form in (4), the sum-based objective in (5) can be maximized
in a decentralized fashion. The first step towards this goal is
to observe that thanks to its sum-based form, the objective
in (5) can be decoupled with respect to the users’ covariance
matrices. Indeed, for any given α, each user k will transmit
over the assigned subcarrier n with the covariance matrix
which maximizes Summand (k, n) in (5). Otherwise stated, for
any (k, n), the optimal covariance matrix Qk,n is the solution
of the convex problem:

max
Qk,n

B log2

∣∣∣INR
+ ρHk,nQk,nH

H
k,n

∣∣∣− λµk,ntr
(
Qk,n

)
(6a)

s.t. tr
(
Qk,n

)
≤ Pmax , Qk,n � 0 . (6b)

Since the linear term in (6b) does not depend on the eigenvec-
tors of Qk,n, it follows that the optimal eigenvectors of Qk,n

should diagonalize Hk,n. Moreover, the optimal eigenvalues
of Qk,n can be determined by solving the resulting water-
filling problem [19]. After solving (6) for each k and n,
each user k is left with a set of N optimal covariance
matrices {Q̄k,n}Nn=1, wherein Q̄k,n represents the optimal
covariance matrix should user k transmit over subcarrier n.
As a consequence, the joint problem of allocating both the
assignment vector α and the covariance matrices Q, can be
recast as a maximization with respect to α only:

max
α

K∑
k=1

N∑
n=1

αk,n

[
B log2

∣∣∣INR
+ ρHk,nQ̄k,nH

H
k,n

∣∣∣ (7)

− λ(µk,ntr
(
Q̄k,n

)
+ θk,n)

]
.

As a result, the joint maximization with respect to (α,Q) in
(5), has been reduced to a pure assignment problem in which
the utility of each user k over resource block n is given by

uk,n = B log2

∣∣∣INR
+ ρHk,nQ̄k,nH

H
k,n

∣∣∣ (8)

− λ(µk,ntr
(
Q̄k,n

)
+ θk,n) .

The advantage of this reformulation is that assignment prob-
lems of the form of (7) can be globally solved in a fully
decentralized and parallel fashion, by means of the Distributed
Auction Algorithm [13].

A. Distributed auction algorithm

In this section we describe the main idea behind the
distributed auction algorithm. For the full details, we refer
to [13]. The distributed auction is part of the more general
auction algorithm framework, which provides a method for
user-subcarrier association inspired to auction dynamics. Like
in a real auction, the algorithm is composed of two stages
which are iteratively repeated, the bidding stage and the
assignment stage. In the bidding stage, each user who is not
yet assigned to a subcarrier raises the price of the subcarrier
he wishes to acquire. In the assignment stage, every subcarrier
is assigned to the highest bidder. To elaborate further, let us
define the K × N matrix B, which collects the bids of all
users for all subcarriers at a given round of the auction. Then,
the price ρn of subcarrier n is expressed as

ρn = max
k
Bn,k , (9)

i.e. the highest bid among the users. User k is happy with
subcarrier nk when

uk,nk
− ρnk

≥ max
n
{uk,n − ρn} − δ , (10)

with uk,n given by (8). Thus, user k is satisfied with subcarrier
nk, when the profit he makes by choosing subcarrier nk is
higher than the profit he would obtain with any other subcar-
rier, up to some threshold δ. The auction terminates when, after
an assignment stage, all users are happy with their subcarriers.
In [12], this approach was proved to converge in a finite
number of steps1, and to achieve the optimal assignment within
the threshold δ. However, such an approach is centralized, in
the sense that it requires full CSI to be implemented, because
each user needs to know the price of each subcarrier. Instead,
in [13] a fully distributed implementation of the auction
algorithm was proposed, in which each user makes bids based
only on local prices. This distributed implementation of the
auction algorithm is called distributed auction, and it retains
the pleasant property of converging to the optimal assignment
up to a threshold δ, in a finite number of steps.

