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Abstract—Millimeter wave communication provides high data
rates thanks to large arrays at the transmitter and receiver,
coupled with large bandwidth channels. Exploiting the arrays
is challenging due to the need to configure precoding at the
transmitter based on the large frequency selective channel. In
this paper we exploit the power iteration principle and propose a
robust analog precoding training algorithm that can be applied
in both frequency division duplex transmission (FDD) systems
and time division duplex transmission (TDD) systems with or
without RF calibration. We further analyze the convergence of
the proposed algorithm and show how it converges to the singular
value decomposition optimality exponentially. We propose null
space projection on top of the power iteration to form multiple
orthogonal beams at the transmitter and receiver. Strongest tap
selection with proper energy pruning is used to collect as much
precoding gain as possible from a frequency selective fading
channel. The exponential effective SINR mapping performance
is evaluated and demonstrates that the overall approach works
effectively. Numerical simulation results demonstrate algorithm
robustness and the algorithm works effectively not only for the
simplified millimeter wave directional channels, but also for more
general rich scattering channels.

I. INTRODUCTION

Thanks to recent advances in RF technologies and the
availability of wide bandwidth channels, millimeter wave
(mmWave) wireless communications is being developed for
low cost consumer applications. The new IEEE 802.11ad stan-
dard [12] provides multiple giga bit per second transmissions
for indoor applications. More recently, the wireless industry is
considering the mmWave frequency band for outdoor cellular
systems. One of the major challenges for mmWave Gbps
communications is the poor link budget due to the large
bandwidth and the small antenna aperture size. Fortunately,
because the carrier wavelength is on the order of several
millimeters, it is possible to integrate a large number of
antenna elements for both transmitter and receiver. This is the
reason for the wide interest in multiple-input multiple-output
(MIMO) transceiver techniques in mmWave systems [10].

We consider analog precoding in this work, where the trans-
mitter precoding and receiver combining occur in the analog
domain, i.e. after digital to analog converter at the transmitter
side and before analog to digital converter at the receiver side.
As a result, the number of RF chains needed depends only on
the number of streams, rather than on the number of antenna
elements. Notice that, although not included in the solution
in this paper, digital precoding/combining may be applied

on top of the analog precoding/combining operation, and is
generally known as hybrid precoding/combining. Optimization
of the transceiver precoding coefficients for a hybrid MIMO
mmWave system is a topic of recent interest [2], [4], [5]; see
also recent overviews of hybrid precoding for MIMO mmWave
systems [3], [9], [10].

Joint design of analog and digital precoding leveraging
sparsity in the channel was pursued in [5]. The joint design
problem was formulated as a sparsity constrained matrix
reconstruction problem; the orthogonal matching pursuit algo-
rithm was used to solve the reformulated problem. The main
limitations of [5] are that perfect channel state information
is assumed known at the receiver side and that a narrowband
directional channel model is assumed. An alternative approach
was considered in [2] where a multi-resolution precoding
codebook is proposed as a way to estimate the channel
through a hierarchical search. This approach is still limited
by the assumed directional channel model (see Eq. (2)). More
recently, [4] studies hybrid precoding over frequency selective
channels, where both baseband and RF precoders on the
transmitter side are selected from quantized codebooks. Perfect
channel knowledge is assumed at the receiver (mobile station)
side, which may not be available in practice. In [6], the power
iteration was proposed for blind MIMO antenna array training
for TDD transmissions. Applications were shown for relatively
a small number, say 4, of antennas. In such cases, however,
the power iteration method does not demonstrate a clear ad-
vantage in terms of the training overhead, especially when the
number of iterations is large. Furthermore, neither the constant
modulus constraint nor the frequency selective fading channel
is considered therein. Recently, the Arnoldi iteration method
was proposed for mmWave MIMO subspace estimation [7].
Both algorithms work only for TDD transmissions, but not for
FDD transmissions or TDD transmissions with uncalibrated
antennas. Moreover, both [6] and [7] deal with flat fading
channels only.

