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Abstract—We analyze the performance of a �xed-size uniform
circular array which is used to transmit information to a single
antenna receiver as a function of the number of transmit side
antennas. We �nd that the minimum necessary energy to transfer
one information bit stops decreasing once the number of antennas
grows over a certain bound. We relate this bound to the diameter
of the array and show that there is an optimum and �nite number
of antennas for every such array. For large array diameters this
optimum number grows linearly with the diameter, the factor of
proportionality primarily depending on whether the receiver is
inside or outside of the transmit uniform circular array.

I. Introduction

Massive mimo systems are currently considered a possible key
technology for the next generation of wireless communication
systems [1]. The idea is that the number of antennas at the
base station is much larger than the total number of antennas
of the served user terminals. This may require hundreds or
even thousand of antennas at the base station.
There are a number of possible advantages of such an ap-

proach. For example, Russek et al. point out in [2] that massive
mimo systems 1) allow linear signal processing techniques to
reach near optimum performance, 2) provide a natural stage
for improved analysis based on random matrix theory [3], and
3) allow that thermal noise can be averaged out since coherent
averaging o�ered by a receive antenna array would eliminate
quantities that are uncorrelated between the antenna elements,
and especially thermal noise. In [1] Larsson et al. additionally
point out that 4) if an antenna array were serving a single ter-
minal, then it could be shown that the total necessary transmit
power could be made inversely proportional to the number of
antennas at the transmitter.
While assertions 1) and 2) above might ring true, the asser-

tions 3) and 4) look problematic. Since increasing the number
of antennas in a �xed space requires the average antenna sep-
aration to decrease, the inevitable electromagnetic interaction
of the antennas leads to correlated instead of uncorrelated ther-
mal noise, which violates the basic assumption of assertion 3).
Similarly, electromagnetic interaction leads to the e�ect that
the power which is radiated by an antenna array is not pro-
portional to the sum of squares of the antenna’s excitation [4].
A consequence of this is that, when the number of antennas
grows beyond a certain bound, the radiated power to ensure
a preset signal quality at the receiver does not drop any more
by adding still more antennas. This is the subject of this paper.

II. SystemModel

Figure 1 schematically shows the system under investigation.
It consists of a uniform circular array (uca) of N quarter
wavelength monopoles used for transmission, and one single
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Figure 1: Uniform circular array transmits to a single antenna
receiver located in the formers center.

such monopole, located in the center of the circle, used for
reception. The center monopole is loaded with a resistance of
R = 35Ω, while the N uca monopoles are fed by linear gen-
erators with the same output impedance of R. All monopoles
reside over an in�nite groundplane in an otherwise empty half-
space, while the half-space below the groundplane contains
the generators and the termination resistance. Denoting with
r the radius of the uca, the distance between neighboring
monopoles equals ∆l =2r sin π/N . Keeping r constant, ∆l must
decrease with increasing N towards zero. This ever increasing
proximity creates strong mutual electromagnetic interaction
between all antennas and has to be modeled carefully. To this
end, we set up and analyze a linear muliport model for the
(N+1) antenna system which tells us 1) how the output voltage
across the load resistor of the center monopole depends on
the N open-circuit voltages of the linear generators, 2) how
the radiated power depends on the generators’ open circuit
voltages, and 3) how large the variance of the noise voltage in
a certain bandwidth is.

A. Input-Output Relationship

Let us �rst imagine that there is no noise. Figure 2 then shows
the linear multiport model of the system under investigation.
Let the (N+1) port be described by

[u
u
] = [ZT z

z
T ZR

] [ i
i
] , (1)

where u and i are the N-dimensional vectors of the complex
envelopes of the port voltages and port currents of the N
excitation ports of the uca’s antennas, respectively, while u
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Figure 2: Linear multiport model of the considered system for
the noise-free case.

and i are the complex envelopes of the port voltage and cur-
rent at the center monopole’s excitation port. The impedance
matrix of the multiport is composed of the N×N transmit-side
impedance matrix ZT , the receive-side impedance ZR, and
the N × 1 trans-impedance vector z which contains the mu-
tual impedances between every of the uca’s antennas and
the center monopole. The multiport is passive and reciprocal,
which means that ZT=ZT

