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Abstract—In this paper, we propose an uplink/downlink dual-
ity framework for multi-cell multi-user multiple-input mu ltiple-
output (MU-MIMO) systems with residual hardware impair-
ments (HWIs) at the base station and the user terminals. By
employing the proposed uplink/downlink duality framework,
complex downlink optimization problems can be transformed
to equivalent dual uplink problems which are easier to solve.
Thereby, for the same total transmit power, the same per-user
signal-to-interference-plus-noise ratios (SINRs) are achieved in
downlink and uplink. We apply the proposed uplink/downlink
duality, and derive a multi-cell HWI aware minimum mean
square error (MCHWA-MMSE) precoder. Our simulation result s
show that the proposed MCHWA-MMSE precoder achieves a
substantially higher sum rate than conventional MMSE and
conjugate beamforming precoders.

I. I NTRODUCTION

W ITH the increasing demand for higher data rates,
multiple-input multiple-output (MIMO) systems have

attracted much attention over the last decade. Today, MIMO
technology is a key element of many modern wireless commu-
nication standards including Long Term Evolution (LTE) and
worldwide interoperability for microwave access (WiMAX).

An emerging research field in wireless communications are
so-called massive MIMO systems [1]. Massive MIMO systems
employ a large number of antennas, e.g., one hundred or more
at the base station (BS), and achieve very high spectral and
energy efficiencies [2]. Moreover, in massive MIMO systems,
the transmit power of the BS and the user terminals (UTs) can
be decreased by increasing the number of antennas at the BS
[2]. These and other desirable features render massive MIMO
a promising technology for future wireless communication
systems.

In this paper, we consider the downlink of a massive multi-
cell multi-user MIMO (MU-MIMO) system with residual hard-
ware impairments (HWIs) at the BSs and at the UTs. A simpler
form of the considered system, i.e., the downlink single-cell
MU-MIMO system with ideal hardware embodies a vector
Gaussian broadcast channel (GBC) whose capacity region can
be achieved by dirty paper coding (DPC). The capacity region
of the vector GBC was derived by exploiting the concept
of uplink/downlink (UL/DL) duality which was introduced
in [3]. More generally, the UL/DL duality can be exploited
to transform difficult downlink optimization problems into
simpler dual uplink problems [4]. After solving the simpler
uplink problem, the precoder and power allocation for the
downlink can be calculated from the uplink detection matrices
and power allocation such that the same per-user signal-to-
interference-plus-noise ratios (SINRs) are achieved in uplink
and downlink. The SINR UL/DL duality framework in [3], [4]
has been extended to mean square error (MSE) UL/DL duality
in [5], where the authors show that by employing the precoding

and detection matrices appropriately and under the same total
power constraint, the same MSE region in the downlink can
be achieved as in the dual uplink. In [6], the authors show
that in a multi-cell MU-MIMO system, the Lagrangian dual
problem of the weighted transmit power minimization problem
with SINR constraints can be rewritten as an equivalent dual
uplink problem, which can be solved more easily than the
original downlink problem.

The system model considered in [3]–[6] assumes ideal
hardware (H/W) components and the only impairment is the
additive white Gaussian noise (AWGN). However, in practice,
the AWGN-based system model may be overly optimistic,
since it does not take HWIs into account, which exist in
all physical implementations. Recently, a significant amount
of research has been dedicated to the study of the impact
of residual HWIs (i.e., HWIs which remain after applying
appropriate compensation measures) on the performance of
MU-MIMO systems. In particular, it has been shown that
residual HWIs can be modeled by an additive Gaussian im-
pairment, whose variance depends on the useful signal power
[7]–[10]. This model has also been experimentally validated,
c.f. [8], [11]. One of the earliest works, which adopts this new
system model to investigate the performance of massive MIMO
systems with residual HWIs is [12]. Here, the authors provide
capacity bounds for the downlink and uplink of massive
MIMO systems with residual HWIs. Another related work is
[13], where the authors derive analytical expressions for the
asymptotic achievable sum rate of matched filter (MF) and
conventional minimum mean square error (MMSE) detectors
in uplink massive MIMO systems with residual HWIs, and
also present an HWI aware MMSE detector. Moreover, in
our recent work [14], we have proposed an UL/DL duality
framework for single-cell MU-MIMO systems with residual
HWIs, and derived a HWI aware precoder. In [14], using
results from random matrix theory, we have also provided
analytical expressions for the asymptotic downlink power
allocation in the large system limit which only depend on the
channel statistics.