In this paper, we derive new algorithms for analog precoding
for large scale MIMO systems with very large number of
transmit and receive antennas and small number of spatial
streams, with an emphasis on mmWave MIMO systems. In
particular, we do not assume perfect estimate of the entire
MIMO channel at the receiver side or the transmitter side.
Instead, the precoding matrices are estimated by the transmitter
and receiver in a distributed manner. As a result, the training



overhead is greatly reduced than the conventional approach
of direct channel estimation. We develop a power iteration
algorithm to iteratively estimate the transmit precoding and
receive combining matrices, which is applicable in both FDD
systems and TDD systems with/without uncalibrated antennas.
We analyze the convergence of the proposed algorithm and
show the exponential convergence to the optimal singular
value decomposition solution. The proposed algorithms do
not assume any particular structure of the underlying channel
model. Numerical simulations demonstrate the proposed algo-
rithms work effectively not only for the simplified structured
directional channel in mmWave wireless, but also for rich
scattering channels. Henceforth, the proposed algorithm is
robust with regards to the channel propagation characteristics.
We develop a strongest tap selection algorithm with energy
pruning for frequency selective fading channels. Numerical
results demonstrate effectiveness of the iterative algorithms
in frequency selective fading channels. Numerical simulations
also demonstrate that the power iteration algorithm, when
modified to accommodate the constant modulus constraint in
e.g. mmWave wireless communication systems, performs well
in general and converges at a similar speed.

II. SYSTEM AND CHANNEL MODEL

A. System Description

We consider a multi-stream mmWave MIMO transceiver
with analog precoding, where a large number of transmit and
receive antennas are used, as illustrated in Fig. 1. Without
loss of generality, we select number of RF chains equal to
the number of streams, although more RF chains per stream
may be considered. Let [V, and IV, be the number of transmit
and receive antennas respectively. The joint transceiver pre-
coding techniques developed in the two stream system can be
generalized to a higher order multi-stream precoding system.
Naturally, a single stream system may be viewed as a special
case of Fig. 1. For simplicity of exposition, we focus on the
simple, yet general enough, two stream case.

In Fig. 1, transmit precoding is represented by the two pre-
coding vectors {vu}ﬁvz‘l, {U27i}zj-v:'1, which are the precoding
coefficients on the ith antenna for the 1st and 2nd stream; and
receive combining is represented by the two precoding vectors
{u; };V;l, {ua; }jvzl which are the combining coefficients on
the jth antenna for the 1st and 2nd stream. Typically, the
number of antennas N, IV; is much larger than the number of
data streams N, = 2. This is desired especially for mmWave
MIMO, where the per-RF-chain cost is relatively high and
the per-antenna cost is relatively low, or when the number of
supportable streams is much less than the number of antennas.

For flat fading channels, the system equation may be rep-
resented by

y =Hx +n, (1)

where the size NV, x NV; matrix H represents the wireless
channel, the size N;x1 vector y,n represent the received
signal and the additive Gaussian channel noise respectively,

Fig. 1. Illustration of a two stream MIMO joint precoding system.

the size Nyx1 vector x represents the transmitted signal.
Frequency selective fading channels will be dealt with later.
The main problem we solve is how to compute the optimal
precoding vectors at both transmitter and receiver sides. To-
ward this purpose, channel state information is normally used
to design the transmit and receive beams. For MIMO systems
operating at lower frequencies, full CSI is usually assumed at
least at the receiver side. With full CSI at the receiver, different
levels of CSI may be made available at the transmitter side.

B. Channel Model and RF Consideration

The mmWave wireless channel typically has limited scat-
tering, and multipaths are mainly generated by LOS and 1st-
and 2nd-order reflections. As a result, mmWave channels
demonstrate clear directionality, where the physical angles of
departure (AoDs) and angles of arrival (AoAs) in the azimuth
and elevation domain play a critical role in determining the
channel response. In such cases, the following simplified
directional channel model may be used [5], [10]

L Q
H= /NN > Mg 8(h,00,) 8]0, (2

=1 qg=1

where L is the number of clusters, ) is the number of
rays per cluster, \¢, is the complex gain of the (-th cluster
and g-th ray, gf)z’ - 02 , are the elevation and azimuth domain
AoDs of the g-th ray within the ¢-th cluster, and ®1.q:90.4
are the elevation and azimuth domain AoAs. In general, )\,
may be modeled as complex Gaussian distributed, the cluster
AoA/AoDs ¢}, 0, may be modeled as Laplacian distributed,
and the ray AoA/AoDs ¢; .0} ., ¢; ., 0} , may be modeled to
be uniformly distributed around the cluster AoA/AoDs with
a constant angular spread [10]. g(-) is the steering vector
depending on the antenna array geometry.

