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Abstract—Link adaptation in LTE-A is based on channel state
information (CSI). For time-selective channels, CSI might be out-
dated already in the next subframe. Hence, CSI prediction must
be employed. This paper investigates support vector regression
(SVR) for channel extrapolation and prediction. SVR is applied
for learning from the previous channel estimates in order to
predict the CSI of the following ones. Simulation results show
that the proposed method performs better than simple linear
prediction methods and close to minimum mean square error
prediction especially in a reasonable signal to noise ratio regime.
Keywords—Support Vector Machines, Channel Estimation, LTE,
MMSE, interpolation, extrapolation, CSI prediction

I. INTRODUCTION

The most recent standards for wireless cellular networks
employ Orthogonal Frequency Division Multiplexing (OFDM)
as multiple access technique. In such systems, the data rate
of each user is defined by adaptive modulation and coding
(AMC) according to the channel state. In Long Term Evolution
(LTE) downlink (DL) the User Equipment (UE) feedbacks the
quantized CSI while in the uplink (UL) transmission, the Base
Station (BS) can directly estimate the UE channel. To work
with non-quantized channel estimates, we restrict ourselves to
the UL. Then, the BS performs link adaptation which results in
a delay due to the time taken by the physical layer to process
the information. The 3GPP reports a delay of at least 5 ms [1].

Few research has been published regarding the process
delay effect such as [5], in which the authors proposed a cubic
spline extrapolation to obtain a prediction horizon that allows
extending the reliability of the channel quality evaluation along
time. However, they did not show the limit of their prediction
in terms of time-selectivity. Their results are given at 3 km/h.
To address this issue, we will investigate the performance
of various extrapolation / prediction methods in an LTE-A
compliant environment using the Vienna LTE-A Link Level
Simulator [6]. The present study follows the approach of [7]
which employs support vectors regression (SVR) to perform
channel interpolation and extrapolate it over the time horizon.

SVR is related to statistical learning theory [8] and it
became popular because of its success in handwritten digit
recognition. Hence, it has been investigated in different areas
and recently has been applied for interpolation in LTE channel
estimation [7], [9], [10], both in UL and DL. It has been shown
in [7] that SVR interpolation for channel estimation in LTE
outperforms spline and linear interpolation.

Fig. 1: Illustration of the terms interpolation and extrapolation
/ prediction.
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Fig. 2: The LTE-A uplink reference symbol allocation.

The rest of the paper is structured as follows. Section
II briefly reviews the LTE-A uplink system model, which
continues with the performance of LTE-A (without channel
prediction) under various process delays in Section III. SVR is
then highlighted in Section IV and some competing methods
are introduced. Section V shows a performance comparison
with all methods, to show realizable gains. In Section VII we
draw some conclusions.

II. SYSTEM MODEL

The physical layer of the 3GPP LTE-A uplink employs
Single Carrier Frequency Division Multiplexing (SC-FDM).
This modulation method is basically a DFT-spreaded ver-



sion of Orthogonal Frequency Division Multiplexing (OFDM).
Further, channel estimation in this system is pilot based,
employing demodulation reference signals (DMRS). These are
multiplexed in the time-frequency resource grid at every 4th

and 11th OFDM symbol of each subframe m, allocating all
scheduled subcarriers as illustrated in Figure 2. A subframe,
consisting of 14 OFDM symbols, assuming a normal cyclic
prefix length, therefore includes two DMRS. As these DMRS
are multiplexed after the pre-spreading at the transmitter, and
exploited before de-spreading at the receiver for the purpose of
channel estimation, the received signal at the channel estimator
at symbol time n and subcarrier k is given by

y[n, k] = H[n, k]x[n, k] + z[n, k] , (1)

with transmitted symbol x[n, k], channel coefficient H[n, k]
and i.i.d. Gaussian noise z[n, k] ∼ CN (0, σ2

z). For a more
detailed derivation of a LTE-A uplink system model we refer
to [12] for the SISO case, and to [13], [6] for a MIMO model.

Channel estimates at the pilot positions are obtained by
direct channel estimation, such as minimum mean square error
(MMSE) estimation as explained in [11], which will be the
underlying estimation method exploited in the remainder of
this work. To improve readability we denote these channel
estimates at pilot positions by vectors H

P (m)
k ∈ C2 which

incorporates all pilot positions of subframe m at subcarrier k,
as illustrated in Figure 2.