T and that the real-part of the whole
(N+1)×(N+1) impedance matrix is non-negative de�nite. The
N le�-hand-side ports are connected to N linear generators
with internal impedance R > 0, which complex envelopes of
their open-circuit voltages are collected into the N × 1 vector
uG. Finally, the remaining port is terminated with the passive
resistance R across which the output voltage with the complex
envelope u appears. Because of the linearity of the system, the
relationship between u and uG can be written as

u = gTuG , (2)

where the vector gT is obtained from basic circuit analysis:

gT =
R

R + ZR

zT (Zin + RI)
−1
, (3)

where Z in is the input impedance of the multiport seen from
the transmit side:

Zin = ZT −
z zT

R + ZR

. (4)

B. Transmit and Receive Power

The total active power PT, which is delivered by the generators
equals PT=E [Re{uH i}]. It can also be written as:

PT =
1

4R
E [uH

GBuG] , (5)

where

B = 4R (Z in + RI)
−H

Re{Zin}(Z in + RI)
−1
, (6)

and E[⋅] refers to the expectation operation while the super-
script H denotes the complex conjugate transpose. If the anten-
nas are lossless, the power PT is radiated completely, otherwise
part of it is dissipated into antenna heat-loss. On any rate, we
call PT the transmit power. The received signal power equals
the power which is dissipated in the load resistor R, and can
be obtained from:

PR = E [∣u∣2] /R. (7)

ũN
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Figure 3: Equivalent circuit for determining the noise voltage.

C. Output Noise Voltage

Let us now consider the output voltage which is due to both
the noise which is received by the center monopole and which
is due to the noise of the receiver’s low noise ampli�er (lna).
Figure 3 shows the equivalent circuit which we can use to �nd
the variance of the output noise voltage. The center monopole
is represented by a voltage source with impedance

Zout = ZR − zT (ZT + RI)−1z, (8)

and an open-circuit noise voltage with complex envelope ũN ,
which is characterized by [5]

E [∣ũN ∣2] = 4kBTWRe{Zout} , (9)

where kB is Boltzmann’s constant, W is the (small) noise band-
width, and T is the antenna noise temperature. The noise of
the lna is taken into account by the voltage noise source
uN and the current noise source iN, which statistical proper-
ties depend on the lna. To �x ideas, we assume the noise
properties of the lna to be speci�ed as:

E [∣uN ∣2] = 2kBTWR, E [∣iN∣2] = 2kBTW/R, E [uN i
∗
N] = 0.

(10)
From this follows that Zopt =R, and nfmin = 2, which means
that our lna shall have minimum noise �gure of 3dB, which
it achieves if it is driven with a source of impedance equal
to R (see e.g., [6] for details). Moreover, we assume that lna
noise and antenna noise are uncorrelated. From the circuit in
Figure 3, it is clear that

u =
R

R + Zout

(ũN − uN + Zout iN) .
With ũN uncorrelated with uN and iN, it then follows with
the help of (9) and (10), that

E [∣u∣2] = 2kBTWR. (11)

D. Linear System Model

Because of linearity, the total output voltage is the sum of
the deterministic output voltage as given in (2) and the noise
voltage with variance given in (11). Thus, the complete linear
system model can be written as

u = gTuG + η, η ∼ CN (0, 2kBTWR) ,
PR = E [∣u∣2] /R∣

η=0
, PT = 1

4R
E [uH

GBuG] .
(12)

To ease further work, we now introduce two bijective linear
transformations:

x =
1

2
√
R
B1/2uG , y = u/√R. (13)



