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Abstract—In this work we address the transmission of cor-
related Gaussian sources over Multiple Input Multiple Output
fading channels using analog Joint Source Channel Coding
(JSCC). The source symbols are first compressed using a con-
tinuous parametric mapping based on a sinusoidal function
that exploits the source correlation. Given that the data at the
encoder output is also correlated, the information corresponding
to the covariance matrix is incorporated into the design of the
linear transmit and receive filters. The results obtained from the
simulations confirm the suitability of analog JSCC techniques
for the considered scenario.

I. INTRODUCTION

The application of analog Joint Source Channel Coding
(JSCC) techniques for the transmission of independent analog
sources has been analyzed for different scenarios and com-
munication models [1], [2], [3], [4]. These works confirm
that this transmission strategy is a feasible alternative to
traditional approaches based on the separation of the source
and the channel coding operations. Analog JSCC has also
been considered for the transmission of correlated sources,
specially in the context of Wireless Sensor Networks [5], [6],
[7]. Notice that the source-channel separation is suboptimal in
scenarios such as the Multiple Access Channel (MAC) when
the information is correlated, since the separate optimization
of the source and channel encoders is not able to efficiently
exploit the source correlation [5], [8], [9].

In the case of analog JSCC, the source symbols are di-
rectly encoded by using parametric space-filling curves. This
encoding procedure significantly reduces the communication
delay and the system complexity. In addition, analog JSCC
schemes present graceful degradation for imprecise knowledge
of the channel, and they can easily be adapted in time-varying
environments without a complete redesign of the system.
These appealing properties make analog JSCC a suitable
strategy for the wireless communication of correlated data.

In this work, we address the transmission of discrete-time
analog correlated symbols over fading channels using analog
JSCC techniques. The utilization of multiple antennas at the
transmit and receive side is considered to exploit the diversity
of wireless channels and to increase the transmission rate. The
main contributions of this work are summarized as follows:
• A parametric non-linear analog mapping is considered

to exploit the correlation of two consecutive source
symbols to produce one encoded symbol (bandwidth

compression). This mapping is proposed in [10] for the
transmission of correlated sources in Additive White
Gaussian Noise (AWGN) channels. The advantage of
parametric mappings with respect to non-parametric ones
is the significant reduction of the computational cost
in the coding and decoding operations. In addition, the
utilization of parametric mappings enables the affordable
optimization of the analog JSCC system by adapting the
encoder parameters to the channel time variations.

• The proposed analog JSCC scheme for Multiple Input
Multiple Output (MIMO) fading channels exhibits ex-
tremely low complexity and delay thanks to the system
design based on a two-stage structure similar to the one
proposed for uncorrelated sources in [11].

• The design of the transmit and receive linear filters incor-
porates the correlation information after the analog JSCC
encoding. The transformation of the source symbols is
assumed to be linear and, hence, the correlation between
the symbols at the encoder output can be analytically
calculated.

• The performance of the proposed analog JSCC system is
evaluated over fading MIMO channels. Other well-known
analog mappings are also considered to illustrate the
suitability of the proposed mapping for this scenario. Fi-
nally, the obtained results are compared to the theoretical
bounds given by the Optimum Performance Theoretically
Attainable (OPTA).

In summary, we show that parametric analog mappings
allow to efficiently exploit the correlation among the source
symbols. The resulting analog JSCC system is also able
to achieve high transmission rates due to the compression
operation at the encoder, and the use of multiple antennas
at the transmitter and the receiver. An additional advantage
of this approach is the simplicity for the system optimization
depending on the specific channel conditions.

II. SYSTEM MODEL

Let us assume a correlated analog source modeled as an
autoregressive random process of order one, AR(1),

sk = ρsk−1 + ek (1)

where ρ is a constant parameter, and ek is a zero-mean white
Gaussian random process with variance σ2

ε = 1 − ρ2. In
such model, the correlation between two arbitrary symbols
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Fig. 1. Block diagram of the proposed analog JSCC system.

is E[sisi+n] = ρn. Hence, two consecutive source symbols,
si = [s2i, s2i+1]T , follow a bivariate Gaussian distribution
with zero-mean and covariance matrix

Cs = E
[
sis

T
i

]
=

[
1 ρ
ρ 1

]
.