The above channel model assumes narrowband transmis-
sions. The purported benefits of mmWave wireless communi-
cations are found though in channels with a large bandwidth.
In Section IV, we will consider frequency selective fading
channels. The simplified directional channel model in Eq. (2)
may be extended to have multiple taps, with multiple non-
overlapping taps in the delay domain and each tap containing
multiple clusters/rays. See [4, Eq. (3)] for details on the
extended channel model.

For analog precoding, the precoding operation can be rep-
resented by a phase shifter and an amplitude modulator per
antenna branch. The phase shifter and the amplitude modulator
on each antenna branch may be separately controlled. It is



well known that for a large number of antenna elements,
equal gain combining/precoding is able to achieve most of the
gain with the per-antenna peak power constraint (important
for mmWave MIMO communications in the GHz frequency
band). Because of this and also because of the extra cost to
control the amplitudes independently in the analog domain,
in many cases, one may place a constant modulus constraint
for all antenna branches and only adjusts the phase shifters
independently. This is the reason for the prevalence of phased
arrays in mmWave systems. In this paper, we will develop
the precoding algorithms with the constant modulus constraint
in mind. As we will see in numerical results, most of the
precoding gain can be maintained when the constant modulus
constraint is applied. Once the analog precoding are formed
between the transmitter and the receiver in the analog domain,
extra digital precoding may be performed on top. This is
also known as hybrid precoding and has been studied in the
literature (see [3], [5], [10]).

Although the iterative analog precoding training algorithms
in this paper are developed with mmWave wireless channels
in mind, they may be applied in certain other cases (e.g. large
scale MIMO systems in the centimeter wave frequency band),
for which the above channel model (2) may not hold true or
be sufficiently accurate. To verify the algorithm effectiveness
in such cases, we will also test the developed algorithms in a
more general MIMO fading channel model

{M}i .0~ CN(0,0% ) 3)

where the channel coefficient {#}; ; , between the i-th receive
and j-th transmit antenna on the ¢-th tap is zero mean complex
Gaussian with a tap-dependent channel variance o}, ,. This
channel model corresponds to the typical “rich scattering
assumption” made in lower frequency MIMO systems. As
we will see, the developed algorithm is robust in that it
works almost equally well in those more challenging channel
scenarios.

III. ANALOG PRECODING IN FLAT FADING

In this section we focus on the flat fading channels, and our
objective is to train the precoding vectors on the transmitter
and receiver side jointly.

A. Power Iteration Introduction

We review here the method of the power iteration, which
is used in numerical matrix analysis to compute matrix eigen-
value decompositions and singular value decompositions [8].
Write the SVD decomposition of H as

/ / /
H=o0,uwv] +02u2vy +---+opupvp 4)

where ui,--- ,up are left singular vectors of size N; x 1,
vi,- -+, Vvp are right singular vectors of size N, x 1, and o1 >
.-+ > op are singular values in a non-increasing order. For a
positive integer m, define

H2’m, — (H/H)’m,7 H2m_1 — HHZm—Q (5)

Thanks to the orthogonality between singular vectors, we have
that

2 2 / 2 / 2 /
H"™ =01 wvivi+03™ vavh---4+ 07" vpVp
2m—1 2m—1 / 2m—1 ! 2m—1 !
H =0 u;vy + o, Ugvy - -+ 0p ' UpVp.
(6)
As the positive integer m increases, 02™ /o™ decreases
exponentially, Vi = 2,--- P. Note that o; < 09,V2e > 1.
Therefore,
lim H?™ = o?"v, v,
lim H?™~! = 2™y, v).
m—r oo

In other words, only the strongest eigenmode u;, vy remains
in the extreme case.

B. Iterative Analog Precoding Algorithm

The optimal joint transceiver precoding can be obtained via
the singular value decomposition (SVD) of the channel. As a
result, the MIMO channel H can be simplified to a diagonal
channel to support multiple non-interfering data streams.