Note from (6) and (4), that B=BH, because ZT=Z
T

T due to an-
tenna reciprocity. So B has got real eigenvalues and orthonor-
mal eigenvectors. Since furthermore the antenna multiport is
passive, we have that B > 0, for the transmit power must be
positive for any vector uG ≠ 0. This means that B has got

positive eigenvalues. Thus, B1/2 has got real-valued eigenvalues

and, consequently, B1/2
=BH/2. Solving the le� hand equation

of (13) for uG and substituting into the lower right-most term

of (12), it follows that PT=E [ ∣∣x∣∣2
2
]. With the help of (13), we

obtain from the upper le�-most term of (12):

y = 2gTB−1/2x + η/√R,

so that we �nally obtain a linear system model which is equiv-
alent to the one from (12):

y = h
T
x + ϑ, ϑ ∼ CN (0, 2kBTW) ,

PR = E [∣y∣2]∣
ϑ=0

, PT = E [∣∣x ∣∣22] ,
(14)

where the channel vector h
T
is given by

h
T
= 2gTB−1/2. (15)

All the relevant physical properties of the multi-antenna sys-
tem are now captured by the channel vector h

T.

III. Optimum Beamforming

Transmitting a signal s over the N antennas of the uca such
that it can be received by the center monopole with the largest
possible signal to noise ratio (snr), we apply beamforming:

x = ts, (16)

where t is the beamforming vector. The maximum snr then
becomes with the help of (14):

snr = max
t

E [∣y∣2 ∣ϑ = 0]
E [∣y∣2 ∣s = 0] = max

t

PT

2kBTW

∣hT
t∣2

∣∣t∣∣2
2

=
PT ∣∣h∣∣2

2

2kBTW
,

(17)
where the last equality is a consequence of the Cauchy-Schwarz
inequality. The optimum beamforming vector is proportional
to h

∗. Note that

max
PR

PT
= ∣∣h∣∣2

2
≤ 1. (18)

The inequality comes from the energy law such that we shall
not receive more signal power than we have transmitted. Con-
sequently, even though the number N of components of the
channel vector can grow unboundedly, its Euclidean norm can
never exceed unity.

IV. Energy per Information Bit

The system described in (14) with (16) is a complex additive
white Gaußian noise (awgn) channel, which channel capac-
ity (maximum mutual information between s and y, where
maximization is done over the probability density function of
s) is given by [7]:

C =W log
2
(1 + snr) . (19)

With C information bits per second, it takes the time Tb=1/C
to transfer a single information bit. The energy necessary to

ZMP

ZMP

ZDP

i

u

u1

u2

−i

Figure 4: Multiport model of a dipole-array as a concatenation
of two monopole arrays which are separated by an in�nite
ground plane.

accomplish this transfer is, therefore, E
(C)
b

=PTTb=PT/C. Solv-
ing (19) for snr, substituting the result into (17) and solving
the latter for PT, it therefore follows that

E
(C)
b

=
2kBTW

∣∣h∣∣2
2

⋅

2C/W − 1

C
. (20)

Let Eb be the smallest value of E
(C)
b

for a given ∣∣h∣∣22 , namely

Eb = min
C

E
(C)
b

. (21)

This minimum is obtained for C→0 and results in:

Eb

kBT
=

log
e
4

∣∣h∣∣2
2

≥ log
e
4. (22)

The minimum necessary energy per information bit can never
drop below a well de�ned positive limit no matter how many
antennas N are used at the transmitter. Substituting (15) into
(22) it then follows with the help of (3), (4) and (6) that

Eb

kBT
=

∣R + ZR∣2
zH (Re{ZT −

z zT

R + ZR

}/R)
−1

z

⋅ log
e
4, (23)

V. The ImpedanceMatrix

Imagine two monopole arrays over an in�nite ground plane
(in�nitely thin, in�nitely large and in�nitely well conducting),
one of them rotated such that its monopoles point in the op-
posite direction as those of the other. By aligning the two
arrays so that their ground planes touch and become one in-
�nite ground plane with monopoles sticking out at each side
symmetrically, we obtain an array of dipoles with an in�nite
ground plane. The multiport model for this construction is
shown in Figure 4 and leads us to

u = u1 − u2 = ZMP i − ZMP (−i) = 2ZMP i,

where ZMP is the impedance matrix of the monopole array
over an in�nite ground plane. From u = ZDP i, we can then
relate the impedance matrix ZDP of a dipole array with in�nite
ground plane to the impedance matrix ZMP of the respective
monopole array over an in�nite ground plane:

