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Relay Selection Based on the Secrecy Rate
Criterion for Physical-Layer Security in

Buffer-Aided Relay Networks
Xiaotao Lu † and Rodrigo C. de Lamare ‡

Abstract—In this paper, we investigate an opportunistic relay
and jammer scheme along with relay selection algorithms based
on the secrecy rate criterion in multiple-input multiple-output
buffer-aided down link relay networks, which consist of one
source, a number of relay nodes, legitimate users and eaves-
droppers, with the constraints of physical layer security. The
opportunistic relay and jammer scheme is employed to improve
the transmission rate and different relay selection policies are
performed to achieve better secrecy rate with the consideration of
eavesdroppers. Among all the investigated relay selection policies,
a relay selection policy which is developed to maximize the
secrecy rate based on exhaustive searches outperforms other relay
selection policies in terms of secrecy rate. Based on the secrecy
rate criterion, we develop a relay selection algorithm without
knowledge of the channels of the eavesdroppers. We also devise
a greedy search algorithm based on the secrecy rate criterion
to reduce the computational complexity of the exhaustive search
technique. Simulations show the superiority of the secrecy rate
criterion over competing approaches.

Index Terms—Physical layer security, relay selection, buffer
relay systems

I. INTRODUCTION

Secure transmission is difficult to achieve in broadcast chan-
nels due to the nature of wireless communications. Traditional
encryption techniques are implemented in the network layer
with complex algorithms and high cost. To reduce such cost,
researchers are exploring novel security techniques in the
physical layer. Physical-layer security has been first illustrated
by Shannon using an information theoretic viewpoint [1].
The feasibility of physical-layer security has been discussed
by Shannon on a theoretical level in [1]. Later on in [2] a
wire-tap channel, which can achieve positive secrecy rate, has
been proposed by Wyner under the assumption that the users
have a better statistical channel than eavesdroppers. Since then
further research has been devoted to the wire-tap model and
techniques such as broadcast channels [3], MIMO channels,
artificial noise, beamforming as well as relay techniques. This
paper focuses on relay techniques.

Recently, the concept of physical-layer security with multi-
user wireless networks has been investigated [4]. Relay sys-
tems are an important evolution of secure transmission strate-
gies and techniques to further improve the performance of
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relay systems such as relay selection [5] and buffer-aided relay
nodes [6] are drawing significant attention. Opportunistic relay
schemes have been applied to buffer-aided systems [7], [8] and
[9]. In opportunistic relay schemes, the inter-relay interference
(IRI) is an important aspect that should be taken into account.

In our previous work [10], we have introduced an oppor-
tunistic relay and jammer scheme and investigated its potential
for improving secrecy rate. In this work, we employ the same
scheme and focus our research on different relay selection
algorithms. Unlike the prior art which relies on the signal-to-
interference-plus-noise (SINR) and channel state information
[11] approaches, we examine the potential of using the secrecy
rate as the criterion for the selection of relays. In particular, a
relay selection strategy is developed to maximize the secrecy
rate based on exhaustive searches. A greedy search algorithm
is then developed to reduce the computational complexity of
the exhaustive search approach.

This paper is organized as follows. Section II details the
system model, describes the opportunistic relay and jammer
buffer-aided relay system. We focus on the transmission from
the source to the relays and from the relays to the users.
Section III presents all investigated conventional as well as the
proposed relay selection criterion, whereas Section IV details
the proposed secrecy rate based criterion with partial channel
information. Section V shows and discusses the numerical
results, while the conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PERFORMANCE METRICS

In this section, a brief introduction of the buffer-aided relay
system model is given to describe the data transmission. The
performance metrics illustrate the assessment of the proposed
and existing techniques described in this paper.

A. System Model

Fig. 1 gives a description of a source node with Nt antennas
that transmits the data streams to M users in the presence
of N eavesdroppers. With T relays and K jammers, in each
time slot, the selected relays will receive signals from both
the source and the jammers. Each relay and jammer are
equipped with Ni and Nk antennas. At the receiver side, each
user and eavesdropper are equipped with Nr and Ne receive
antennas. The quantities Hi ∈ CNi×Nt and He ∈ CNe×Nt

denote the channel matrices of the ith relay and the eth
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Fig. 1: System model of an MU-MIMO system with M users,
N eavesdroppers T relays and K jammers

eavesdropper, respectively. The quantities Hke ∈ CNe×Nk

and Hkr ∈ CNr×Nk denote the channel matrices of the eth
eavesdropper to the kth jammer and the rth user to the kth
jammer, respectively. The channel between the kth relay to
the ith relay is modeled by Hki ∈ CNi×Nk . To support M
users transmission, the source is equipped with Nt > NrM
antennas.