In this paper, we derive an UL/DL duality framework for
multi-cell MU-MIMO systems with residual HWIs at the BSs
and the UTs. We extend our proposed SINR UL/DL duality
to MSE UL/DL duality. Using the derived UL/DL duality,
difficult downlink optimization problems can be transformed
into simpler uplink problems. As an example, we use the
proposed MSE UL/DL duality theorem to derive a multi-
cell HWI aware MMSE (MCHA-MMSE) precoder and the
corresponding power allocation in the downlink based on the
respective uplink counterparts such that the total sum-MSEis
minimized, while achieving the same per-user SINR and per-
user MSE in downlink and in uplink for the same total transmit
power. Our simulation results show that the proposed MCHA-



MMSE precoder achieves substantially higher sum rates than
the conventional MMSE and conjugate beamforming (BF)
precoders, which do not take multi-cell interference and HWIs
into account.

The remainder of this paper is organized as follows. In
Section II, the system model is presented and benchmark
schemes are introduced. We develop the proposed UL/DL
duality framework for multi-cell MU-MIMO systems with
residual HWIs in Section III. In Section IV, the MCHA-MMSE
precoder is derived, and in Section V, numerical results are
provided. Finally, conclusions are drawn in Section VI.

Notation: Boldface lower and upper case letters represent
column vectors and matrices, respectively.IK denotes the
K × K identity matrix and[A]k,:, [A]:,l, and [A]k,l stand
for the kth row, the lth column, and the element in thekth
row and thelth column of matrixA, respectively.(·)∗ denotes
the complex conjugate andtr(·), (·)T, and(·)H represent the
trace, transpose, and Hermitian transpose of a matrix, respec-
tively. E{·} stands for the expectation operator andCN (u,Φ)
denotes the circular symmetric complex Gaussian distribution
with mean vectoru and covariance matrixΦ. Moreover,A◦B
represents the element-wise product of matricesA and B,
diag (a1, . . . , aK) denotes a diagonal matrix witha1, . . . , aK
on its main diagonal, and “a.s.” stands for “almost surely”.

II. SYSTEM MODEL AND BENCHMARK SCHEMES

In this section, the considered multi-cell MU-MIMO sys-
tem model with residual HWIs is introduced and two bench-
mark schemes are presented.

A. System Model

A downlink multi-cell MU-MIMO system with universal
frequency reuse is considered. In our system model, there areL
cells and in each cell, one BS withN antennas simultaneously
servesK single-antenna UTs. Here,N is assumed to be very
large and the ratio of the number of UTs to the number
of BS antennas is denoted byβ = K/N . The independent
and identically distributed (i.i.d.) zero-mean complex Gaussian
data symbols intended for the transmission to the UTs in
the jth cell are stacked into vectordj = [dj1, . . . , djK ]T,

E

{

djd
H

j

}

= IK , wheredjk is the data symbol of thekth
UT in the jth cell. The vector of the stacked received data
symbols of the UTs in thejth cell is given by

d̂
DL

j =
L
∑

l=1

P
−1/2
j ΞjG

H

lj

(

VlP
1/2
l dl+ǫl

)

+P
−1/2
j Ξj

(

µj+zj
)

,

(1)

where Glj =
[

glj1 . . .gljK

]

∈ C
N×K and Vl =

[vl1 . . .vlK ] ∈ CN×K with gljk and vlk being the channel
vector between thekth UT in the jth cell and thelth BS
and the unit-norm precoding vector for thekth UT at thelth
BS, respectively. In this work, we assume a block flat fading
channel. We further assume a correlated channel model, i.e.,
gljk = R̃ljkhljk, wherehljk ∼ CN (0, IN ), and Rljk =

