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Abstract—Generalized frequency division multiplexing
(GFDM) is a promising candidate waveform for next generation
wireless communications systems. Unlike conventional orthogonal
frequency division multiplexing (OFDM) based systems, it is
a non-orthogonal waveform subject to inter-carrier and inter-
symbol interference. In multiple-input multiple-output (MIMO)
systems, the additional inter-antenna interference also takes
place. The presence of such three-dimensional interference
challenges the receiver design. This paper addresses the MIMO-
GFDM channel estimation problem with the aid of known
reference signals also referred as pilots. Specifically, the received
signal is expressed as the joint effect of the pilot part, unknown
data part and noise part. On top of this formulation, least
squares (LS) and linear minimum mean square error (LMMSE)
estimators are presented, while their performance is evaluated
for various pilot arrangements.

I. INTRODUCTION

ULTRA low latency, very high reliability and robustness,
low out-of-band (OOB) emission and very high data

capacity are among the challenges for the 5th generation (5G)
of wireless systems, e.g., [1], [2], [3]. The well-known orthog-
onal frequency division multiplexing (OFDM) has reached to
its boundaries in addressing the above various requirements.
Hence, several non-orthogonal waveform candidates have been
proposed and rediscovered for the new air interface of 5G, e.g.
filter bank multi-carrier (FBMC) [4], universal filtered multi-
carrier (UFMC) [5], filtered-OFDM [6] as well as generalized
frequency division multiplexing (GFDM) [7].

This paper considers GFDM, since it is equipped with
necessary flexibility to address a wide range of requirements
envisioned for 5G, e.g., latency, data rates, reliability and OOB
emission. Relying on it, a unified air interface can be provided
for various service types. The combination of GFDM with
multiple antennas, i.e., multiple-input multiple-output (MIMO)
GFDM, can further enhance the system performance e.g. [8],
[9], [10]. For the MIMO-GFDM receiver design, channel
estimation is a critical functional unit. The prior work [11]
relied on preamble which is spectrally efficient for continuous
transmission over slow fading channels. This paper aims to
deliver accurate estimates of channel state information (CSI)
for coherent detection by scattered pilot symbols. This type

of data-aided channel estimation is more suitable for time and
frequency dispersive channels.

In pilot-aided channel estimation, pilot symbols and
information-bearing data symbols are multiplexed and trans-
mitted within the same time-frequency resource block, e.g.,
Fig. 1. At the receiver side, the task of channel estimation is
to estimate CSI based on the knowledge of pilot symbols. To
this end, different channel estimation techniques have been
developed for conventional OFDM systems e.g. [12], [13],
[14], [15] and references therein. The extension of OFDM-
based channel estimation methods for GFDM are not straight-
forward, because the orthogonality of OFDM ensures clean
pilot observations without interference from unknown data
symbols. This property is not valid for GFDM which is a non-
orthogonal waveform in general. Moreover, in OFDM many
narrow-band subcarriers allow one-tap equalization while on
the contrary, in GFDM depending on the transmit signal
configuration (e.g. low latency requirement) the subcarriers
might have broader bandwidth and consequently, they become
frequency selective.

Given the knowledge of data symbols at the transmitter side,
it is possible to design pilots such that the interference from
data symbols can be properly pre-cancelled. This idea has been
applied for channel estimation in a single carrier transmission
system over a frequency selective fading channel [16] as
well as a GFDM-based system [17]. However, the approach
proposed in [17] was developed under the assumption of a
nearly flat and slow fading channel, which is unrealistic with
respect to broadband communication.

This paper tackles the MIMO-GFDM channel estimation
problem for rich multipath fading channels. Two well known
estimation techniques, namely least squares (LS) and lin-
ear minimum mean square error (LMMSE), are respectively
tailored for pilot-aided MIMO-GFDM channel estimation.
We evaluate and analyze their performance in accordance
with pilot arrangement and correspondingly, we examine their
complexity. The LS approach is an unbiased estimator which
does not require any probabilistic assumption and therefore, it
is being widely used due to its ease of implementation [18].
Nevertheless, the performance loss in LS estimation needs
significant attention. On the other hand, LMMSE estimation



is a Bayesian approach which exploits the a-priori knowledge
of channel statistics in order to improve the estimation quality
at the cost of further implementation complexity.