The vector s(t)r ∈ CNr×1 represents the data symbols to be
transmitted corresponding to each user in time slot t. The total
transmit signal at the transmitter can be expressed as

s(t) =

[
s
(t)
1

T
s
(t)
2

T
s
(t)
3

T
· · · s

(t)
M

T
]T
. (1)

In prior work, several precoding techniques have been con-
sidered to eliminate the interference between different users
[12]–[17]. In this work, we use linear zero-forcing precoding
and the precoding matrix is described by

U i =Hi
H(HiHi

H)−1. (2)

The channels of the selected jammers to the rth user are
given by

Hr
(t) =

[
H

(t)
k1r

T
H

(t)
k2r

T
H

(t)
k3r

T
· · · H

(t)
kMr

T
]
. (3)

The channels of the jammers to the ith relay channel are

HKi
(t) =

[
H

(t)
k1i

T
H

(t)
k2i

T
H

(t)
k3i

T
· · · H

(t)
kM i

T
]
. (4)

To simplify the calculation, we assume that each relay will
have the same antenna as each user which means s(t)i = s

(t)
r .

In each phase, the received signal y(t)
i ∈ CNi×1 at each relay

node can be expressed as:

y
(t)
i =HiU is

(t)
i +

∑
j 6=i

HiU js
(t)
j +H

(t)
Kiy

(pt)
k + ni (5)

In (5), the value pt represents the previous time slot when
the signal is stored as a jamming signal in the buffer at the
relay nodes. The term HKiy

(pt)
k is regarded as the inter-relay

interference (IRI) between the ith relay and K jammers and
y
(pt)
k is determined as the jamming signal according to a SINR

criterion as in [7]. With the theorem in [7], the IRI can be
eliminated.

The channel of the jammers to the eth eavesdropper is
described by

HKe
(t) =

[
H

(t)
k1e

T
H

(t)
k2e

T
H

(t)
k3e

T
· · · H

(t)
kMe

T
]
.

(6)
The received signal at the eth eavesdropper is given by

y(t)
e =HeU is

(t)
i +

∑
j 6=i

HeU js
(t)
j +H

(t)
Key

(pt)
k + ne. (7)

For the eavesdropper, the term H
(t)
Key

(pt)
k acts as the jamming

signal and this jamming signal can not be removed without
the knowledge of the channel from the kth jammer to the eth
eavesdropper.

In (5) and (7), the IRI term between the relay nodes or
the jamming signal to the eavesdropper is simultaneously the
transmit signal from the relays nodes to the destination. We
assume that the transmit signal from the relay nodes is given
by

r(t) =

[
y
(pt1)
1

T
y
(pt2)
2

T
y
(pt3)
3

T
· · · y

(ptT )
T

T
]T
. (8)

Note that pt represents the previous time slot and due to the
characteristics of buffer relay nodes, the values can be different
for each relay node. The received signal at the destination can
be expressed as:

y(t)
r =Hry

(ptk)
k +

∑
j 6=r

Hry
(ptj)
j + nr. (9)

III. SELECTION WITH JAMMING FUNCTION RELAYS IN

MULTIUSER MIMO BUFFER-AIDED RELAY SYSTEM

In this section, a novel selection approach with jamming
function relays is introduced. We first consider a simple single-
antenna scenario and then the selection approach is extended
to a MIMO scenario. After that, a further exploration of the
relay selection in a multiuser MIMO buffer-aided relay system
is undertaken.

A. Relay Selection Criteria

1) Conventional Relay Selection Criterion: The conven-
tional selection relies only on the knowledge of channel
information between the source to the relays and the relays
to the users. In [18], a max-min relay selection is considered
as the optimal selection scheme for conventional decode-and-
forward (DF) relay setups. With a single-antenna scenario the
relay selection policy is given as:

R∗i = arg max
Ri∈Ψ

min(‖hS,Ri
‖2, ‖hRi,D‖2), (10)

where hS,Rk
is the link between the source to the relay and

hRk,D is the relay to the destination.
With the consideration of the eavesdropper, a max-ratio

selection policy is proposed in [12] and given by

Rmax−ratio
i = arg max

Ri∈Ψ
(ηmax−ratio1 , ηmax−ratio2) (11)

with

ηmax−ratio1 =
maxRi∈Ψ:ϕ(Qp)6=L ‖hS,Ri

‖2

‖hse‖2
(12)
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ηmax−ratio2 = max
Ri∈Ψ:ϕ(Qp)6=0

‖hRi,D‖2

‖hRie‖2
(13)

The aforementioned relay selection are based on the channel
state information. In [11] there is also a conventional selection
as well as optimal selection based on the SINR criterion.