Figure 1 shows the block diagram of the proposed analog
JSCC system for the transmission of correlated source sym-
bols over MIMO fading channels. As shown in the figure,
the transmitter and the receiver are equipped with nT and
nR antennas, respectively. At the i-th transmit antenna, two
consecutive source symbols si are encoded into one symbol
xi using a 2:1 analog JSCC mapping, i.e. xi = Mi(si),
where Mi(·) : R2 → R is the mapping function at the i-
th antenna. The mapping Mi(si) is in general a non-linear
function because it is based on the use of space-filling curves.
As explained in Section IV, the analog JSCC mappings must
be designed to exploit the correlation between the source
symbols to be compressed.

After the encoding operation, the resulting vector of nT
symbols x = [x1, . . . , xnT

]T is precoded and sent over a
MIMO fading channel. The received signal is hence given by

y = HPx + n, (2)

where H is the MIMO channel response matrix, P is the pre-
coding matrix and n is the AWGN with n ∼ NC(0, σ2

nInR
).

The precoder P is designed to satisfy a total transmit power
constraint PT , hence the Signal-to-Noise Rate (SNR) is η =
PT /σ

2
n. For simplicity, along this paper the transmit power is

assumed to be PT = 1.
At the receiver, the vector of nR observed symbols is

employed to calculate an estimate of the source symbols.
MMSE decoding is optimum for analog JSCC given that it
minimizes the distortion between source and decoded sym-
bols. Nevertheless, the analog mapping involves non-linear
transformations at the encoder and, hence, the calculation of
the MMSE estimates requires the numerical computation of
complicated integrals.

A low-complexity alternative is the concatenation of a
linear MMSE filter and a Maximum Likelihood (ML) decoder,
as proposed in [11] for the analog JSCC transmission of
independent sources. In such case, a linear MMSE estimate
of the transmitted symbols is obtained as follows

x̂ = Wy = WHPx + Wn, (3)

where W is the linear MMSE receive filter

W = CxP
HHH(HPCxP

HHH + σ2
nInR

)−1, (4)

with Cx representing the covariance matrix of the encoded
symbols. The covariance of the estimation error is

Ce = Cx −CxP
HHH

(
HPCxP

HHH + σ2
nInR

)−1
HPCx.

(5)
If no Channel State Information (CSI) is available at the

transmitter, the optimum precoder is P′ = 1/
√
nT InT

and
the linear MMSE detector simplifies to

W′ = (HHH + nTσ
2
nC−1x )−1HH , (6)

An estimate of the source symbols ŝi is finally determined
from the filtered symbols x̂ by using the corresponding ML
decoder.

A. Covariance of the Encoded Symbols

When the sources are correlated, the encoded symbols after
the mapping operation are also correlated. This correlation
specifically depends on the covariance matrix of the source
symbols Cs, and the analog JSCC mapping employed at the
encoding operation. The optimum transmit and receive filters
can be hence designed to exploit the correlation between the
encoded symbols with the aim of minimizing the expected
distortion.

A first estimation for the covariance matrix of the encoded
symbols Cx = E[xxH ] is obtained by approximating the non-
linear analog mappings Mi(·) to linear transformations of the
form xi = k(s2i+s2i+1), where k is a factor to guarantee that
E[x2i ] = 1 ∀i. Using this linear approximation, the resulting
correlation between any two encoded symbols xi and xj is
[Cx]ij = E[xixj ] = 1/2(ρ2|i−j|−1ρ2|i−j|). As an example,
the correlation matrix Cx for the case of nT = 4 transmit
antennas is

Cx =
1

2


1 ρ+ ρ2 ρ3 + ρ4 ρ5 + ρ6

ρ+ ρ2 1 ρ+ ρ2 ρ3 + ρ4

ρ3 + ρ4 ρ+ ρ2 1 ρ+ ρ2

ρ5 + ρ6 ρ3 + ρ4 ρ+ ρ2 1

 .
From simulations we have observed that this approach

provides accurate estimates of the actual correlation. In fact,
the error observed between the linear approximations and the
empirical correlation of the encoded symbols is about 10−2

for different values of ρ in the range of considered SNRs. As
an alternative, the Unscented Transform (UT) [12] has been
employed to model the effect of the non-linear transforma-
tions of the analog mappings in the symbol correlation. The
correlation values for Cx and the error estimates obtained by
using the UT approach are closely similar to that of the linear
approximation.