The rest of this paper is organized as follows: Section II
describes the GFDM modulation, pilots insertion and also the
assumptions taken into account for the MIMO channel. Section
III applies the LS channel estimation method and calculates
the closed form expression of the mean squared error (MSE).
Based on the computations provided in Sec. III, the LMMSE
estimator is then obtained in Section IV. Thereafter, Sec. V
compares the numerical results of theoretical calculations with
the simulation results; and finally, conclusions are drawn in
Sec. VI.

A. Notations

Column-vectors are denoted by vector sign ~X and matrices
by boldface X. Time and frequency domain representations
are separated by lowercase and uppercase letters respectively.
E[·] is the expectation operator. The trace of a square matrix
X is Tr(X). The transpose and Hermitian conjugate of X are
XT and XH respectively. The Frobenius norm of a matrix X
is ‖X‖ and its square can be written as ‖X‖2 = Tr(XXH).
The vectorization of a matrix X (i.e. stacking its columns on
top of one another from left to right) is denoted by vec(X).
The Kronecker and Hadamard products [19] of matrices X
and Y are denoted as X⊗Y and X◦Y respectively. diag( ~X)
is a diagonal matrix whose diagonal entries are the entries
of the column vector ~X . Furthermore, diag(X, · · · ,Y ) is
a block diagonal matrix according to its matrix entries with
X being the top-left and Y being the bottom-right blocks.
X ⊆ Y implies that the matrix X is possibly improper
submatrix of Y . The matrix In is the identity matrix of size
n. ~0n is a column vector of size n with all zero entries.

√
X

is the element-wise square root of matrix X.

II. SYSTEM MODEL

A. GFDM Modulation

We assume a GFDM block of length N = MK samples
where M complex valued subsymbols are being transmitted on
K subcarriers. In GFDM, the entries of vector ~d ∈ CN×1 are
filtered through circularly time and frequency shifted versions
of a prototype filter g[n]. Hence, we define

gk,m[n] , g [(n−mK) mod N ] exp

[
j2π

k

K
n

]
, (1)

where the circular time shift is acquired via the modulo
operation and frequency shift is obtained through the complex
exponential term corresponding to subsymbol index m and
subcarrier index k respectively.

The superposition of pulse shaped data symbols will then
provide the GFDM transmit sample:

x[n] =

K−1∑
k=0

M−1∑
m=0

gk,m[n]dk,m, n = 0, · · · , N − 1 (2)

where dk,m is the symbol transmitted on subcarrier k and
subsymbol m.
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Fig. 1: Pilot positions in time-frequency grid

In terms of matrix and vector notations, the above expres-
sion (2) can be rewritten as

~x = A~d, (3)

where ~d = (~dk[m])Tm=0:M−1, ~dk[m] = (dk,m)Tk=0:K−1 and
~x = (x[n])Tn=0:N−1. The GFDM transmit matrix A follows:

A =
(
~g0,0, · · · , ~gK−1,0, ~g0,1, ~g1,1, · · · , ~gK−1,M−1

)
, (4)

with column vector ~gk,m =
(
gk,m[n]

)T
n=0,1,··· ,N−1

.

Furthermore, the vector ~d = ~dp + ~dd is generated from
the summation of pilots sequence ~dp ∈ CN×1 and data
vector ~dd ∈ CN×1. The pilots sequence ~dp contains one pilot
subsymbol every ∆k subcarrier (i.e. Kp = bK/∆kc pilots)
and the rest of subsymbols which are the position of data
samples from ~dd are kept zero. Note that each time-frequency
resource element is associated to either pilots or data leading
~dp ◦ ~dd = ~0N . Fig. 1 shows an example of pilot positions in
the time-frequency grid. It is plain that the pilot insertion with
a small ∆k, reduces the effective rate by the factor

η ,
no. of data samples
no. of total samples

= (N −Kp)/N

= 1− bK/∆kc
MK

. (5)

B. MIMO Wireless Channel

Consider a multi-path MIMO block fading channel with
nT transmit and nR receive antennas where the whole GFDM
block at each Tx antenna is protected by a single cyclic prefix
(CP). Due to the CP, the receive signal ~yiR (at Rx antenna
iR) in time is the circular convolution of transmit signal ~xiT
(from Tx antenna iT) and the channel impulse response ~hiT,iR
(between the antennas iT and iR) plus the AWGN process ~wiR

~yiR =

nT∑
iT=1

~xiT ~ ~hiT,iR + ~wiR . (6)

In the above expression, it is assumed that all the channels
have shorter lengths L compared to the CP length. Moreover,



the channel impulse response between the antennas iT and iR
is defined as

~hiTiR ,
√

diag(~PiTiR)~giTiR , (7)

where ~PiTiR ∈ RL×1 is the normalized power delay profile
(PDP) between the Tx antenna iT and Rx antenna iR; and
~giTiR ∈ CL×1 is a vector of zero mean complex Gaussian
random variables with unit variance, representing independent
Rayleigh fading for different Tx-Rx antenna pairs.