E{gljkg
H

ljk} = R̃ljkR̃
H

ljk represents the channel covariance
matrix of thekth UT in the jth cell. Furthermore, we adopt
the channel correlation model used in [15], [16], i.e.,R̃ljk =
αljkA, whereαljk models the path loss between thekth UT

in the jth cell and thelth BS, andA models the BS antenna
correlation. Here,αljk is assumed to be equal to one forj = l
(direct gain), andη for j 6= l (cross gain). In this paper, we
assume that the BS employs a uniform linear array (ULA), and
adopt the ULA channel correlation model used in [15], [16].
Accordingly, we haveA = [B 0N×N−M ] with 0N×(N−M)

andM being anN×(N−M) all-zero matrix and the number
of dimensions of the antenna’s physical model, respectively.
Correspondingly, we adoptB = [b (φ1) , . . . ,b (φM )], where
the steering vectorb (φm) is defined as [15], [16]

b (φm)=
1√
M

[

1, . . . , e−2πiλ(N−1) sin(φm)
]T

,m ∈ {1, . . . ,M} ,
(2)

whereφm = −π/2+(m− 1)π/M is themth angle of arrival
(AoA), and λ is the antenna spacing in wavelength, respec-
tively. Moreover, in (1),Pl = diag (pl1, . . . , plK) represents
the downlink power allocation matrix, whereplk is the power
allocated to thekth UT in thelth cell. Here, we consider a sum
transmit power constraint at each BS, i.e.,tr (Pl) ≤ KρDL,
∀l ∈ {1, . . . , L}, where we defineρDL to be the SNR in
the downlink. In addition,Ξj = diag (ξj1, . . . , ξjK), where
ξjk is used to optimize the MSE of thekth UT in the
jth cell in the downlink, wich we denote byMSEDL

jk . As
mentioned in Section I, in this paper, we adopt the HWI
model from [12], where the residual HWI at each antenna
branch is modeled as a mutually uncorrelated Gaussian random
variable, whose variance is proportional to the average signal
power at that antenna. Thus, in (1), the stacked vector of
HWIs in the transmit chain of thelth BS is modelled by
ǫl ∼ CN

(

0, κ2
BTIN ◦

(

VlPlV
H

l

))

, where κBT is a pa-
rameter, which reflects the amount of residual HWI at the
transmitter chain of the BSs. Similarly, the residual HWI at
each UT can be modeled by an independent Gaussian random
variable, whose variance is proportional to the average received
power [12]. Hence, in (1), the stacked vector of residual HWIs
at all UTs in thejth cell is modeled byµj = [µj1, . . . , µjK ]

T,

where µjk ∼ CN
(

0,
∑L

l=1

∑K
q=1 κ

2
URplq

∣

∣gH

ljkvlq

∣

∣

2
)

is the
residual HWI in the receiver chain of thekth UT in the jth
cell, whereκ2

UR represents the amount of residual HWI at
the receiver chain of the UTs. Furthermore,zj ∼ CN (0, IN )
represents the stacked vector of the additive white Gaussian
noise (AWGN) at the UTs in thejth cell. Here, we assume
without loss of generality that the residual HWI parameter at
the receiver and transmitter chains of all UTs and BSs are
identical, respectively. According to (1), the received symbol
at thekth UT in thejth cell is given by

d̂DL
jk =ξjkg

H

jjkvjkdjk +

L
∑

l=1

K
∑

q=1

(l,q) 6=(j,k)

ξjk

√

plq
pjk

gH

ljkvlqdlq

+
ξjk√
pjk

(

L
∑

l=1

gH

ljkǫl + µjk + zjk

)

. (3)



Hence, the signal-to-interference-plus-noise ratio (SINR) at the
kth UT in the jth cell in the downlink is defined as