2) Maximum Likelihood (ML) Relay Selection Criterion:
Based on the conventional relay selection criterion, we sub-
stitute the channel state information with the ML rule which
can be expressed as:

RML
i = arg min

Ri∈Ψ
(ηML1 , ηML2) (14)

with

ηML1
= min

Ri∈Ψ:ϕ(Qp)6=L
‖yi − hS,Ri

si‖ (15)

ηML2 = min
Ri∈Ψ:ϕ(Qp) 6=0

‖yr − hRi,Dy
(pt)
k ‖ (16)

the ML relay selection selects the relay which gives the
minimum ML rule value.

3) Secrecy Rate Based Relay Selection Criterion: Similar
to the ML relay selection criterion, the secrecy rate (SR) relay
selection criterion is proposed to achieve better secrecy rate
performance. The selection procedure can be expressed as:

RSR
i = arg min

Ri∈Ψ
(ηSR1

, ηSR2
) (17)

with

ηSR1 = max
Ri∈Ψ:ϕ(Qp)6=L

‖1 + hS,Ri
si‖

‖1 + hsesi‖
(18)

ηSR2 = min
Ri∈Ψ:ϕ(Qp) 6=0

‖1 + hRi,Dy
(pt)
k ‖

‖1 + hRiey
(pt)
k ‖

(19)

Based on the single-antenna scenario, the criterion for MIMO
system is given by

φm = argmax
m∈Ψ

(
(I + Γ

(t)
e,i )
−1(I + Γ

(t)
r,i )
)
, (20)

where Γ
(t)
r,i is given as:

Γ
(t)
r,i =

k=K∑
k=1

P

Nk
HkrH

H
kr(I +

P

Nt
H

(pt)
i H

(pt)
i

H
). (21)

and

Γ
(t)
e,i = (I +∆)−1

P

Nt
HeHe

H , (22)

where

∆ =

N∑
e=1

K∑
k=1

P

Nk
HkeH

H
ke(I +

P

Nt
H

(pt)
i H

(pt)
i

H
). (23)

4) Proposed Secrecy Rate Based Relay Selection Criterion
without Knowledge of Eavesdroppers: Based on (5) and (7),
the covariance matrix of the interference and the signal can
be obtained as RI =

∑
j 6=iU js

(t)
j s

(t)
j

H
U j

H and Rd =

U is
(t)
i s

(t)
i

H
U i

H . When the matrices are square and have
equal size we can obtain the proposed secrecy rate based relay
selection criterion as described by

φi = max
i

[
log
(
det
[
I +RI + (HiRdH

H
i )
])

− log
(
det
[
I +Rd + (HiRIH

H
i )
])]

, (24)

which can be achieved without knowledge of the channels of
the eavesdroppers. The details of the derivation of the above
expression are given in Section IV.

B. Greedy Algorithm in Relay Selection

When the relay selection criterion is determined, we will
give an example using the greedy search algorithm. Here we
choose relays according to the SR criterion. When the K relays
that forward the signals to the users are selected, the relays
used for signal reception are chosen based on the SR criterion,
as given by

φm = argmax
m∈Ψ

(
(I + Γ

(t)
e,i )
−1(I + Γ(t)

m )
)
, (25)

where φm represents the selected relays and Γ(t)
m is the SINR

corresponding to the mth relay which is given by

Γ(t)
m = (I +∆′m)−1(HmH

H
m), (26)

where

∆′m =

K∑
k=1

HkmH
(pt)
m H(pt)

m

H
HH

km, (27)

with the SINR calculated for the eth eavesdropper described
by

Γ
(t)
e,i = (I +∆′e)

−1(
P

Nt
HeHe

H), (28)

where

∆′e =

N∑
e=1

K∑
k=1

P

Nk
HkeH

H
ke(I + ξ), (29)

and
ξ =

P

Nt
H(pt)

m H(pt)
m

H
, (30)

The main steps are described in Algorithm 1.