III. LINEAR MMSE PRECODING

Let us now consider that the CSI is available at transmission
and reception. In this case, CSI knowledge can be exploited
to design a linear MMSE precoder to improve the system
performance.



The linear transmit and receive filters are designed to
minimize the MSE between the transmitted symbols x and
the estimates x̂. The error vector is given by

e = x− x̂ = x−WHPx + Wn, (7)

and, therefore, the transmit and receive filters P and W are
calculated by solving

arg min
P,W

E
[
tr
(
eeH

)]
s.t. tr

(
PCxP

H
)

= 1, (8)

where tr
(
·
)

represents the trace operator. This problem can be
solved by differentiating this MSE expression with respect to
PH and WH . The resulting expressions can be used to obtain
the filters P and W following an alternating approach.

Alternatively, a lower complexity solution can be found by
following an approach similar to [13], [14] but incorporat-
ing the transmitted symbols correlation information into the
derivation of the optimum filter expressions [15]. Let us con-
sider the Single Value Decomposition (SVD) of the channel
as H = UhΣhV

H
h and the SVD of the covariance matrix

Cx = UxΣxV
H
x . Assuming the optimum linear MMSE filters

are of the form P = VhTUH
x and W = UsDUH

h , where
the matrices T and D are diagonal, the optimization problem
(8) can be reformulated as follows

arg min
D,T

tr
(
Σx + DΣhTΣxT

HΣH
h DH

+ σ2
nDDH − 2<{DΣhTΣx}

)
(9)

s.t. tr
(
TΣxT

H
)

= 1.

Since the problem is expressed as the product of diagonal
matrices, the Lagrangian cost function can be written as

L =

L∑
i=1

λx,i(ditiλh,i − 1)2 + σ2
nd

2
i + ∆(

L∑
i=1

t2iλx,i − 1),

(10)

where di and ti are the diagonal elements of D and T,
respectively; ∆ ≥ 0 is a Lagrange multiplier; and λx,i and
λh,i are the eigenvalues of the source covariance matrix and
the channel, respectively. Thus, Σx = {λx,1, λx,2, . . . , λx,nT

}
and Σh = {λh,1, λh,2, . . . , λh,L}, with L the number of non-
zero channel eigenvalues. The solutions for di and ti are given
by

d2i =
1

λ2h,i

[
λh,i

√
λx,i∆

σ2
n

−∆

]+
(11)

t2i =
1

λ2h,i

[
λh,i

√
σ2
n

λx,i∆
− σ2

n

λx,i

]+
, (12)

The operator [·]+ takes the positive arguments and sets nega-
tive arguments to zero.

Substituting (12) into the power constraint, the following
value is obtained for the Lagrange multiplier

∆ =
1

σ2
n

 ∑L∗

k=1

√
λx,k

λh,k

η +
∑L∗

k=1
1

λ2
h,1


2

. (13)

Finally, substituting this value for ∆ into (11) and (12), we
find the following solution for the diagonal matrices T and D

di =

√
1

σ2
n

Ai

[√
λxi −Ai

]+
(14)

ti =

√
σ2
n

λ2h,i

[
1

Aiλx,i
− 1

λxi

]+
(15)

where

Ai =

1
λh,i

∑L∗

k=1
λx,k

λh,k

η +
∑L∗

k=1
1

λ2
h,k

. (16)

The number L∗ ≤ L refers to the number of singular values
whose corresponding expressions for di or ti are non-zero.
The solution previously described resembles that obtained
for the case of uncorrelated inputs in [14], but including
the eigenvalues of the source covariance matrix. Equivalently
to [14], it can also be observed that the obtained solution
resembles the traditional waterfilling algorithm in the sense
that it provides the optimal distribution of the transmit power
among the data streams that minimizes the MSE.