SINRDL
jk ,

pjk
∣

∣gH

jjkvjk

∣

∣

2

L
∑

l=1

K
∑

q=1

(l,q) 6=(j,k)

plq
∣

∣gH

ljkvlq

∣

∣

2
+ σ2

ǫjk + σ2
µjk

+ 1

, (4)

whereσ2
ǫjk

andσ2
µjk

are given by

σ2
ǫjk

=
L
∑

l=1

κ2
BTg

H

ljk

(

IN ◦
(

VlPlV
H

l

))

gljk, (5)

σ2
µjk

=

L
∑

l=1

K
∑

q=1

κ2
URplq

∣

∣gH

ljkvlq

∣

∣

2
. (6)

B. Benchmark Schemes

BF and conventional MMSE precoders are the most com-
monly used linear precoders for downlink massive MIMO
systems [1], [16], [17]. Thus, in this paper, we consider BF
and MMSE precoders as benchmark schemes, and compare
their performance with that of the proposed MCHA-MMSE
precoder. The BF and MMSE precoders at thejth BS are
given by, respectively,

VBF
j = ζBF

j Gjj , (7)

VMMSE
j = ζMMSE

j

(

GjjG
H

jj +
1

ρDL
IN

)−1

Gjj , (8)

where ζBF
j and ζMMSE

j are normalization factors,
which ensure that the total transmit power constraints

tr

(

VBF
j

(

VBF
j

)H
)

= K and tr

(

VMMSE
j

(

VMMSE
j

)H
)

=

K are met. As can be observed from (7) and (8), the BF and
MMSE precoders take neither the multi-cell interference nor
the residual HWIs into account which leads to performance
degradation.

III. UL/DL D UALITY IN MULTI -CELL MU-MIMO
SYSTEMS WITH RESIDUAL HWIS

In this section, we propose an UL/DL duality framework
for multi-cell MU-MIMO systems with residual HWIs. First,
in Theorem 1, an SINR UL/DL duality framework is presented.
Then, in Corollary 2, we extend the SINR duality presented
in Theorem 1 to MSE duality.

Theorem 1: For the downlink multi-cell MU-MIMO sys-
tem defined in Section II, an equivalent dual uplink system
exists, whose channel and detection matrices are given by
Gjl, ∀j, l ∈ {1, . . . , L} andŨj = ΞjV

H

j , respectively, where
matricesVj , ∀j, have unit norm columns and diagonal matrix
Ξj contains the norms of the rows of matrix̃Uj . In particular,
the stacked vector of the detected symbols in thejth cell in
the dual uplink system is given by

d̂
UL

j =P̌
−1/2

j ΞjV
H

j

L
∑

l=1

(

Gjl

(

P̌
1/2

l dl + µ̌l

))

+ P̌
−1/2

j ΞjV
H

j (ǫ̌j + zj) , (9)

where P̌l = diag (p̌l1, . . . , p̌lK) represents the UTs’ trans-
mit powers in the lth cell in the uplink with p̌lk being

the transmit power of thekth UT in the lth cell. More-
over, ǫ̌j ∼ CN

(

0,
∑L

l=1 κ
2
BTIN ◦

(

GjlP̌l GH

jl

))

and µ̌l =

[µ̌l1, . . . , µ̌lK ]
T, where µ̌lk ∼ CN

(

0, κ2
URp̌lk

)

, represent the
dual UL equivalents of residual HWIs at the BSs and UTs,
respectively. If the stacked power allocation vector of allUTs
in all cells in the downlink, i.e.,p =