Due to the circular convolution in (6), the individual chan-
nels are diagonal in frequency domain and therefore, the
observed signal on Rx antenna iR is characterized by the
following linear equation:

~Y ′iR =

nT∑
iT=1

(X ′p,iT + X′d,iT) ~H ′iT,iR + ~W ′iR , (8)

with ~H ′iT,iR = F′L
~hiT,iR . Furthermore, X ′s,iT = diag( ~X ′s,iT)

is a diagonal matrix associated either to pilots p or data
sequences d (i.e. s ∈ {p, d}). ~X ′s,iT is being transmitted
on Tx antenna iT and it is defined as ~X ′s,iT , (F′tA

~ds)iT .
F′t ∈ CN×N is the DFT matrix and F′L ∈ CN×L contains
only the first L columns of F′t where L is the channel length.
~W ′iR is the frequency domain counterpart of AWGN process
on receive antenna iR.

If the number of pilot subcarriers is smaller than the number
of data subcarriers, i.e., the subcarrier spacing ∆k > 1,
only a subset of observations in frequency domain with
Np = bN/∆kc samples that contain the information of pilots
will be used for pilot-aided channel estimation. In equations,
the received signal at pilot-bearing subcarriers follows:

~YiR =

nT∑
iT=1

(Xp,iT + Xd,iT) ~HiT,iR + ~WiR , (9)

where ~HiT,iR = FL
~hiT,iR , ~WiR = Ft ~wiR , Xs,iT = diag( ~Xs,iT)

and ~Xs,iT = (FtA~ds)iT . Here, Ft ⊆ F′t and FL ⊆ F′L are
Np × N and Np × L matrices that take the DFT at pilot
subcarriers respectively i.e. every m + kM row of Ft,FL

corresponds to m+ kM∆k row of F′t,F
′
L respectively.

We also define the ratio ξ , O
U where O = M×Kp×nR is

the number of observations (as each pilot generates M samples
in frequency domain) while U = L × nT × nR is the total
number of channel taps to be estimated. An LS estimate of
the channel exists if and only if the number of observations is
greater than or equal to the number of estimation parameters
i.e. ξ ≥ 1. Although, LMMSE technique can still provide a
reasonable estimate of the channel due to its prior knowledge
of statistical CSI.

We rearrange the expression (9) into matrix form as

Y = (Xp + Xd)Fh + W, with


Y,W ∈ CNp×nR

Xp,Xd ∈ CNp×NpnT

F ∈ CNpnT×LnT

h ∈ CLnT×nR

(10)

 
diag(

~Xs,1
)

N
×N diag(

~Xs,2
)

N
×N




FL

N
× L

FL

N
× L


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~h11

L×
1

~h21

L×
1

~h12

L×
1

~h22

L×
1

+


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N
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Fig. 2: Overview of the matrix sturctures for
a 2× 2 MIMO channel

herein, each of the above parameters are defined as

Y , (~Y1, · · · , ~YiR , · · · , ~YnR), (10a)
Xs, (Xs,1, · · · ,Xs,iT , · · · ,Xs,nT), (10b)
F , InT ⊗ FL, (10c)

h ,


~h11 · · · ~h1nR

...
. . .

...
~hnT1 · · · ~hnTnR

 , (10d)

W, ( ~W1, · · · , ~WiR , · · · , ~WnR). (10e)

Eq. (10) depicts that the observed matrix Y contains a
deterministic term XpFh, an interference term due to useful
information XdFh and the WGN W. Moreover, Fig. 2 shows
an example of matrix structures for nT = 2 by nR = 2
antennas. In Fig. 2 it is illustrated that Xs is a wide matrix
composed of individual diagonal matrices of transmit signals
associated to different Tx antennas. Furthermore, the matrix
of channel impulse responses h is structured as nT × nR
column vectors. Such matrix structure brings an advantage for
mathematical analysis when vectorizing the channel matrix.
It is trivial from Fig. 2 that ~h = vec(h) will consist of
nTnR = 4 independent column vectors of channel impulse
responses, and thus, considering Rayleigh fading channels
with no spatial correlation the covariance matrix of all channel
impulse responses E

[
~h~hH

]
becomes diagonal.