ZMP =
1

2
ZDP . (24)



The in�nitely thin ground plane has no e�ect on the dipole
array. This is because of its symmetry, which demands that no
tangential components of the electric �eld are produced inside
the ground plane by the currents that �ow in the dipole wires.
Therefore, no currents have to �ow inside the ground plane
to counter any tangential electric �eld components (as there
aren’t any). Therefore, no �eld is produced by the (in�nitely
thin) ground plane in case of the dipole array. Therfore, ZDP is
the same as that of a dipole array without the ground plane. If
one further assumes that the wires are in�nitely thin, yet still
perfectly conducting, then classical antenna theory provides
a closed-form solution for all components of ZDP. From the
equations (13-23), (13-24), and (13-25) in [8], one obtains with
the help of (24) for the mutual impedance

Z i , j = R i , j + jXi , j , (25)

between any pair of two in�nitely thin monopoles with length

l = λ/4, (26)

with λ denoting the wavelength, the expressions

R i , j =
2Ci(2πd i , j/λ) −Ci(ζ i , j + π) −Ci(ζ i , j − π)

8πє0c
, (27)

and

Xi , j =
−2Si(2πd i , j/λ)+ Si(ζ i , j + π) + Si(ζ i , j − π)

8πє0c
, (28)

where

ζ i , j = π
√
1 + 4d2

i , j/λ2 , (29)

and d i , j is the distance between the monopole pair, while the
Ci and Si denote the integral cosine and integral sine functions,
respectively, and є0 is the electric constant, while c denotes the
vacuum speed of light. The input impedance

Z i ,i = R + jX = lim
d i , j→0

Z i , j (30)

can also be obtained in closed form:

R =

Γ −Ci(2π) + log 2π
8πє0c

, X =

Si(2π)
8πє0c

, (31)

where Γ is the Euler constant. Numerical evaluation yields

Z i ,i ≈ (36.5 + j21.3) Ω.

In the uca from Figure 1, the monopoles’ feeding points are
located at the Cartesian coordinates

xi = r cos
2πi

N
, y i = r sin

2πi

N
,

where r is the radius of the uca, and i ranges over all the
integers from 1 to N . The distance between the i-th and j-th
monopole is therefore given by

d i , j =

√(xi − x j)2 + (y i − y j)2 = 2r sin
π∣i − j∣
N

. (32)

Finally, the distance d i ,0 between the i-th monopole of the
uca and the single receiving monopole equals

d i ,0 =

√
(x0 − r cos 2πi

N
)2 + (y0 − r sin 2πi

N
)2 , (33)
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Figure 5: Energy per information bit as function of the number
N of antennas for the scenario of Figure 1.

where x0 and y0 are the coordinates of the receiver. In Figure 1,
we have x0= y0=0. The impedance parameters in (1) can now
be speci�ed:

(ZT)i , j = Z i , j , ZR = Z1,1 , (z)
i
= Z i ,0 (34)

where i , j ∈ {1, 2, . . . ,N}.
VI. Receiver in the Array Center

Let us have a look at the case shown in Figure 1, where the
receiver is located right in the center of the uca. We analyze
the minimum necessary energy to transfer one information bit
by �rst setting up the impedance parameters according to (34),
and then evaluating (23) numerically for a raising number N
of uca antennas. The value of the resistance R is set to

R = 35Ω.

Figure 5 shows Eb/(kBT) as a function of the number N of
uca antennas for a number of di�erent �xed radii ranging
from very small arrays of λ/10 to rather large arrays of 50λ ra-
dius. Starting from a single antenna at the transmitter, we see
that Eb �rst drops with increasing N , approximately reducing
to half its value when N is increased twofold. This shows that
the array gain increases roughly linearly with N when N is
not too large. However, when N climbs over a certain (radius
dependent) number (e.g. about 5 for r = 10λ) we observe a
more and more irregular and non-monotonic behavior of Eb

with respect to N . When another critical number of antennas
is reached (e.g., about 60 for r = 10λ), Eb sharply decreases
(e.g., by more than a factor of 5 for a 12% increase of the an-
tenna number when r=10λ). A�er this steep descent, Eb levels
o� almost immediately and remains at the same value (e.g.,
48.74kBT for r= 10λ), no matter how the antenna number is
increased further. Thus, having a huge number of antennas
available helps to decrease the necessary Eb up to some limit,
where further increase of the antenna number has no e�ect.
For instance, having more than 324 antennas on a circle of
radius 50λ does not decrease Eb any further. For each radius,
there is such an antenna number, Nsat say, for which further
increase of N has no impact on Eb anymore. This Nsat is, there-
fore, the optimum antenna number which delivers (nearly) the
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maximum array gain