In order to obtain channel estimates at positions where
there are no DMRS allocated in the time-frequency resource
grid, interpolation has to be carried out. Due to the special
DMRS allocation in the LTE-A uplink, channel estimates at
each subcarrier are obtained inherently by estimation. We will
therefore only investigate 1D interpolation and extrapolation
methods in time domain. While interpolation in the current
subframe is necessary for coherent detection at the receiver,
extrapolation/prediction is carried out to compensate for pro-
cessing delay when calculating link adaptation parameters at
the base station. For this purpose, channel estimates of the
current mth subframe are exploited to extrapolate the channel
of a future subframe.

III. PERFORMANCE WITHOUT PREDICTION

Our channels were generated with the Vienna LTE-A
simulator [6], which employs an extended Rosa Zheng model
[2] introduced in [3]. The Jakes Doppler spectrum results in
an autocorrelation function given by a zero’th-order Bessel
function of the first kind [4]. The time when the autocorrelation
function falls below 0.5 calculates approximately to

Tc ≈
9

16πfd
, (2)

where fd = v
c f0 is the maximum Doppler shift dependent on

the transmitter speed v, the carrier frequency f0 and the speed
of light c.
If we assume a process delay of 5 ms, we would like to have
the current channel realization correlated to the estimated one.
Through rearranging Equation (2) and assuming f0 = 2GHz
we obtain a maximum tolerable speed of

v =
9

16π

c

(5ms)f0
≈ 5.6

m

s
≈ 20.2

km

h
. (3)
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Fig. 3: Throughput with various link adaptation (process)
delays and MMSE channel estimation at 20 km/h without
prediction.

We notice from Figure 3 that the strongest performance
drop occurs for 1-3 Transmission Time Intervals (TTIs) pro-
cessing delay. If the process delay comes close to the coher-
ence time given in Equation (2) the correlation is so weak,
that link adaptation should rather be performed with statistical
measures.

IV. SUPPORT VECTOR REGRESSION

SVR is a modified version of the support vector classifier
(SVC), which was invented by Vladimir N. Vapnik [8]. In
principle, SVR has the same features as SVC, i.e., maxi-
mizes the margin and minimizes the errors. The basic idea
of Mercer’s theorem, as stated in [8], is that a vector in
a finite dimensional space (the input space) can be mapped
to a higher dimensional space H, which can be an infinite-
dimensional Hilbert space provided with a dot product through
a nonlinear transformation, ϕ(.). However, the transformation
ϕ(.), usually remains unknown (i.e., it is not necessary to know
the explicit transformation, ϕ(.)). Hence, only the dot product
of the corresponding space is required and can be stated as a
function of the input vectors as follows:

K(u, v) = 〈ϕ(u), ϕ(v)〉 (4)

Such spaces are known as reproducing kernel Hilbert spaces
(RKHSs) where K(u, v) is the kernel that should satisfy
the conditions of Mercer’s theorem, meaning it is the inner
product of a Hilbert space; u, v denotes the input vectors (i.e.,
complex reference symbols). In this work, we are comparing
the Gaussian (or Radial Basis Function, RBF) and linear
kernels. The Gaussian kernel has been widely used in the SVM
framework mainly for its ability to map the input data into
an infinite-dimensional space. However, it is very sensitive
to speed and require an accurate parameter selection. Thus,
we also employ the linear kernel which is a special case
of RBF kernel known for its robustness and insensitivity
against noisy data. In this paper, we are exploiting the index
of the reference symbols in order to estimate the channel
frequency response at these positions using minimum mean
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Fig. 4: Steps of SVM regression model. (a) The blue dots
illustrate the channel response (input data). (b) Kernel trick
for mapping data. (c) The regression model (red solid curve).

square error (MMSE) estimation. Afterwards, we perform the
extrapolation of the SVR model constructed in the learning
step by obtaining the channel frequency responses for the data
symbols at the subframe m+ δ . The Gaussian kernel can be
stated mathematically as follows:

K(u, v) = exp
(
−γ‖u− v‖2

)
(5)

The term ‖u − v‖2 is recognized as the squared Euclidean
distance between two input vectors; γ is a free parameter that
can be chosen after acquiring knowledge about the problem or
by running some cross-validation methods. Figure 4 illustrates
the behavior of an SVM with nonlinear data using the kernel
trick.