Starting from (7), an arbitrary vector q in the range space
of H can be written as q = Eil c;v; where ¢;v; is the
contribution of q along v;. Thanks to (7) and the orthogonality
between singular vectors, we have

P
vr}l—r>noo Hzmq = a%mvlvi (Z civi> (8)
i=1

where the right hand side is equivalent to v; after normaliza-
tion. In other words, the leading transmit precoding vector v
may be obtained by multiplying a random vector q by H?™.
Similarly, we have

P
mlLIHOO H>" 1q = o™ 'uyv) (Z Cin') ©))
i=1

where the right hand side is equivalent to u; after normaliza-
tion. In other words, the leading receive combining vector uy
may be obtained by multiplying a random vector q by H2"~ 1,
It is noted that the random vector q is in the range space of H
with probability one. Henceforth, Equations (8) and (9) hold
true with probability one.

Our algorithm is presented in Algorithm 1 and also il-
lustrated in Fig. 2. The algorithm is an iterative process
involving two steps, i.e., optimizing the receive combining
vector by fixing the transmit precoding vector, and optimizing
the transmit precoding vector by fixing the receive combining
vector.

Particularly, in step 1, destination device (receiver) training
is performed by sweeping across a number of orthogonal
beams at the receiver side while fixing the transmit precoding
to a random initial vector q. N, time slots are needed because
N; combining coefficients are to be estimated. Note that vector
normalization is applied always. On the other hand, if constant
modulus constraint is needed e.g. in the mmWave frequency
band, amplitude information of each combining efficient is
stripped and only phase information is retained.
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Fig. 2. Power iteration illustration (FDD).

In step 2, source device (transmitter) training is performed
by sweeping across a number of orthogonal beams at the
transmitter side while fixing the receive combining vector to
be the newly computed result from the previous step. N, time
slots are needed because N; precoding coefficients are to be
estimated. Note that vector normalization is applied always.

The estimated transmit precoding vector is then complex
conjugated and fed back to the transmitter. Different feedback
technologies maybe used. For example, when constant modu-
lus constraint is not forced (e.g. for large scale MIMO systems
in centimeter wave frequency band), limited feedback transmit
precoding may be used with the codebook designed based on
isotropic packing of the Grassmannian manifold; when con-
stant modulus is forced (e.g. for large scale MIMO systems in
the mmWave frequency band), amplitude information of each
combining efficient is stripped and only phase information is
retained. Also note that the feedback (dashed curve in Fig. 2)
may be done in a different frequency band from which the
antenna array training is performed (solid curve in Fig. 2), or
via a different radio.

Algorithm 1 Iterative Analog Precoding Training

0. Start with a random initial vector q at the source device.
1. Transmit at the source with q as the transmit precoding
vector, and receive at the destination with the i-th column
of Iy, as the receive combining vector. Repeat this with
i=1,---,N; over N; time slots. Collect the N, received
samples over the N} time slots, and obtain at the destination
Ht. Apply constant modulus constraint if needed.
Apply vector normalization.

r =

2. Transmit at the source with the j-th column of NV, and
receive at the destination with the recently computed r as the
receive combining vector. Repeat this with j = 1,--- | N;
over N, time slots. Collect the N, received samples over
the V; time slots, and obtain at the destination r'H. Apply
constant modulus constraint if needed. Apply vector nor-
malization. Apply complex conjugate operation to obtain
t = H'r and feed it back to the source device.

3. Repeat steps 1 and 2 until convergence.

Power iteration has also been studied in [6]. Several impor-
tant differences exist though. Firstly, perfect downlink/uplink

channel reciprocity is assumed in [6], which requires TDD
transmissions with perfectly calibrated RF frontend. This
however is not required in Algorithm 1, which may be used
in FDD transmissions, or TDD transmissions with/without
RF calibration. Secondly, in [6], a complete transceiver on
the frequency band in consideration is required at both the
destination device and the source device. For example when
mmWave wireless communications is considered, the source
device need to have a transmitter in the mmWave frequency
band and a receiver in the mmWave frequency band. So
is the destination device. This however is not required in
Algorithm 1. It can be seen clearly from Fig. 2 that it is
only required that the source device have a transmitter in
the mmWave frequency band, and that the destination device
have a receiver in the mmWave frequency band. Note that the
feedback link may be implemented on a different frequency
band via a separate, hopefully cheaper, radio.