Resorting to the matrix identity vec(ABC) = (CT ⊗
A)vec(B) [19], the corresponding vectorization of the ob-
served matrix Y yields the following equation:

~Y = vec(Y) = x̃~h+ ~W, (11)

where x̃ = (InR ⊗XF) ∈ CNpnR×LnTnR , X = Xp + Xd,
~h = vec(h) and ~W = vec(W).

III. LEAST SQUARES ESTIMATION

The structure of the transmit signal matrix Xs does not
allow to provide a least squares estimate of the channel in
frequency domain. As mentioned in Sec. II-B, Xs is a wide
matrix of diagonal matrices and therefore, the product of
XH

s Xs or specifically XH
p Xp is always singular. Although,

one can obtain the LS estimate of the channel impulse response
by minimizing ‖Y −XpFh‖2 with respect to h. This yields

ĥLS = QLSY = h + E, (12)
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Fig. 3: Example of ΣΨΨ structure for a 2× 2 MIMO
channel with K = 16, M = 5 and ∆k = 4

where QLS =
(
(XpF)H(XpF)

)−1
(XpF)H ∈ CLnT×Np .

The channel frequency response at all data subcarriers is then
calculated through Fourier transform of individual estimated
channel impulse responses i.e.

ĤLS = (InT ⊗ F′L)ĥLS (13)

The above estimation yields the following interference and
noise terms:

E = QLSΨ + QLSW. (14)

Here, Ψ = XdFh leads to an error floor due to the con-
front of the pilots and useful information and therefore, the
norm ‖QLS‖ not only enhances the noise term but also the
interference from data.

Accordingly, the result of the MSE calculation follows:

MSELS = E
[
‖ĥLS − h‖2

]
=

1

∆k
Tr
((

InR ⊗ (QH
LSQLS)

)
ΣΨΨ

)
+
σ2
w

∆k
Tr
(
InR ⊗ (QH

LSQLS)
)
,(15)

where σ2
w is the noise variance. Then, we compute the covari-

ance matrix of the interference term as

ΣΨΨ = E
[
vec(XdFh)vec(XdFh)H

]
= EXd

[
(InR ⊗XdF)Eh

[
~h~hH |Xd

]
(InR ⊗XdF)

H
]

= EXd

[
(InR ⊗XdF) Σhh (InR ⊗XdF)

H
]
. (16)

Here, an important fact arises that both of the above matrices
(InR ⊗XdF) and Σhh have block diagonal structures as

InR ⊗XdF = diag([Xd,1FL, · · · ,Xd,nTFL], · · · ,
[Xd,1FL, · · · ,Xd,nTFL]), (17)

Σhh = diag(Σh11 , · · · ,ΣhnT1 ,

· · · ,Σh(nT−1)nR
,ΣhnTnR

), (18)

where ΣhiTiR
∈ RL×L is the diagonal covariance matrix of

channel impulse response, computed as

ΣhiTiR
= E

[
~hiTiR

~hHiTiR

]
= diag(~PiTiR). (19)

The product of (17), (18) and the hermitian conjugate of
(17) will then provide a block diagonal structure for the
interference covariance matrix ΣΨΨ as expressed in (16). This
is due to the fact that independent Rayleigh fading has been
considered for the individual channels (see Sec. II-B). As a
result, it is possible to perform the computations separately
for the individual blocks. Hence, for the Tx antenna iT and
Rx antenna iR we have [19]:

ΣΨΨiTiR
= EXd,iT

[
Xd,iTFLEh

[
~hiTiR

~hHiTiR |Xd,iT

]
FH

LXH
d,iT

]
= ΥiTiR ◦ΣXdXd,iT , (20)

where ΥiTiR = FLdiag(~PiTiR)FH
L . Furthermore, the covari-

ance matrix of data is being calculated as

ΣXdXd,iT = E[(FtA~dd)iT(FtA~dd)HiT ]

= (FtAdiag(~̌σ2
d)AHFH

t )iT , (21)

where, ~̌σ2
d is the vector of data variances with zero entries at

pilot positions.
Consequently, for each Rx antenna iR we calculate the

individual diagonal blocks of ΣΨΨ as

ΣΨΨ(iR) =

nT∑
iT=1

ΥiTiR ◦ΣXdXd,iT . (22)

Hence, the full interference covariance matrix follows:

ΣΨΨ = diag(ΣΨΨ(iR=1),ΣΨΨ(iR=2), · · · ,ΣΨΨ(iR=nR)).
(23)

Fig. 3 shows an example of ΣΨΨ for a 2× 2 MIMO channel.
Notice that the individual blocks of ΣΨΨ are sparse matrices
with most elements equal to zero.
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Fig. 4: Example of ΣY Y structure for a 2× 2 MIMO
channel with K = 16, M = 5 and ∆k = 4
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Fig. 5: MSE results of channel estimation vs. SNR for simulation and theoretical calculations in Rayleigh fading MIMO
channel with pilot spacing of ∆k = 2 and K = 128 subcarriers.