B. Distributed implementation

By embedding the distributed auction into Dinkelbach’s
algorithm, it is possible to implement Algorithm 1 in a de-
centralized fashion, with very limited feedback requirements.
The distributed implementation is based on four main steps:
• Each user computes the optimal covariance matrices
{Q̄k,n}Nn=1 over the N possible subcarrier choices. This
step can be performed locally and in parallel by the
different users, since it only requires each user k to
know his own channels {Hk,n}Nn=1, which are locally
available.

1The number of requires step can be upper-bounded by a quantity inversely
proportional to δ.
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• The distributed auction algorithm is used to compute the
optimal assignment α∗ for Problem (7). Let n∗k be the
optimal subcarrier choice by user k, then the k-th user’s
optimal covariance matrix is given by Q∗k = Q̄k,n∗

k
.

• Each user k computes and feeds back
Rk,n∗

k
= log2

∣∣∣INR
+ ρHk,n∗

k
Q̄k,n∗

k
Hk,n∗

k

∣∣∣ and
Pk,n∗

k
= µk,n∗

k
tr(Q̄k,n∗

k
) + θk,n∗

k
.

• The base station updates and broadcasts λ. The process
loops until the base station does not broadcast λ any more
because convergence has been reached.

C. Global optimum of the GEE

After describing how Algorithm 1 can be implemented in
a distributed fashion, let us briefly describe how to globally
solve the GEE maximization problem by a centralized imple-
mentation of Algorithm 1. To this end, let us consider Problem
(7) to be solved in the generic iteration of Dinkelbach’s
algorithm and recall that the feasible set F is composed of
Constraints (4b), (4c), and (4d). Now, the difficulty in solving
(7) directly is due to the integer constraint (4d). However,
it can be observed that the constraint matrix of (4b), (4c),
and (4d) is totally unimodular, thus implying that no loss
of optimality is incurred by relaxing (4d) to the continuous
constraint αk,n ≥ 0, for all k = 1, . . . ,K and n = 1, . . . , N .
Upon doing this, Problem (7) reduces to a simple linear
problem in α, which can be solved by standard methods.
However, it should be stressed that in order to implement
Algorithm 1 in this fashion, a centralized controller with global
CSI is required.

D. Overhead and performance comparison

The distributed implementation of Algorithm 1 as described
in Section III-B requires to feedback 2K + 1 real numbers
for each iteration. So, denoting by I the total number of
iterations of Algorithm 1, the total amount of data to feedback
is I(2K + 1) real numbers. As for the value of I , although
general formulas are not available, it should be stressed that
Dinkelbach’s algorithm is guaranteed to have a super-linear
convergence rate, which typically results in convergence in a
handful of iterations. The numerical results to be provided in
Section IV corroborate this point.

On the other hand, a centralized implementation would
require the knowledge of all channels {Hk,n}k,n, for a total of
2NRNTKN real numbers2, plus NT (NT +1)K real numbers3

because the optimal K covariance matrix need to be fed back
to the users. So, for typical values of N and K, the feedback
required for a centralized implementation of Algorithm 1 is
much higher than for the proposed distributed implementation.

Finally, as for the performance of Algorithm 1, the following
result holds.

Proposition 2. Algorithm 1 converges to the optimal solution
of (4), up to the tolerance δ with which the distributed auction

2Recall that the entries of the channel matrices are complex numbers.
3Recall that a square Hermitian matrix of dimension NT is specified by

the NT (NT + 1)/2 numbers in its upper-triangular part.

algorithm converges to the optimal subcarrier assignment of
(7).

As a consequence of this result, we have that the distributed
implementation of Dinkelbach’s algorithm converges to the
global maximum of the system GEE, up to a pre-defined
tolerance which can be made small at will.