[

pT
1 . . .pT

L

]T
, where

pj = [pj1, . . . , pjK ]
T
, j ∈ {1, . . . , L}, is chosen as

p =
(

IKL − diag (a) ·AT

)−1

a, (10)

identical SINRs in downlink and in uplink can be achieved,
i.e.,SINRDL

jk = SINRUL
jk , ∀j, k, for the same sum powers, i.e.,

∑L
j=1

∑K
k=1 pjk =

∑L
j=1

∑K
k=1 p̌jk. Here, the elements of

vectora = [a1, . . . , aKL]
T in (10) are defined as

[a](j−1)K+k ,
SINRUL

jk
(

1 + SINRUL
jk

) ∣

∣vH

jkgjjk

∣

∣

2 , ∀j, ∀k, (11)

whereSINRUL
jk is the SINR of thekth UT in the jth cell in

the uplink, and is given by

SINRUL
jk ,

p̌jk
∣

∣vH

jkgjjk

∣

∣

2

L
∑

l=1

K
∑

q=1

(l,q) 6=(j,k)

p̌lq
∣

∣vH

jkgjlq

∣

∣

2
+ σ̌2

ǫjk
+ σ̌2

µjk
+ 1

, (12)

whereσ̌2
ǫjk and σ̌2

µjk
are defined as

σ̌2
ǫjk

=vH

jk

(

L
∑

l=1

κ2
BT

(

IN ◦
(

GjlP̌lG
H

jl

))

)

vjk, (13)

σ̌2
µjk

=

L
∑

l=1

K
∑

q=1

κ2
URp̌lq

∣

∣vH

jkgjlq

∣

∣

2
. (14)

Moreover, the elements of matrixA ∈ RKL×KL are given by

[A](j−1)K+k,(l−1)K+q , vH

jk

(

(

1 + κ2
UR

)

gjlqg
H

jlq

+ κ2
BTIN ◦

(

gjlqg
H

jlq

)

)

vjk, ∀j, l, ∀k, q. (15)

Proof: Please refer to Appendix A.

Corollary 1: For a single-cell MU-MIMO system with
ideal H/W, i.e., withL = 1 and κ2

BT = κ2
UR = 0, Theorem

1 reduces to a special case, whereSINRUL
k and matrixA are

given by

SINRUL
k ,

p̌k
∣

∣vH

kgk

∣

∣

2

K
∑

q=1,q 6=k

p̌q
∣

∣vH

kgq

∣

∣

2
+ 1

, (16)

[A]k,q ,
∣

∣vH

kgq

∣

∣

2
, (17)

where we have omitted the cell indices for the sake of notation
simplicity. Note that, as expected, the UL/DL duality theorem
for single-cell MU-MIMO systems with ideal H/W presented
in Corollary 1 is identical to the UL/DL theorem in [3].



As can be observed from (12), the SINR expression of the
kth UT in thejth cell in the dual uplink system model depends
only on the detection vector of thekth UT in thejth cell. This
makes the design of the detection vectors in the uplink much
simpler than the design of the precoding vectors in the original
downlink problem, where the received signals at the UTs are
coupled with respect to the precoding vectors. Now, we extend
the results in Theorem 1 to MSE UL/DL duality, and provide
the result in the following corollary.

Corollary 2: The DL and the dual UL multi-cell MU-
MIMO systems with residual HWIs as defined in Theorem
1 have identical per-user MSEs, i.e.,MSEDL

jk = MSEUL
jk , ∀j ∈

{1, . . . , L} , k ∈ {1, . . . ,K}, whereMSEDL
jk andMSEUL

jk are
given by

MSEDL
jk =E

{

‖d̂DL
jk − djk‖2

}

=ξ2jk
∣

∣gH

jjkvjk

∣

∣

2−2ξjkℜ
{

gH

jjkvjk

}

+
ξ2jk
pjk









1+σ2
ǫjk

+σ2
µjk

+

L
∑

l=1

K
∑

q=1

(l,q) 6=(j,k)

plq
∣

∣gH

ljkvlq

∣

∣

2









+1, (18)

MSEUL
jk =E

{

‖d̂UL
jk − djk‖2

}

=ξ2jk
∣

∣vH

jkgjjk

∣

∣

2−2ξjkℜ
{

vH

jkgjjk

}

+
ξ2jk
p̌jk









1+ σ̌2
ǫjk

+ σ̌2
µjk

+

L
∑

l=1

K
∑

q=1

(l,q) 6=(j,k)

p̌lq
∣

∣vH

jkgjlq

∣

∣

2









+1. (19)

Proof: Please refer to Appendix B.