IV. ANALOG JSCC MAPPING

Let us focus on the 2:1 compression of the source infor-
mation. For this scenario, we propose parametric non-linear
analog mappings based on a sinusoidal function. This type of
analog JSCC mappings is chosen after examining the optimal
non-parametric mappings obtained by following an approach
similar to [16] for the case of correlated sources. The use of
sinusoidal mappings is also supported by the results obtained
in [17], where the design of Power Constrained Channel Op-
timized Vector Quantizers is addressed for the same scenario.
Notice that this type of encoders can be interpreted as a
discrete version of the optimal analog mappings.

The analog JSCC mapping directly transforms two corre-
lated source symbols si = [s2i, s(2i+1)]

T into one encoded
symbol xi. Let Cs = UHΣU be the eigendecomposition of
the source covariance matrix. The proposed mapping is based
on the space-filling curves defined by the following parametric
expression:

Ki(t) = UΣ

[
t− 1

2αi
sin(αit)

∆i sin(αit)

]
, (17)

where Ki(t) represents a point into the bidimensional source
space given a parameter t in the one-dimensional channel
space. The parameters αi and ∆i represent the frequency and
the amplitude of the sinusoidal function, respectively, for the
i-th transmit antenna. The optimal values for these parameters
depend on the source correlation and the SNR value. An
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Fig. 2. Proposed 2:1 analog JSCC mapping for SNR = 25 dB for ρ = 0.9.

adequate optimization of αi and ∆i is important to closely
approach the optimal cost-distortion tradeoff.

Besides the parametric curve given by (17), it is necessary
to define a function Mi(si) that specifies the mapping of the
points in the source space into the corresponding point in the
parametric curve. In this case, the mapping function is

xi = Mi(si) = arg min
t

∫ ∞
−∞
‖si −Ki(u)‖2pn(u− t)du,

(18)

where pn(n) represents the probability density function of the
noise. If the noise distribution is disregarded, i.e. pn(n) =
δ(n), the mapping function reduces to the minimum Euclidean
distance.

Figure 2 shows the specific analog JSCC mapping for
ρ = 0.9 and SNR = 25 dB. As observed, the red curve
corresponds to the sinusoidal function given by (17) with
the optimal parameters αi and ∆i for that SNR and source
correlation. The point cloud around the curve represent the
bivariate source symbols si. The figure also shows how the
correlated Gaussian symbols are mapped to the corresponding
point on the curve according to (18). Finally, the different
colour-schemes represents the variation of the encoded values
given by the curve parameter t.

At the receiver, an estimate of the source symbols trans-
mitted over the i-th antenna is computed using a two-stage
decoder [11]. First, a linear MMSE estimate of the transmitted
symbols is obtained with (4) or (6), and then the Maximum
Likelihood (ML) decoder is applied to the resulting estimates,
thus

ŝi = Ki(x̂i) = Ki([Wy]i).

As already mentioned, the value of the parameters αi and
∆i can be optimized depending on the SNR and ρ values
to improve the system performance. In the case of fading
channels, the effective SNRs should be estimated at the

receiver and fed back to the transmitter. Thereby, the encoder
may adapt the mapping parameters to the channel fluctuations.
The effective SNRs are estimated by using the covariance
matrix of the error. Hence, the estimation of the SNRs per
antenna can be obtained from (5) as

η̂ = diag
(
C−1e

)
, (19)

where the operator diag(·) provides a vector with the diagonal
elements of the input matrix.

V. OPTA CALCULATION

The performance of analog communications is measured in
terms of the Signal-to-Distortion Rate (SDR) with respect to
the SNR. The SDR is defined as

SDR[dB] = 10 log10(σ2
s/ξ),

where the term ξ = 1
M

∑M
i=1 E

[
‖ŝi − si‖2

]
represents the

MSE between the source and the estimated symbols, and σ2
s

is the source variance.
It is interesting to compare the performance of an analog

communication system to the corresponding optimal cost-
distortion tradeoff, referred to as the Optimum Performance
Theoretically Attainable (OPTA). In general, this bound is
calculated by equating the rate distortion of the source and
the channel capacity [18].