C. Convergence Analysis

In [6], the power iteration convergence is studied with the
performance metric selected as the mean square error between
the right singular vector and the ideal transmit precoding
vector, or the mean square error (MSE) between the left
singular vector and the ideal receive combining vector, or the
average of the two. Numerical simulations demonstrate that the
mean square error converges after around m = 10 iterations
for a 3 x 3 system in the noiseless case. We argue that the
convergence behavior may be better evaluated by looking at
the effective channel. From Fig. 2, Vector r converges to the
desired receive combining vector u;: r = H?"1q — uy, and
vector t converges to the desired transmit precoding vector
vi: t = H?>™q — v;, where m is the iteration index. The
optimal achievable precoding gain can be used as a reference
and written as

go = |S1| = |u’1Hv1|. (10)

At the m-th iteration, the convergence of the transmit precod-
ing vector may be individually evaluated as

g(m) = [W{Ht| = [u{HH*"q| = [u{H*"'q|, (1D

where the current transit precoding vector t is paired with the
ideal receive combining vector u;, and can be viewed as the
angular distance between t and the ideal transmit precoding
vector v; (corresponding to the distance on the Grassmannian
manifold G(N,,1)). Note that Euclidean distance between t
and vy is used [6]. Similarly, convergence of the receive
combining vector may be individually evaluated as

g:(m) = P'Hvy| = |[¢/(H*~YYHv,| = [V{H*"q| (12)

where the receive combining vector r is paired with the
ideal transmit precoding vector v, and can be viewed as the
angular distance between r and the ideal receive combining
vector u;. From (11) and (12), the converging speed of the
transmit precoding/receive combining vector individually is on
the order of (o2/c1)?™ where the second largest singular value
o2 would dictate the convergence in general.
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Fig. 3. Convergence behavior.

We can evaluate how fast the transmit precoding vector
converges to the ideal by comparing g:(m) with go, and how
fast the receive combining vector converges to the ideal by
comparing g,(m) with go. Yet, they can be jointly evaluated
and the achieved gain at the end of the m-th iteration is

gl,r(m) — |I‘/Ht| — |q/(H2m—1)/HH2mq| — ‘q/H4mq‘

(13)
In fact, although we are interested in the convergence behavior
of the transmit precoding/receive combining vector individ-
ually (11) (12), what matters more is the overall achieved
channel gain (13). The convergence speed of the transmit
precoding and receive combining vector jointly is on the
order of (o2/01)*™, doubling the individual speed. This can
be witnessed from Fig. 3 where N; = N; = 64 is used,
and the joint precoding/combining performance corresponds
to (13) and the individual precoding/combining performance
corresponds to (11) and (12) respectively. Note that the joint
precoding/combining performance converges much faster than
the individual precoding/combining performance.

In many cases in practice, we are interested in the effective
channel SNR (signal to noise ratio). It is straightforward that
the channel SNR is proportional to the channel gain squared

ggr(m) — |q'H4mq\2 _ |q/H8mq|’ (14)
Thus, the effective SNR converges with a speed on the order
of (o2/a1)®™, further doubling the convergence speed.

In Algorithm 1, estimation is done for Hq as a whole,
and H2q as a whole, and so on and so forth. The under-
lying channel H is never estimated explicitly. The number
of estimates is simply m x (N, + N;). In comparison, the
number of channel estimates required to estimate the original
H directly is N; x N;. Clearly, the proposed algorithm saves
computation complexity and training air time especially when
number of antennas N, IV, are large and number of spatial
streams is small. This is exactly the case for mmWave wireless
communications.

D. Extension to the Second Stream

In this subsection, we continue the antenna array training
for the second stream, where the second leading transmit and
receive combining vectors vy, U are to be acquired. Let ty
be a random vector orthogonal to v;, which can be obtained
by projecting a random vector t onto the null space of v,
where

P
tg =t — (Vit)vy = Z CiVi. (15)
i=2
is orthogonal to v;.
Similar to (8), it can be shown that
P
H2mtg = Zcm?mvi,
i=2
- (16)
H 1, = Zcm?m_lui.
i=2
and furthermore
lim H>™ty = cp03™vy
m—00 (17)

X V.