Amax =
Eb∣N=1

minN Eb

. (35)

From a close observation of Figure 5, it turns out that

for r ≫ λ, Nsat ≈ ⌊2π r

λ
⌋ . (36)

The optimum spacing ∆l between adjacent monopoles in the
uca approaches one wavelength from below as r/λ grows
towards in�nity. This makes sense, because the receiver is po-
sitioned exactly in front-�re direction (see [4] for further in-
formation).
We note in passing that, for r= λ/2, the optimum antenna

spacing is also ∆l = λ/2, where one obtains an array gain of
9 from 6 antennas and an Eb which is 1.6dB larger than the
absolute minimum. Another interesting radius is 0.0675λ, be-
cause then exactly 50% of the transmitter power is received.
While this system achieves only a meager array gain of 1.16
out of 2 antennas, the close proximity of receiver and trans-
mitter allows for an Eb which comes closer than 0.7dB to the
absolute minimum of about 2.37kBT .

VII. Off-Center Receiver

Let us now investigate what happens when we put the receiver
away from the center of the uca circle, in particular to the
positions given by the following Cartesian coordinates:

y0 = 0, x0 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} ⋅ r.

We assume that optimum beamforming is performed for each
position. In this way, we can still use formula (23) to deter-
mine the minimum required bit energy. The only change com-
pared to having the receiver in the center is a di�erent trans-
impedance vector z, which re�ects the di�erent distances be-
tween each of the uca’s antennas and the receiver’s antenna.
Figure 6 shows the obtained results for an r = 10λ. For low an-
tenna numbers, there is substantial di�erence in the minimum
Eb for di�erent positions of the receiver inside a circle of 0.6r
radius. For N = 3 antennas, there is a di�erence of about 4dB
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Figure 7: Energy per information bit as function of antenna
number for 3 receiver distances (d), each of which puts
the receiver outside the transmitter’s circle of r = 2λ. Three
radiation e�ciencies (η) of the monopoles are considered.

in the required bit energy depending on the position of the
receiver. Even for N between about 10 and 40, the needed bit
energy varies by about 2.5dB. However, as N is increased until
the bit energies saturate (in this case at about 110 antennas),
the di�erence in Eb drops to 1dB. That is, inside a substan-
tially large circle of 60% diameter of the uca covering about
1/3 of the uca’s area, communication can take place with a bit
energy within a range of ±0.5dB, regardless of the position of
the receiver within this circle, provided that enough antennas
are used such that Eb saturates. The necessary antenna num-
ber is about 40% larger than needed for centered receiver to
obtain the energy saturation e�ect and now requires a spac-
ing of about 0.57λ between neighboring antennas. The same
spacing is also obtained for a larger circle of r = 50λ, as is
the maximum di�erence in necessary Eb of ±0.5dB. Thus, for
large uca radius, the minimum number of antennas needed
to communicate to receivers in every position inside a circle
of 60% radius around the center using bit energies di�ering
no more than about 1dB seems to be given in general by

N60% ≈ ⌊11 r
λ
⌋ . (37)

Note that optimum beamforming has to be performed for each
receiver position, though.