IV. M ULTI -CELL HWI AWARE PRECODING

In this section, a MCHA-MMSE precoder is derived by
exploiting the proposed MSE UL/DL duality framework for
multi-cell MU-MIMO systems with residual HWIs presented
in Corollary 2. The optimization problem for minimization of
the sum-MSE in the downlink is formulated as follows:

min
Pj ,Vj , Ξj

L
∑

j=1

K
∑

k=1

MSEDL
jk ,

subject to:
L
∑

j=1

K
∑

k=1

pjk ≤ KLρDL,

pjk ≥ 0, ∀j, k,
vH

jkvjk = 1, ∀j, k. (20)

Next, in Section IV-A, we apply the UL/DL duality framework
from Corollary 2 to the downlink optimization problem in (20)
to obtain the dual uplink optimization problem, which is easier
to solve.

A. Multi-Cell HWI Aware Detection in the Dual UL

Now, we apply Corollary 2 and transform the downlink
optimization problem in (20) into its dual uplink equivalent.
The equivalent uplink optimization problem is given by

min
P̌j ,Ũj ,∀j

L
∑

j=1

K
∑

k=1

MSEUL
jk

subject to:
L
∑

j=1

K
∑

k=1

p̌jk ≤ KLρDL,

p̌jk ≥ 0, ∀j, k, (21)

where Ũj = ΞjV
H

j , andMSEUL
jk is given by (19). As can

be seen from (21), the dual uplink optimization problem has
only a total transmit power constraint, and is therefore easier
to solve compared to the original downlink problem in (20).
Note that in (21), the normalization matrixΞj is absorbed into
matrix Ũj . Moreover, the constraintvH

jkvjk = 1 is implicitly

met in (21), sinceVj = Ũ
H

j Ξ
−1
j , whereΞj by definition

contains the norms of the rows of̃Uj on its main diagonal.
Here, in order to focus on the precoder design, we assume a
uniform power allocation in the uplink, i.e.,̌pjk = ρDL, ∀j, k.
Moreover, since the detector matrix at thejth BS has only
impact on the MSEs of the UTs in thejth cell, the sum-MSEs
in different cells can be minimized individually. This leads to
the following unconstrained optimization problem

min
Ũj

K
∑

k=1

MSEUL
jk , ∀j. (22)

In the following theorem, we present the optimal detection
vectors for uniform power allocation in the dual uplink system.

Theorem 2: The solution to the optimization problem in
(21) for a fixed power allocation is given by

Ũ
MCHA

j =
1

N
GH

jj

(

1 + κ2
UR

N

L
∑

m=1

GjmGH

jm (23)

+
κ2
BT

N
IN ◦

(

L
∑

m=1

GjmGH

jm

)

+
1

NρDL
IN

)−1

.

Proof: Please refer to Appendix C.

Applying the UL/DL duality in Theorem 1, the MCHA-MMSE
precoding vector of thekth UT at the jth BS is given by
vMCHA
jk =

(

ũMCHA
jk

)H

/‖ũMCHA
jk ‖, ∀j, k, whereũMCHA

jk is the

kth row of matrix Ũ
MCHA

j which is given in (23). Next,
the uplink SINRs can be calculated by (12) after substituting
vjk = vMCHA

jk , and subsequently the downlink power alloca-
tion is determined by (10).

Remark 1: Comparing (23) and (8), and considering

VMCHA
j =

(

Ũ
MCHA

j

)H (

ΞMCHA
j

)−1

, whereΞMCHA
j is a

diagonal matrix, which contains the norms of the rows of
Ũ

MCHA

j on its main diagonal, it can be seen that the ex-
pression for the MCHA-MMSE precoder contains two addi-
tional terms compared to the conventional MMSE precoder.
The first term,

∑L
m=1,m 6=j GjmGH

jm/N , contains information
regarding the channels between the UTs in other cells and
the considered BS, and is exploited by the MCHA-MMSE
precoder to suppress multi-cell interference. The second term,
κ2
UR

∑L
m=1 GjmGH

jm/N + κ2
BTIN ◦

(

∑L
m=1 GjmGH

jm/N
)

,
accounts for the HWI.