In other words, when m is large enough, we may use H?™t
to obtain the second transmit precoding vector vy, where we
need to make sure that all the contribution from v is excluded.
Similarly,
lim H>" 1ty = cpo2™ 'uy
m—roo

(18)
o Uy

and we may use H?" !ty to obtain the second receive
combining vector uy, where we need to make sure that all
the contribution from u; is excluded.

Algorithm 1 from Section III can be directly generalized to
the second stream. The only difference is that for each step
a null space projection is needed. In particular, at the end of
step 1 before applying the constant modulus constraint and
vector normalization, the obtained receive combining vector
need be projected onto the null space of u;, which has been
obtained for stream 1. Constant modulus constraint and vector
normalization can then be applied. Similarly, at the end of
step 2 before applying the constant modulus constraint and
vector normalization, the obtained transmit precoding vector
need be projected onto the null space of v, which has been
obtained for stream 1. Constant modulus constraint and vector
normalization can then be applied.

E. Numerical Results

We carry out numerical simulations over the simplified
directional channel model in Eq. (2), which may be used for
certain mmWave applications. A system setup with N, = 32
and N, = 32 antennas is considered. L = 10 multipaths
are generated, with the path gain complex normal distributed,
and the AoAs and AoDs uniformly distributed within [0, 7].
Fig. 4 illustrates the convergence behavior, while the constant
modulus constraint is applied. The dashed lines represent the
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Fig. 4. Convergence in simplified mmWave directional channels.

upper-bounds in the first and second streams promised by the
ideal singular value decomposition, solid lines represent the
achieved channel norm squared with the constant modulus
constraint. For both streams, the power iteration is able to
converge to the optimal gain quickly, after 3 to 4 iterations.

IV. ANALOG PRECODING IN FREQUENCY SELECTIVE
FADING

In this work, we employ the so-called exponential effective
SINR mapping (EESM) SNR [13] as the performance metric,
where

N, N,
1 1 < 2 SINR;. ,,
SINReqr = —f3log <NN D, D exp <‘/3k)>

S k=1ns=1

19)
where SINRjy, ,,. is the post-equalization SINR on the k-th
OFDM subcarrier and the ngth stream, and 3 is a MCS-
dependent constant. A linear Zero Forcing (ZF) equalizer is
assumed per subcarrier, and the post-equalization SINR per
stream is readily available. Essentially, an OFDM system with
per subcarrier SINRs {SINR;C}LV;1 would achieve a similar
block error rate performance as that of a single tap AWGN
channel with SNR of SINR.g.

A. Tap Selection for the First Stream

Following Section III-B, let u;, and v; be the re-
ceive and transmit precoding vector to be acquired. It is
clear that the effective channel may be written as H, =
{u/H vy, -+ ,ujHv;} in the time domain. In the frequency
domain, the overall channel may be written as H;. =
{u/Hy vy, ,uiHy n,vi} where {Hyq,--- \Hyn, } is
the frequency domain channel with N, being the number of
OFDM subcarriers. The per subcarrier effective SNR is thus
SINR, = |ujHy ;v1|?p where p is the per-subcarrier SINR
without precoding/combining. The overall EESM mapping can
then be written as

N,
I & 'H 2
SINR. = —f log (N > e (W)) . 0)
¢ n=1
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Fig. 5. MRC-type combining vs MAX-type selection in the delay domain.

Direct optimization of the effective SINR based on EESM
mapping is difficult, due to the exponential-sum-log operation.
Therefore we resort to some simpler heuristic alternatives.
The difficulty is that we have only one pair of transmit and
receive combining vectors. Yet, we need to deal with multiple
channel taps (or frequency subcarriers). Conceptually, one
need to decide to focus the beam onto one particular tap or one
particular frequency subcarrier, or to the focus the beam onto
a combination of multiple taps or a combination of multiple
subcarriers. One heuristic method is to select only the tap with
the largest tap energy, and let the transmitter and receiver form
the beams based on the channel matrix on top of this particular
tap. let /7 be the tap with highest tap energy (or largest average
channel Frobenius norm square)

(] = argmax F} 1)
where F7 is the average Frobenius norm square of the channel
on the ¢-th tap, and is porportional to 0,217 »in Eq. (3). Similarly,
let £ be the tap with second highest tap energy to be used later.
Essentially, in stream 1, the receiver would always form the
beam based only on the ¢;-th column and ignores contribution
from all other taps.