IV. LMMSE

The LMMSE estimation calculates the coefficients of a lin-
ear filter aiming at minimum mean square error. In accordance
with (10) and the corresponding vectorization in (11), we
formally have:

~̂
hLMMSE = ΣhY Σ−1

Y Y
~Y , (24)

with the matrices defined as

ΣY Y = x̃pΣhhx̃H
p + ΣΨΨ + σ2

wINnR , ∈ CNpnR×NpnR(25)

ΣhY = Σhhx̃H
p , ∈ CLnTnR×NpnR (26)

where x̃p = (InR ⊗ XpF). Note that ~̂hLMMSE is a column
vector containing nTnR individual column vectors of size L,
associated to the LMMSE estimates of the individual channel
impulse responses.

The resulting MSE performance of the LMMSE estimation
follows:

MSELMMSE = Tr
(
ΣHH − Σ̂HH

)
(27)

with

ΣHH = (InR ⊗ F)Σhh(InR ⊗ F)H (28)

Σ̂HH = (InR ⊗ F)ΣhY Σ−1
Y Y ΣH

hY (InR ⊗ F)H (29)

where F is a block diagonal Fourier matrix defined in (10c).

A. Complexity

The complexity of the LMMSE implementation in GFDM
is increased with respect to the LMMSE estimation in OFDM
due to the further computations of the interference covari-
ance matrix (23). However, if the PDP, the configuration of
transmitter matrix A and the pilot pattern (i.e. the position
of pilots in time-frequency grid) remain unchanged over
consecutive transmissions, the computation of (23) is required

only once. In addition, note that although the complexity of
the matrix inversion Σ−1

Y Y is O
(
(NpnR)3

)
, the matrix ΣY Y is

constructed in form of block diagonal with nR blocks. Hence,
the complexity reduces to O(nRN

3
p ) due to nR separate matrix

inversions. Fig. 4 shows an example of ΣY Y for a 2×2 MIMO
channel and thus 2 individual diagonal blocks which can be
inverted separately.

V. NUMERICAL RESULTS

In this section we present the simulation and numerical
results in order to validate the closed-form expressions of mean
squared error of MIMO GFDM channel estimation proposed in
the previous sections. Moreover, we compare the performance
of the GFDM channel estimation with OFDM. In the end,
we show the simulation results of symbol error rate (SER)
performance of GFDM under the impact of channel estimation
where we compare it with OFDM along with GFDM Genie-
aided receiver.

Here, we consider a sequence of 16-QAM symbols with
energy per symbol Es being transmitted through a multipath
MIMO channel with noise energy N0 and with nT = {2, 3, 4}
and nR = {2, 3, · · · , 8} antennas. The channel gains are
considered to have Rayleigh distribution, hence, the PDP is
exponentially distributed with L = 9 independent fading
gains. A single block of GFDM signal contains M = 7
subsymbols and it is filtered by a Raised Cosine pulse with
roll-off factor α = 0.3. For comparison purpose, we configure
OFDM to have K ′ = MK subcarriers. Considering the same
block length of GFDM and OFDM, their bandwidth becomes
equivalent. Note that the subcarrier spacing of GFDM is M
times wider than the case of OFDM. Therefore, the number
of subcarriers in GFDM is M times less than that of OFDM,
while each subcarrier carries M data symbols.
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Fig. 6: MSE vs. no. of Tx-Rx antennas with K = 96,∆k = 2, L = 9, nR = nT

Fig. 5 illustrates the MSE evaluations for theoretical analy-
sis as well as simulation results via Monte Carlo method. It
is clearly observable that the channel estimation for GFDM
contains an error floor due to the interference from data
symbols while for OFDM, MSE decreases linearly with SNR.
Moreover, comparing the GFDM channel estimation results
for various number of Tx and Rx antennas, we notice that
the error does not directly depend to the number of receive
antennas e.g. The MSE curves for 2 × 2 vs. 2 × 8 antennas
are overlapped (as well as 4× 4 vs. 4× 8). This is due to the
fact that, by linearly increasing the number of Rx antennas
we increase the number of observations while the number of
estimation parameters (i.e. channel taps) also increases linearly
e.g. Doubling the number of Rx antennas, we also double the
number of channels while the ratio ξ = O

U remains identical.
As a consequence, no analytical difference should be expected
for this case.