In order to further evaluate the performance of the proposed
MCHA-MMSE precoder, we also consider a multi-cell aware
but hardware unaware MMSE (MCAHU-MMSE) precoder
which is given by

VMCAHU
j =

(

Ũ
MCAHU

j

)H (

ΞMCAHU
j

)−1

, (24)
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Fig. 1. Sum rate vs. number of BS antennasN for K = 20 and
κBT = κUR = 0.03.

where ΞMCAHU
j is a diagonal matrix, which contains the

norms of the rows ofŨ
MCAHU

j on its main diagonal, and

Ũ
MCAHU

j is obtained by settingκ2
UR = κ2

BT = 0 in (23), and
is given by

Ũ
MCAHU

j =
1

N
GH

jj

( 1

N

L
∑

m=1

GjmGH

jm +
1

NρDL
IN

)−1

.

(25)

The performance metric used in this paper is the network-wide
ergodic achievable sum rate, which is given by

R =

L
∑

j=1

K
∑

k=1

E
{

log2
(

1 + SINRDL
jk

)}

, (26)

where the expectation is approximated by averaging over a
sufficient number of channel realizations, andSINRDL

jk is given
by (4) after replacingVj by VBF

j , VMMSE
j , VMCAHU

j and
VMCHA

j for the BF, MMSE, MCAHU-MMSE, and MCHA-
MMSE precoders, respectively.

V. NUMERICAL RESULTS

In order to evaluate the performance of the proposed
MCHA-MMSE precoder, Monte-Carlo simulations have been
performed. Here, we assume a system consisting ofL = 7
cells, where in each cell, one BS servesK = 20 UTs. The
cross gain is assumed to beη = 0.3, and the transmit SNR
is set toρDL = 20 dB. Moreover, we adopt similar antenna
correlation parameters as in [16]. In particular, we assumethat
the number of physical paths is equal toM = N , and the
normalized antenna spacing isλ = 0.5.

In Fig. 1, the ergodic achievable sum rate of the proposed
MCHA-MMSE precoder as a function ofN is compared to
that of the MCAHU-MMSE, conventional MMSE, and the BF
precoders. In this simulation, we adopt similar residual HWI
parameters at the BS and the UTs as in [12]. Accordingly,
we haveκBT = κUR = 0.03. As can be seen, the MCHA-
MMSE precoder achieves substantially higher sum rates than
all other investigated precoders. For example, forN = 100,
the MCHA-MMSE precoder achieves an almost40% higher
sum rate than the MCAHU-MMSE and the conventional
MMSE precoders. In particular, for increasing number of BS
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Fig. 2. Sum rate vs.κBT for N = 40, K = 20, andκUR = κBT.

antennasN , the gap between the MCHA-MMSE precoder
and all other considered precoders increases, too. From Fig.
1, it can also be observed that the performance gap between
the MCAHU-MMSE precoder and the conventional MMSE
precoder decreases with increasing number of BS antennasN .
This is due to the fact that for increasingN , the orthogonality
of the channel vectors between the UTs in the neighboring
cells and the BS under consideration increases, which leadsto
less multi-cell interference.

In Fig. 2, the sum rate performance of the investigated
precoders forN = 40 as a function of HWI parameterκBT

is depicted. It can be seen that with increasingκBT, the
sum rate of the proposed MCHA-MMSE precoder decreases
only slightly, whereas the performance of the MCAHU-MMSE
precoder decreases rapidly. Consequently, the performance
gap between the MCHA-MMSE precoder and the MCAHU-
MMSE precoder increases with increasingκBT, too. From
Fig. 2, it can also be seen that the MCHA-MMSE precoder
achieves considerably higher sum rates than the conventional
MMSE and BF precoders for the entire range ofκBT. For
example, for κBT = 0.03, the MCHA-MMSE precoder
achieves53% higher sum rate than the conventional MMSE
precoder. Surprisingly, for large values ofκBT, the MCAHU-
MMSE precoder performs even worse than the conventional
MMSE precoder. This is due to the fact that, in contrast to the
conventional MMSE precoder, the MCAHU-MMSE precoder
uses all available degrees of freedom in an effort to suppress
the multi-cell interference, which makes it more sensitiveto
mismatches.