We carry out numerical simulations in the following. The
channel model in Eq. (3) is adopted. Three different channel
power profiles are used. Channel power profile 1 is simply
single tap flat fading channel; channel profile 2 is 16-tap
frequency selective channel with an exponentially decaying
power profile with power decaying factor 0.7; and channel pro-
file 3 is 16-tap frequency selective channel with same energy
across all 16 taps. OFDM modulation is used, with perfect
synchronization assumed and cyclic prefix large enough to
enable ISI-free transmissions. QPSK modulation is used and
we compare the two methods in terms of uncoded BERs in
Fig. 5. In Fig. 5, the MRC method refers to the scheme where
the beam is formed based on the MRC-combined channel
across all taps, while the MAX method refers to the strongest
tap selection method.



As we can see, in the flat fading channel, both methods
yield the same performance as expected. Yet, as the channel
becomes more and more frequency selective (with the channel
power profile becoming less and less like a delta function),
the strongest tap selection method usually achieves a better
performance demonstrating a higher diversity order. We thus
stick to the strongest tap selection method in the following
work in stream 2. In this paper, we assume that the channel
power profile ({0'}2“[} in Eq. (3)) has been estimated. We
emphasize that accurate estimation of the channel power
profile (and in particular the tap energies on several strongest
taps) is important and may be obtained with a small overhead.
Detailed treatment of the simplified channel power profile
estimation is beyond the scope of this paper.

B. Extension to the Second Stream

In stream 1, we resort to the heuristic of selecting the
strongest tap (7, and let the transmitter/receiver form the
beams based on Hy:. Let the transmitter beam be represented
by v, the receiver beam be represented by u;, and the
effective channel formed on the ¢}-th tap be s; = u’ngIvl.
Now we face the problem of training the second transmit
and receive beams. The major difference unique to the multi-
tap frequency selective channel is that one transmit/receive
beam has been formed on the ¢;-th tap. One may form the
second transmit/receive beam on the second strongest tap /3.
Yet, this may not be the best tap selection strategy for the
second stream, because it excludes ¢ -th tap from the selection
completely. Instead we propose the following new tap selection
for stream 2:

= arg max (F} — GY) (22)
where Gy: = [s1] and O otherwise. Here s; = ujHyxv; and
can be estimated at the end of stream 1 iteration. Essentially,
we propose to first remove the contribution of stream 1
precoding/combining on the ¢7-th tap, and then selects the
beam with the largest energy afterwards. A detailed description
of the algorithm is shown in Algorithm 2.

In the spatial domain, we perform null space projection
such that the new beam obtained has no contribution from
the first stream. in the delay/tap domain, we perform energy
pruning on the selected tap to make sure that contribution from
stream 1 has been properly removed as well. Thus, both null
space projection and tap selection with energy pruning serve
the same design principle.

We perform numerical simulations in the following for
two different channel profiles, under channel model Eq. (3).
Channel profile 4 has 16 taps with the channel amplitude on
each tap [0.11, 0.9, 0.11, 0.11, O0.11, O.11, 0.11, 0.11, O.11,
0.11, 0.11, 0.11, 0.11,0.11, 0.11, 0.11], where we see one
strong tap overall. Channel profile 5 has 16 taps also with
the channel amplitude on each tap [0.1, 0.6, 0.7, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] where we see
two strong taps. For both channel profiles, we perform the
iterative algorithms for 1000 channel realizations, and plot the
EESM channel abstraction (19) (averaged across 1000 channel

Algorithm 2 Stream Two Training over Frequency Selective
Fading Channels

0. Start at the source device with a random initial vector

q that is orthogonal to v;. Prune the energy G7. from the
1

/%-th tap and then pick the strongest tap with index ¢5.