For multivariate Gaussian sources and the MSE as the dis-
tortion criterion, the rate distortion function can be represented
parametrically as [19]

D(θ) =
1

M

M∑
i=1

min[θ, λs,i],

R(θ) =
1

M

M∑
i=1

max

[
0,

1

2
log

(
λs,i
θ

)]
, (20)

where D(θ) is the distortion function, λi represent the eigen-
values of the covariance matrix and M is the source di-
mension. Notice that the analog JSCC system transmits 2nT
source symbols per channel use, hence M is actually 2nT . In
this case, the covariance matrix for 2nT consecutive symbols
generated by an AR(1) process is

C̃s =


1 ρ ρ2 . . . ρ2nT−1

ρ 1 ρ . . . ρ2nT−2

...
...

...
. . .

...
ρ2nT−1 ρ2nT−2 . . . ρ 1

 .
On the other hand, the capacity of an nT × nR MIMO

system is [20]

C(H) = log det

(
InR

+
1

σ2
n

HPCxPHHH

)
. (21)

Notice that the capacity given by (21) is maximized when the
precoder is designed according to the waterfilling solution.
When the channel is unknown at the transmitter, the optimal
power allocation consists in distributing the available power
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Fig. 3. Performance of different analog JSCC mappings for 2 × 2 MIMO
channels with CSI available at the receiver and ρ = 0.9.

uniformly among the transmit antennas and, hence, equation
(21) is also applicable with P = 1/

√
nT InT

.
Equating (20) and (21), solving for the distortion function

D(θ) and, finally, calculating the mathematical expectation of
the resulting expression, we determine the expected minimum
achievable distortion or, equivalently, the optimal performance
depending on the considered SNR.

VI. SIMULATION RESULTS

In this section, the results of several computer simulations
are presented to illustrate the performance of the proposed
analog JSCC system for the transmission of correlated in-
formation over MIMO channels. In particular, we focus on
nT×nR spatially white Rayleigh fading channels H, such that
E
[
tr
(
HHH

)]
= nRnT . At the transmitter, each pair of source

symbols is encoded by using the parametric analog mapping
described in Section IV. The optimal values of the encoder
parameters αi and ∆i are determined for each transmit antenna
i from the covariance matrix of the source and the estimate of
the per-antenna effective SNRs. At the receiver, an estimate of
the source symbols is obtained by using the two-stage receiver
based on the concatenation of the linear MMSE filter and the
ML decoder. Finally, the average distortion between the source
and decoded symbols is computed.

We start considering a 2×2 MIMO system with a correlation
factor ρ = 0.9 for the source symbols. The MIMO channel
is assumed to be known at the receiver, but it is not available
at the transmitter. In this scenario, the performance obtained
for the proposed analog mapping based on sinusoidal curves
is compared to the performance of other three analog JSCC
mappings that can also be applied to this communication
model:

• Linear encoding: the source symbols are linearly trans-
formed as xi = κ(s2i + s2i+1), where κ is the normal-
ization factor. For normalized bivariate Gaussian sources,
κ = 1/

√
2(1 + ρ).

• Spiral-like mappings based on a doubly intertwined
Archimedean spiral [1], [21]. This analog mapping is
traditionally employed for the 2:1 compression of inde-
pendent sources. In the case of correlated sources, the
source samples are first decorrelated and then encoded
with this mapping.

• Alternating Scalar Quantizer Linear Coder (SQLC) that
was proposed in [22] for the transmission of correlated
sources in Gaussian Broadcast Channels (BC). This map-
ping extends the SQLC [6], exploiting the fact that the
source symbols are jointly mapped at the transmitter. In
this scenario, it is required to define a projection matrix
H, which has been assumed to be H = UΣ.

Figure 3 shows the SDR curves for the proposed mapping
and for the three alternative analog mappings. The optimal
distortion-cost tradeoff given by the corresponding OPTA is
also included in the figure. As observed, the best performance
corresponds to the proposed sinusoidal mapping for all range
of SNRs. The performance gain of the proposed mapping
ranges from 0.5 dB to 1.5 dB with respect to the linear
encoding, and from 1.2 dB to 2.2 dB in the case of the
alternating SQLC. As expected, the worst performance is
obtained with the Archimedean spiral, because it does not
exploit the correlation between the source symbols.