VIII. Receiver Outside of Array

It is time now to look at the case where the receiver resides
outside the uniform circular array. We consider the positions
speci�ed by the Cartesian coordinates:

y0 = 0, x ∈ {10, 20, 40} ⋅ r,

for the case of r = 2λ. The results are shown in Figure 7. In
contrast to the previous cases of the receiver being inside the
uca, optimum beamforming for receivers outside the array
are somewhat sensitive to heat loss inside the antennas. We
have therefore analyzed three di�erent cases of antenna radia-
tion e�ciency, namely besides 100% also 99% and 90%, respec-
tively. As can be seen in Figure 7, there is a region of antenna



numbers where the energy is approximately inversely propor-
tional to the antenna number. This region starts from N = 1
and extends to about N = 40 for lossless antennas and N = 30
in the two lossy cases. Further increase of the antenna number
does not decrease the necessary bit energy signi�cantly any-
more. This is especially true for the case of lossless antennas.
Interestingly, the lossy antennas show an improvement in bit
energy even for much larger N . However, this improvement is
rather slow, where a tenfold increase of the antenna number
from 30 to 300 decreases the bit energy by merely 1.2dB. For
practical purposes, one can therefore consider the bit energy
as being saturated already at N = 30. This means that an ap-
proximately inverse relationship between antenna number and
bit energy can be maintained until the distance between neigh-
boring antennas drops below about 0.42λ for the lossy cases, and
below about 0.32λ for the lossless case. We conjecture therefore
that the maximum useful antenna number in practice equals

Nmax ≈ ⌊15 r
λ
⌋ . (38)

For N ≤ Nmax, an antenna radiation e�ciency of η =90% de-
mands an increase of bit energy by 0.9dB compared to the
lossless case. For N > Nmax, this increases is much larger and
reaches up to 3.5dB.

IX. The 3D Beamforming Effect

Suppose the receiver is located inside the uca and optimum
beamforming is made for the given receiver position (see (17)).
It turns out that the required Eb is rather sensitive to changes
in the receiver’s position when the beamforming stays �xed.
That is, for a �xed beamforming vector, there is a rather small
area inside which the receiver can move while still enjoying a
low Eb. In the following, the receiver moves from the center
of the uca along the positive x-axis, while the beamforming
vector is held constant at

t = 1,

that is, the all-ones vector. Note that this coincides with the
optimum beamforming vector only when the receiver is lo-
cated right in the center of the uca. For all other positions,
the all-ones beamforming vector is strictly sub-optimum. The
question we look at is how much worse it does compared to 1)
optimum beamforming, and 2) to using only a single antenna
at the transmitter. The single antenna is assumed to be located
at the position x0 = r, y0 = 0. Setting t = 1, the signal to noise
ratio obtained changes from the one given in (17) to

snr1 =

PT

2kBTW
⋅

1

N
∣ N∑
n=1

hn∣
2

, (39)

where hn is the n-th component of the channel vector (15).
Using this as the snr in (19) we �nd that the minimum energy
per bit for realiable communication is now given by

Eb,1

kBT
=

N

∣ N∑
n=1

hn∣
2
loge 4. (40)

The obtained results for a uca radius of r = 10λ are shown
in Figure 8. We compare �xed (all-ones) beamforming to op-
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Figure 8: Energy per information bit as function of receiver
position along the x-axis. Comparison of the optimum versus
�xed (all-ones) beamforming for N = 200 antennas is shown.
In addition, the energy needed when using a single antenna
(N = 1) is plotted for reference. The radius of the uniform
circular array is r = 10λ, while the radiation e�ciency of the
antennas is 99%.

timum beamforming for N = 200 antennas, which is in the
region where the necessary bit energies have saturated, i.e.,
have become essentially independent of the antenna number.
We assume that the radiation e�ciency of the antennas equals
η = 99% in all cases. Let us look at Figure 8 in some detail
now. The prominent notch in Eb when the receiver is located
at (x , y) = (0, 10λ) comes about because the receiver gets very
close to one of the uca’s antennas. In the center (x = 0) the
all-ones beamforming is actually optimum. As long as the re-
ceiver is not removed far from the center, the needed bit en-
ergy therefore stays close to the minimum one. In fact, as long
as the receiver is removed by less than λ/9 from the center,
the loss in performance of the all-ones beamforming stays be-
low 1dB. For larger distances, however, the performance loss
increases rapidly and soon becomes so bad that the all-ones
beamforming performs worse than a single antenna transmit-
ter. This occurs, for the �rst time, at a distance of about 0.36λ
from the center. For distances greater than about 5.2λ, the per-
formance of all-ones beamforming is consistently worse than
that of the single antenna transmitter. Even the notch at po-
sition x = 10λ, while still present, is by far less deep than for
optimum beamforming or for a single antenna. The conclusion
is that position dependent beamforming is absolutely necessary.
An update of the beamforming vector should be performed no
later than the receiver has traveled a distance of λ/9 in order to
avoid excessive loss of performance. For pedestrian speed and
30GHz frequency, the update of the beamforming should be
made at least every 10−3 seconds.