IV. NUMERICAL RESULTS

In our numerical simulations we have considered the uplink
of a cellular system in which K = 10 users are randomly
placed in a circular area of radius R = 500 m. The service
base station is placed at the center of the area to cover, and
the number of available resource blocks is N = 10. Each user
is equipped with NT = 3 antennas, and NR = 3 antennas are
deployed at the base station. The channel from the generic user
k to the base station over sub-carrier n has been generated as

Hk,n = f(dk, η)Σk,n , (11)

wherein Σk,n is a realization of an NR ×NT random matrix
with zero-mean and unit-variance complex Gaussian entries,
which accounts for the fast fading between user k and the
base station over sub-carrier n, whereas f(dk, η) is a scalar
coefficient modeling the path-loss as a function of the distance
dk between user k and the base station, and of the power
decay factor η. In particular, the path-loss model in [20] has
been used, with η = 3.5. The remaining system parameters
have been set as in typical LTE systems [21]. Specifically,
the receive noise power has been generated as σ2 = N0BF ,
wherein N0 = −174 dBm/Hz is the noise power spectral
density, B = 180 kHz is the communication bandwidth, and
F = 3 dB is the receiver noise figure. All power amplifier
efficiency factors and static circuit power consumption terms
have been assumed equal across users and sub-carriers, namely
µk,n = 3.8, θk,n = −20 dBW, for all k, n. All numerical illus-
trations have been obtained by averaging over 103 independent
system scenarios.

In Fig. 1, the maximum feasible transmit power has been
assumed equal for all users, i.e. Pmax,k = Pmax, and the
achieved GEE versus Pmax is illustrated for the following
schemes:
(a) Joint assignment and covariance matrix optimization by

the proposed distributed implementation of Algorithm 1
described in Section III-B, with δ = 10−2.

(b) Joint assignment and covariance matrix optimization by
the centralized, optimal implementation of Algorithm 1
described in Section III-C

(c) GEE maximization by covariance matrix optimization for
a fixed assignment. In this scenario, the user-resources as-
signment is randomly selected, and based on this assign-
ment, optimal covariance matrix allocation is performed.

The results indicate that schemes (a) and (b) significantly
outperform scheme (c), thereby showing that assignment op-
timization can bring a relevant performance improvement.
Moreover, schemes (a) and (b) perform virtually the same, thus
confirming that the proposed distributed allocation algorithm
is able to achieve the same performance as the optimal,
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centralized scheme, while at the same time requiring a much
lower feedback overhead.

Next, Table I considers the complexity of the proposed
distributed GEE maximization algorithm, in comparison with
its centralized counterpart. Specifically, Table I reports the
number of outer iterations required for the two algorithms
to reach convergence, for different values of Pmax. For both
algorithms, the tolerance on the auxiliary parameter λ is set
to ε = 10−3. Similarly, the threshold value for the distributed
auction has been set to δ = 10−2. It is seen that both
algorithms converge in a comparable and limited number
of iterations. Thus, the proposed distributed implementation
of Algorithm 1 easily lends itself to being implemented in
practical networks.

V. CONCLUSIONS

This paper has addressed the problem of distributed and
energy-efficient resource allocation in multi-carrier MIMO
networks. Joint optimization of the user-subcarrier assignment
and of the users’ transmit covariance matrices is tackled by
merging the popular Dinkelbach’s algorithm with the tool of
distributed auction, subject to the constraint that each subcar-
rier can be used by only one user. A fully distributed algorithm
is developed, which converges to the global optimum of
the system energy efficiency, within a predefined threshold
which can be set before running the algorithm. Numerical
results show that for reasonably small thresholds, the proposed
algorithm exhibits global optimality.

Pmax [dBW]
-50 -45 -40 -35 -30 -25 -20 -15 -10

[M
b
it
/J

]

20

40

60

80

100

120

140

Distributed Algorithm 1
Centralized Algorithm 1
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Fig. 1. NT = NR = 3, N = K = 10; Achieved GEE versus Pmax for:
(a) Distributed GEE maximization; (b) Centralized GEE maximization; (c)
Covariance optimization for fixed assignment.

TABLE I
NT = NR = 3, N = K = 10; AVERAGE NUMBER OF ITERATIONS

NEEDED FOR THE DISTRIBUTED AND CENTRALIZED IMPLEMENTATION OF
ALGORITHM 1 TO CONVERGE VERSUS Pmax . CONVERGENCE IS

DECLARED WHEN ε ≤ 10−3 .

Algorithm 1 Distributed Centralized
Pmax = −40 dBW 2 2
Pmax = −30 dBW 2.01 2.01
Pmax = −20 dBW 4.01 4.04
Pmax = −10 dBW 6.03 6.05
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