In addition, the sinusoidal mapping closely approaches the
OPTA bound for low SNRs, although the gap between both
curves grows as the SNR is larger (almost 3 dB for SNR
= 30 dB). A possible cause of this performance loss is the
sub-optimality of the two-stage receiver, since it exploits
the correlation of the 2nT transmitted source symbols only
partially. Notice that the impact of the individual ML decoding
of each pair of source symbols is larger as the noise level
is lower and the number of transmit antennas increases.
This problem can be solved by using the optimal MMSE
estimator to jointly decode the 2nT source symbols . However,
this strategy requires a discretization of the 2nT -dimensional
source space to numerically compute the associated integrals.
Hence the practical implementation of an MMSE decoder that
provides accurate estimations is unaffordable even for small
values of nT .

Figure 4 shows the performance of the proposed analog
JSCC system (sinusoidal mapping) for a 2×2 MIMO system,
source correlation ρ = 0.9, and three different filtering
strategies: 1) a linear MMSE receive filter without exploiting
the correlation of the encoded symbols, that is, assuming
ρ = 0, 2) the receive filter exploits such a correlation, and 3)
a linear MMSE precoder at transmission. The OPTA curves
corresponding to the cases of CSI only available at reception
and full CSI are also plotted in the figure. As expected, the
worst performance corresponds to the case of linear MMSE
receive filtering for uncorrelated sources. The exploitation of
the correlation into the design of the receive filters improves
the system performance, specially for low and medium SNRs.
In the high SNR region, the correlation factor present in
(6) is less significant because it is weighted by the noise
variance. The linear MMSE precoder described in Section III
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significantly outperforms the two previous strategies thanks
to exploiting the source correlation together with the channel
information at the transmitter. In addition, the gap between the
performance of the analog JSCC system with precoding and
the OPTA corresponding to the case of full CSI is smaller than
that of only CSI at reception (2 dB and 3 dB, respectively).

Figure 5 shows the same performance curves for 4 × 4
MIMO channels and identical source correlation ρ = 0.9. As
observed, conclusions similar to those of the 2 × 2 case can
be drawn. As previously pointed out, increasing the number of
transmit antennas penalizes the performance of analog JSCC
with linear receive filter for high SNRs because the correlation
of the 2nT symbols is not completely exploited by the two-
stage receiver. As expected, this degradation is more noticeable
when using the linear MMSE filter for uncorrelated sources. In
both cases, the gap with the precoding approach increases to 3
dB and 4 dB, respectively. Moreover, the difference between
the system performance with precoding and the OPTA remains
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Fig. 6. Performance of the analog JSCC scheme for ρ = 0.8 and ρ = 0.95
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about 2 dB for high SNRs, like in 2×2 MIMO channels. Thus,
the utilization of a linear MMSE precoder mitigates the impact
of using the sub-optimal two-stage decoding strategy.

The influence of the source correlation on the performance
of the analog JSCC system is illustrated in Figure 6. In
particular, we consider two different values for the source
correlation: ρ = 0.8 and ρ = 0.95. The performance gain
with linear precoding is greater for ρ = 0.95, specially for
medium and high SNRs. In particular, at 30 dB the gain is
4 dB for ρ = 0.95 and about 2.2 dB for ρ = 0.85. Similarly, the
gap between the performance of the analog system with linear
precoding and the OPTA bound is reduced as the correlation
factor increases.

According to these results, it is reasonable to conclude
that the combination of sinusoidal mappings and the proposed
linear MMSE precoder is able to efficiently exploit the source
correlation to improve the system performance, even for a
large number of transmit antennas. This idea is specially
interesting for the practical implementation of analog JSCC
systems that achieve high transmission rates with affordable
complexity and low delay when transmitting correlated sources
over MIMO channels.

VII. CONCLUSIONS

In this work, we have addressed the transmission of cor-
related Gaussian sources over MIMO fading channels using
analog JSCC. We considered the 2:1 compression of correlated
sources, using an analog mapping based on sinusoidal func-
tions. The utilization of multiple antennas at both transmission
and reception allows to increase the system throughput. The
structured design of the proposed system preserves the main
advantages of analog JSCC communications, namely, low
complexity, negligible latency and robustness against time
variations of fading channels. According to this idea, we have
designed those linear transmit and receive filters that minimize
the signal distortion considering the specific correlation at
the encoded symbol vectors to be transmitted. The results



obtained in the simulations confirm the utility of analog JSCC
techniques to achieve a satisfactory performance with low
complexity and delay in the considered scenario.
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