The regression model for extrapolation can be illustrated
mathematically as follow;

Ĥ
(m+δ)

k = wTϕ(Ĥ
P (m)

k ,m+ δ) + b+ e (6)

Fig. 5: The ε-insensitivity concept.

where Ĥ
(m+δ)

k , Ĥ
P (m)

k are the channel frequency response
on data at subframe m + δ and reference symbols at sub-
frame m for subcarrier k, respectively. In SVR, the collected
information is the values of the parameters w and b, which
are the weight vector and the bias term, respectively, and are
well known in SVM literature [8]. The error e includes the
approximation errors and noise (also known as the residuals).
As previously stated, the main goal of the SVM is to maximize
the margin (i.e., the weight w) and to minimize error. The
errors signify a regularized cost function of the residuals, often
referred to as Vapniks ε-insensitivity cost function. We use the
ε-insensitivity cost function, as illustrated in Figure 5.

Lε(e) =


0, |e| ≤ ε

1
2γ (|e| − ε)

2
, ε ≤ |e| ≤ ec

C(|e| − ε)− 1
2γC

2, ec ≤ e
(7)

where ec = ε + γC; ε is the insensitivity zone in which the
errors are ignored, and γ and C are the parameters that control
the trade-off between regularization and loss. The cost function
is linear for errors above ec and is quadratic for errors between
ε and ec. Note that the `2-norm value of the errors is applied
for the quadratic cost zone. A detailed mathematical derivation
of SVR for interpolation was published in our previous paper
in [7].

In general, the RBF kernel is a reasonable first choice.
This kernel nonlinearly maps samples into a higher dimen-
sional space. For the linear kernel, the same principles of the
Gaussian Kernel remains since the linear kernel is considered
as a special case of the Gaussian kernel. However, the loss
function for the linear kernel ignores the quadratic zone as
shown in (8).

Lε(e) =

{
0, |e| ≤ ε

|e| − ε, otherwise
(8)

In order to choose the best kernel with the appropriate
parameters, we compared the RBF and linear kernel in terms



TABLE I: SVM Parameters

Parameter set 1 Parameter set 2
C 1 100
γ 0.0618 0.00005
ε 0.000618 25 × 10−11

of mean square error (MSE) for interpolation with two sets
of parameters as shown in Table 1. One should keep in mind
that the parameters selection was performed manually after
gaining knowledge of the problem. Figure 6 shows the MSE
performance comparison between the linear and RBF kernel
using 2 and 4 points. We clearly observe that at a relatively
low speed (≤ 50 km/h), using more points for the linear kernel
improves the performance. However, the RBF kernel is almost
insensitive to an increasing number of points at low speed and
it even results in worse performance at higher speed because
of over-fitting. Figure 7 shows the same effect concerning the
number of points and we clearly recognize that a linear kernel
is almost insensitive to parameter change which is not the case
for the RBF kernel. This effect is due to the γ value which
is an important parameter for the RBF kernel that needs to be
chosen carefully. As the 2 points RBF kernel with parameter
set 2 performs close to 4 points linear kernel, we prefer the
RBF kernel since there’s less limitations on frequency hopping;
the scheduled resource blocks are allowed to change from
subframe to subframe.

A. Linear MMSE Interpolation

In this section a 1D linear MMSE (LMMSE) interpolation
filter is described as in [14]. By LMMSE interpolation in time
domain, exploiting time correlation within the current sub-
frame m, channel estimates at the data positions are obtained
by

Ĥ[n, k] =
(
rtHn

)H (
Rt
HH +

σ2
n

σ2
x

I

)−1

Ĥ
P (m)

k (9)

with the time domain channel autocorrelation at pilot symbol
positions Rt

HH = E{HP (m)
k

(
H

P (m)
k

)H} and the time do-
main channel cross-correlation of symbol times in between
pilot positions rtHn = E{HP (m)

k H[k, n]?}. By applying
Equation (9) on time positions n that do not lie in between the
two DMRS of the current subframe m, LMMSE extrapolation
is inherently performed. As the LMMSE extrapolation serves
as a performance bound for comparison of simulation results,
the channel time correlation is assumed to be perfectly known.
Since Jakes’ Doppler spectrum is assumed, as described in
Section III, the correlation functions are given by the zero’th
order Bessel function of first kind as in [14].