On the other hand, as we increase the number of Tx-
Rx antennas, the estimation performance for both LS and
LMMSE estimators degrades (see Fig. 6), because, by linearly
increasing the number of Tx-Rx antennas, the number of
channel taps is increased quadratically and thus, the parameter
ξ decreases leading to estimation performance degradation.
Note that for the specified combination of K,∆k & L in
Fig. 6, the MSE curves for LS estimation with nT > 5 do not
exist for OFDM, since the parameter ξ becomes smaller than
one. Furthermore, the error gets too large also for GFDM as
ξ > 1/M because the norm of the LS estimator becomes larger
and consequently enhances the interference term significantly.
In addition, Fig. 6a and 6b also show that in low SNR case, the
performance of GFDM and OFDM is almost the same, though,
in high SNR the gap between GFDM and OFDM increases
due to the interference from data and correspondingly the error
floor in GFDM channel estimation.

In order to assess the influence of pilot spacing ∆k in

MIMO GFDM channel estimation, Fig. 7 compares the mean
squared error for different ∆k values. The pilot spacing of
∆k = 2 in GFDM corresponds to ∆k′ = 2M in OFDM
as one GFDM block contains MK = 896 samples with
Kp = 64 pilots while also OFDM includes the same number
of samples and pilots. An immediate observation from Fig. 7 is
the overlapping of channel estimation MSE in OFDM system
with the MSE in GFDM due to noise only. However, because
of the interference in MIMO GFDM channel estimation, the
summation of MSE due to noise and due to interference in
GFDM becomes larger than the MSE of OFDM. Furthermore,
it can be seen that a smaller value of ∆k leads better estimation
results for both LS and LMMSE methods, because, more
number of pilots are transmitted and more observations are
acquired at the receiver side. Note that the error floor due to
the interference that is independent of SNR, also increases
vertically with the increase of ∆k. Nevertheless, the effective
rate for ∆k = {1, 2, 4} is reduced by η = {86%, 93%, 96%}
respectively.

The simulation results for uncoded SER performance of
GFDM under the influence of channel estimation is provided
in Fig. 8. Here, we compare the MIMO GFDM channel esti-
mation with OFDM as well as GFDM Genie-aided receiver.
The GFDM Genie-aided receiver transmits no pilot symbols
(only data transmission) but it has the perfect knowledge of
the CSI due to a genie at no cost. Here again, we notice that
the GFDM SER performance has an error floor at high SNRs
due to the error floor in channel estimation, while for OFDM
SER decreases proportionally with the SNR. Moreover, notice
that by increasing the pilot spacing ∆k (Fig. 8 left to right)
not only the SER due to the noise term increases, but also
the error floor which is due to the interference term from
data in channel estimation. Fewer pilot subcarriers makes the
Fourier matrix wider, resulting in a larger value of ‖QLS‖ and
therefore, further noise and interference enhancement.
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Fig. 7: MSE of channel estimation vs. SNR in Rayleigh fading 2× 2 MIMO channel with K = 128 subcarriers and M = 7
subsymbols. I represents the MSE due to the interference from data while W stands for the MSE due to noise only.
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Fig. 8: Symbol Error Rate performance of GFDM under the influence of channel estimation in Rayleigh fading 2× 2 MIMO
channel with K = 128 subcarriers and M = 7 subsymbols

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a system model (10), serving as a
general framework for deriving various pilot-aided channel
estimators for MIMO-GFDM systems. Both LS and LMMSE
criterion-based estimators are derived and their resulting MSE
performance is analyzed. The MSE simulations confirm the
closed form expressions of theoretical MSE calculations.
Moreover, the MSE and SER performances of the MIMO-
GFDM channel estimation show that both performances are
similar to OFDM at low SNR whereas at high SNRs an error
floor exists due to interference from data symbols.

The future work will rely on pre-canceling the interference

term at the transmitter side due to its knowledge on data-
bearing subsymbols. By properly pre-canceling the interfer-
ence term, the GFDM channel estimation would be able to
provide similar performance as in OFDM, while the GFDM
waveform provides more flexibility and advantages such as
extreme low latency, high throughput and low OOB emission.
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