VI. CONCLUSION

We presented an uplink/downlink duality framework for
multi-cell MU-MIMO systems with residual HWIs. We
showed that if the power allocation, precoding, and detection
matrices are chosen properly, under the same total transmit
power constraint, the same per-user SINR and per-user MSE as
in the downlink can be achieved in the dual uplink. We used the
proposed uplink/downlink duality framework to transform the
network-wide sum-MSE minimization problem in the down-
link to its uplink equivalent, and presented a MCHA-MMSE
precoder, which takes the multi-cell interference and HWI
into account. Our simulation results showed that the proposed
MCHA-MMSE precoder achieves considerably higher sum
rates than the multi-cell aware HWI unaware MMSE, the
conventional MMSE, and the BF precoders.
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The downlink BS HWI component in (5) can be rewritten
as
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Next, we rewrite the downlink UT HWI component in (6) as

σ2
µjk

=

L
∑

l=1

K
∑

q=1

κ2
URplqv

H

lqgljkg
H

ljkvlq. (28)

Taking into account (15), (27), and (28), and performing
straightforward algebraic operations, the expression in (4) can
be reformulated in the following compact form [18]

(

IKL − diag (b) ·AT

)

p = b, (29)

where the elements ofb = [b1, . . . , bKL]
T are given by

[b](j−1)K+k ,
SINRDL

jk
(

1 + SINRDL
jk

) ∣

∣gH

jjkvjk

∣

∣

2 , ∀j, ∀k. (30)

Now, considering (11) and (15), and performing a similar
procedure as for (29), the expression in (12) can be rewritten
as the following matrix-vector form

(IKL − diag (a) ·A) p̌ = a, (31)

where p̌ =
[

p̌T

1 . . . p̌T

L

]T

is the stacked vector of power
allocation of all UTs in all cells in the uplink witȟpj =

[p̌j1, . . . , p̌jK ]
T
, ∀j ∈ {1, . . . , L} being the power allocation

of the UTs in thejth cell. Comparing (11) and (30), it can
be concluded that identical individual SINRs in the downlink
and in the uplink can be achieved if and only ifa = b.
In the following, we show that the conditiona = b also
leads to identical sum powers in the downlink and the uplink.
According to (10), the sum transmit power of all UTs in all
cells in the DL is given by [18]
L
∑
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K
∑

k=1

pjk=1T
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L
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K
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p̌jk,

where 1 ∈ RKL is an all-one column vector andΛa =
diag (1/a1, . . . , 1/aKL), Λb = diag (1/b1, . . . , 1/bKL), and
we appliedΛa = Λb. This completes the proof.

APPENDIX B - PROOF OFCOROLLARY 2

The second term on the right hand side of (18) can be
rewritten as
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(32)

where we exploited (4), (12), and the equality of the per-user
SINRs in the DL and the dual UL from Theorem 1. Comparing
(32) with (18) and (19) completes the proof.

APPENDIX C - PROOF OFTHEOREM 2

After defining the error vectorej = d̂
UL

j −dj , substituting
P̌j = ρDLIK and Ũj = ΞjV

H

j into (9), and using the

propertiesE
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= 0, ∀j 6= l, E
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= 0, ∀j, l, the
sum-MSE in thejth cell in the uplink can be formulated as
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Next, we take the derivative of the expression in (33) with
respect toŨ

∗

j and set it to zero to obtain the optimal detection
matrix:
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Performing straightforward algebraic operations, the optimal
detection matrix in (23) is obtained. This completes the proof.
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