B. Linear Least Square Fit

Due to the structural similarity with the linear kernel, we
compare SVR to a linear Least Square (LS) fit as well. The
LS fit was performed with the minimum of two pilot symbols,
which actually resembles linear interpolation.
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Fig. 6: MSE comparison for parameter set 1.
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Fig. 7: MSE comparison for parameter set 2.

V. PERFORMANCE WITH PREDICTION

Within this section we compare the performance of the
various prediction schemes utilizing two metrics:

• Signal to Interference and Noise Ratio Mean Square
Error (SINR MSE): Our link adaptation scheme is
fully described in [6] and is essentially a function
of the SINR only. Hence, in order to adapt the
link correctly, the average SINR must be predicted
precisely.

SINR MSE = σ2
z |SINRpredicted − SINRtrue| (10)

• Throughput: This metric is directly related to the
SINR MSE. Those prediction methods with lower
SINR MSE come with higher throughput. In order to
compare the gains quantitatively, we also provide the
throughput results.

For the simulations we employed the parameters specified
in Table II. A real system can never adapt a link faster than
1 TTI. Therefore, it reflects the absolute minimum possible
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delay; 3 TTIs process delay reflects a fast link adaptation and
5 TTIs delay is the already mentioned 3GPP recommendation.

TABLE II: Simulation Parameters

Parameter Value
System bandwidth 1.4 MHz

Number of subcarriers NSC 72
Process delay 1,3,5 TTI

Channel model Typical Urban (TU)
Antenna configuration 1 × 1 uplink

Receiver MMSE
Channel estimator MMSE

Modulation scheme Adaptive
UE speed 20 km/h

For the case of 1 TTI link adaptation delay, the SINR MSE
is in the same order for all prediction methods, cf. Fig 8.
The slight difference in SINR MSE is hardly visual in the
obtained throughput, as illustrated in Fig. 9. In such very fast
link adaptation scenarios one would certainly prefer the low
complexity LS fit approach.
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Fig. 10: SINR MSE for link adaptation delay of 3 TTIs.

Fig. 11: Throughput for link adaptation delay of 3 TTIs.

The situation changes a bit in Fig. 10 as channel correlation
weakens. For a 3 TTI process delay SVR outperforms MMSE
and LS prediction in the low SNR regime. However, no
prediction would be beneficial there. In the region between 10
and 25 dB SNR SVR performs as good as MMSE prediction
and much better than LS, cf. Fig. 11. As this region is a
likely point of operation and a 3 TTI link adaptation delay
is feasible, we see the major gain of our method there. The
shaded region shows the gain obtained by SVM against no
prediction. Between 10 and 25 dB SNR prediction amounts to
an SNR gain of roughly 3 dB. A gain of this order was also
reported in [15].

Once we come close to the point, where the autocorrelation
drops below half, we recognize that the SINR MSE is generally
very high and does not differ significantly from no prediction,
cf. Fig 12. The gains in throughput depicted in Fig. 13 are
almost negligible. The saturation of SVM at higher SNR as
compared to other methods stems from a conservative SINR
prediction of SVM. To further explain this effect, the corre-
sponding BLock Error Ratio (BLER) is depicted in Figure 14.
SVM prediction leads to a relatively low BLock Error Ratio
(BLER) compared to other methods. This is contrary to the
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Fig. 13: Throughput for link adaptation delay of 5 TTIs.

LS fit which generally tends to predict too high SINR, visual
in the higher BLER.

VI. RESTRICTIONS FOR MIMO TRANSMISSIONS

In LTE-A uplink the pilots are inserted before the spatial
precoding, so that effective channels (including the precoders)
are estimated [6], [11]. If the transmission rank is lower than
the number of transmit antennas, the effective channel will
not be recovered by knowledge of the precoder. To apply our
method on MIMO transmissions, the applied precoder must
stay constant over a certain time. Our prediction strategies are
operating on the effective channel matrices then.

VII. CONCLUSIONS

For an LTE-A uplink transmission model we investigated
the performance of SVR for channel prediction / extrapola-
tion. It has been shown that SVR performs close to MMSE
prediction. In the low SNR regime it is beneficial to not
consider prediction at all, where as in the high SNR regime
simpler methods such as LS fitting are superior to SVR. SVR
offers some gains in the medium SNR range and as long
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Fig. 14: Deviation from the target BLER (0.1) for various
prediction schemes.

as the channels to be predicted are still strongly correlated
to the channel at hand. The results obtained are promising
for improving the throughput performance in case of link
adaptation process delay.
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