IV. RELAY SELECTION CRITERION ANALYSIS

The details of the conventional relay selection criterion,
ML relay selection criterion as well as the secrecy rate-based
relay selection criterion have been introduced in Section III.
Following this, here we will mainly focus on the proposed
secrecy rate based relay selection criterion with partial chan-
nel information. To simplify the derivation, in the following
formulas, we did not take interference from jammers into
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Algorithm 1 Greedy Algorithm

for k = 1 : T do
for m = 1 :M do
Γ(t)
m = (I +∆′m)−1(HmH

H
m)

ξ = P
Nt
H(pt)

m H(pt)
m

H

Γ
(t)
e,i = (I +∆′e)

−1( P
Nt
HeHe

H)

φm = argmaxm∈Ψ det
(
(I + Γ

(t)
e,i )
−1(I + Γ(t)

m )
)

end for
k = φm

end for

consideration and we take the transmission from the source
to the relay as an example. Therefore, we have

Γr,i = (HiRIH
H
i )−1(HiRdH

H
i ), (31)

and
Γe,i = (HeRIH

H
e )−1(HeRdH

H
e ), (32)

From the original expression for the MIMO secrecy rate
performance and our system structure, we can write the
expression as

φi = argmax
i∈Ψ

{
log[

det(I + Γr,i)

det(I + Γe,i)
]

}
. (33)

Since the maximization of the log of an argument is equivalent
to the maximization of the argument (33) can be simplified to

φi = argmax
i∈Ψ

{
det(I + Γr,i)

det(I + Γe,i)

}
, (34)

Similar to the max-ratio criterion expressed in [12], in order
to release the assumption of eavesdroppers channel, instead of
(34) we consider the following criterion:

φi = argmax
i∈Ψ

{
det(Γr,i)

det(Γe,i)

}
, (35)

which can be rewritten as

φi = argmax
i∈Ψ

{
det[(H iRIH

H
i )
−1(H iRdH

H
i )]

det[(HeRIH
H
e )
−1(HeRdH

H
e )]

}
, (36)

Using linear algebra properties and by further manipulation,
we arrive at

φi = argmax
i∈Ψ

{
det[(HeRIH

H
e )(H iRdH

H
i )]

det[(H iRIH
H
i )(HeRdH

H
e )]

}
, (37)

If and only if the matrices are square and have equal size, we
can write

φi = argmax
i∈Ψ

{
det(He) det(RI) det(H

H
e )

det(He) det(Rd) det(H
H
e )

× det(HiRdH
H
i )

det(HiRIH
H
i )

}
(38)

In the above expression, the determinant of the channels of
the eavesdroppers can be eliminated, resulting in

φi = argmax
i∈Ψ

{
det(RI)

det(Rd)

det(I +H iRdH
H
i )

det(I +H iRIH
H
i )

}
, (39)

By adding the log to (39), we obtain

φi = argmax
i∈Ψ

{
log
( det(RI)

det(Rd)

det(I +H iRdH
H
i )

det(I +H iRIH
H
i )

)}
,

(40)
which is equivalent to (24). Here we have the results for equal
size channels. When the channels have different sizes we can
add zero elements into the channel matrix and we can still
obtain the same result as equal size channels.

V. SIMULATION RESULTS

In the simulation of the multiuser MIMO scenario, the
transmitter is equipped with Nt = 6 antennas and each relay
node is equipped with Ni = Nk = 2 antennas for receiving
or transmitting signals. Each user is equipped with Nr = 2
antennas and the number of users is set to M = 3. In
this scenario, N = 3 eavesdroppers equipped with Ne = 2
antennas each are also considered in the system. In order to
mitigate the interference, a zero-forcing precoding technique
is implemented at the source and also at the relays. To simplify
the transmission scenario, in the selection we assume the
number of selected relays and jammers are the same, which
means we have T = K. In all the simulations, all the channels
are generated as a flat-fading channel.
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Fig. 2: Single-antenna secrecy rate with different thresholds

In Fig. 2, different relay selection criteria are compared
in a single-antenna scenario. The secrecy rate performance
has an improvement if buffers are employed in the relay
nodes. Among all the investigated relay selection criteria, SR
relay selection can achieve the best secrecy rate performance.
Interestingly, this approach is typically not used because of the
need for knowledge about the channels of the eavesdroppers.

In Fig. 3, with IRI cancellation the secrecy rate is better
than the one without IRI cancellation. Compared with a single-
antenna scenario, the multi-user MIMO system contributes to
the overall improvement in the secrecy rate.

VI. CONCLUSION

In this work, we have employed an opportunistic relay
and jammer scheme to enhance the physical-layer secrecy
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rate performance. The proposed secrecy rate relay selection
policy contributes to the improvement of the secrecy rate
performance. Simulation results indicate that the secrecy rate
criterion relay selection policy achieves the best secrecy rate
performance and the greedy search can approach a higher
secrecy rate performance in a multiuser MIMO relay system
than existing buffer-aided relay systems.
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