1. Transmit at the source with t as the transmit precoding
vector, and receive at the destination with the i-th column
of Iy, as the receive combining vector. Repeat this with

i =1,---,N; over N; time slots. Collect the N; received
samples over the IV, time slots on the ¢5-th tap, and obtain
at the destination r = Hyrt. Project r onto the null

space of u;. Apply constant modulus constraint and vector
normalization.

2. Transmit at the source with the j-th column of NV, and
receive at the destination with the recently computed r as the
receive combining vector. Repeat this with j = 1,--- | N;
over [V, time slots. Collect the [V, received samples over the
N; time slots on the €’2’-th tap, and obtain at the destination
r’ H,». Apply complex conjugate operation and obtain t =
HZgr' Feed t back to the source device.

3. Project t onto the null space of v;. Apply constant
modulus constraint and vector normalization.

3. Repeat steps 1, 2, and 3 until convergence.

realizations) for each iteration (iteration 1 to 6 for stream 1
and iteration 6 to 11 for stream 2). For tap selection in stream
2, 5-th tap is used if pruning is used, and £;-th tap is used if
pruning is not used.

For channel profile 4, tap selection with pruning is able
to improve the effective SINR by roughly 23 dB on average,
while the tap selection without pruning is able to improve
the effective SINR only by roughly 9 dB. Note that for the
latter method, most of the gain is actually gleaned in stream
1 (common to both methods), which demonstrates that the tap
selection without pruning essentially fails to work for such
a channel profile. Clearly, this is because channel profile 4
has only one strong tap. If the strongest tap is selected in
stream 1 and excluded in stream 2 (by ¢3), the performance
improvement is expected to be minimum. For channel profile
5, tap selection with pruning is able to improve the effective
SINR by roughly 20 dB on average, while the tap selection
without pruning is able to improve the effective SINR roughly
19 dB. Note that in this case, two strong taps exist and
hence, selecting the second tap without pruning, although not
optimal, still provides large SINR improvement over the sub-
optimal tap selection. Note that in both channel profiles, the
strongest tap selection with energy pruning is always providing
better performance gain than the tap selection without energy
pruning.

We next carry out numerical simulations over the simplified
directional channel model in Eq. (2). To capture the long delay
spread behavior, the L = 12 multipaths are grouped into two
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clusters, with each cluster occupying a different tap. Within
each cluster, 6 multipaths/rays are randomly generated in the
same way as in Eq. (2), i.e, with the path gain complex normal
distributed, and the AoAs and AoDs uniformly distributed
within [0, 7]. The two clusters are assumed to have the same
power per multipath/ray, and hence the same total power per
cluster/tap. Fig. 7 illustrates the convergence behavior as a
result of the iterative algorithms, with the constant modu-
lus constraint applied. The reference curve shows the ideal
EESM SNR performance, where the two transceiver beams are
formed onto the two strongest paths (perfectly acquired), and
a perfect zero forcing equalizer is performed at the receiver
side. As we can see, the iterative algorithm is also able to
achieve the ideal performance quickly.

V. SUMMARY

In this work, we study multi-stream transceiver precoding
for mmWave MIMO systems over general frequency selective
fading channels. The proposed algorithm enjoys low complex-
ity and training overhead on the order of m x (Ny+ N;), where
m is the number of iterations. Compared with the conventional

approach of direct channel estimation with a training overhead
on the order of N; x N,, the saving is especially significant
when both N, N; are large and number of spatial streams is
small, which is exactly the case for mmWave MIMO commu-
nications. The proposed algorithm is robust in that it works in
FDD transmissions as well as TDD transmissions with/without
RF calibration. Analysis shows that the algorithm converges to
the optimal solution exponentially at a speed of (o2/01)%™ in
terms of the equivalent channel SNR. Numerical results show
that the convergence is achieved usually after 3 to 4 iterations.
When constant modulus constraint is applied in mmWave
wireless communications, most of the gain can be maintained,
and the convergence speed is almost the same. The proposed
algorithm is also robust in that it works effectively not only
for the structured directional mmWave wireless channel, but
also for rich scattering channels. Henceforth, it may be used
even when the structured directional model is not perfectly
accurate, e.g. for non-mmWave wireless communications.
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