On the other hand, this strong sensitivity of Eb with user
position for a �xed beamforming vector points to the possible
application of separating two close-by receiver’s. A separation
of the receiver positions of the order of a wavelength might
su�ce to obtain a good spatial separation by beamforming.
This kind of 3D-beamforming could have the potential to drasti-
cally increase the number of servable receiver terminals per unit



of area. For this to work it appears essential that the receivers
are surrounded by su�ciently many antennas. Further research
in this area of 3D-beamforming with the receivers surrounded
by many antennas seems advisable.

X. Conclusion

A theoretical study of a uniform circular array of quarter wave-
length monopoles serving a receiver employing a single quar-
ter wavelength monopole over an in�nite ground plane has
been carried out based on classical antenna theory and signal
processing.
It is found that the energy to transfer one information bit

decreases with the number of employed antennas at the trans-
mitter up to some threshold at which a further increase of
antenna number has no more e�ect on the required bit en-
ergy. The value of this threshold in antenna number depends
on whether the receiver is surrounded by the transmitter’s an-
tennas, or is located well outside of the circular array. For a
receiver right in the center of the array, the optimum antenna
number is given such that the distance between neighboring
antennas approaches one wavelength from below as the radius
of the array becomes large with respect to the wavelength. For
o�-center receiver positions inside the array, the optimum dis-
tance is reduced to about 0.6λ, while for receivers well out-
side the array the optimum distance is about 0.4λ. Adaptive
beamforming holds the necessary energy per information bit
constant up to a peak deviation of 0.5dB provided that 1) the
receiver moves no more than about 60% of the radius from
the center of the array, and 2) the array has got su�ciently
many antennas (immediate neighbors separated by 0.6λ).

The beamforming is sensitive to the user position such that
even a slight movement of a fraction of a wavelength requires
an updated beamforming vector. While this may indicate lim-
itations in speed of the receivers in a mobile environment, it
also opens up the possibility to serve multiple, more or less
static, users which are located very close to each other, sepa-
rated by a distance of the order of the wavelength.
Such 3D-beamforming could potentially increase the den-

sity of servable receivers in a given area drastically. Further
research in such beamforming techniques which surround the
receiver by su�ciently many antennas seems an interesting
research topic for future investigation by the public research
community.

References

[1] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO
for Next Generation Wireless Systems,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 186–195, 2014.

[2] F. Russek, D. Persson, B. K. Lau, E. Larsson, T. Marzetta, O. Edfors, and
F. Tufvesson, “Scaling Up MIMO: Opportunities and Challenges with
Very Large Arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp.
186–195, 2013.

[3] A. Tulino and S. Verdu, Random Matrix �eory and Wireless Communi-
cations. Now Publishers, 2004.

[4] M. Ivrlac and J. Nossek, “�e Multiport Communication �eory,” IEEE
Circuits and Systems Magazine, vol. 14, no. 3, pp. 27–44, 2014.

[5] R. Q. Twiss, “Nyquist’s and �evenin’s �eorems Generalized for Nonre-
ciprocal Linear Networks,” Journal of Applied Physics, vol. 26, pp. 599–602,
May 1955.

[6] M. T. Ivrlač and J. A. Nossek, “Toward a Circuit �eory of Communi-
cation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.
57(7), pp. 1663–1683, 2010.

[7] C. E. Shannon, “A Mathematical �eory of Communications,” Bell Syst.
Tech. Journal, vol. 27, pp. 379–423, 623–656, jul 1948.

[8] S. A. Schelkuno� and H. T. Friis, Antennas. �eory and Practice. New
York, NY: Wiley, 1952.


