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Abstract—We consider spatial and spatio-temporal sigma-
delta modulation structures for wideband signal acquisition with
dense sensor arrays. Using closely arranged sensors, the array
oversamples the signal in space and applies coarse quantiza-
tion to each sensor output. A sigma-delta structure propagates
quantization noise between sensors to shape the noise in space,
just as a time-domain sigma-delta converter shapes noise in
frequency. The spatially shaped noise is then filtered by a delay-
and-sum beamformer. In this work, we also introduce higher-
order sigma-delta structures and hybrid space-time architectures
that can achieve greater noise shaping in both space and time.
The coarsely quantized sigma-delta structure can be used to build
high-resolution arrays with lower power and complexity.

I. INTRODUCTION

Sensor arrays, which can be used for directional signal
processing, are essential in many communication, acoustic,
and imaging applications [1]. Recent research, particularly in
the area of wireless communication, has explored the benefits
of “massive” arrays [2]; that is, arrays with large numbers
of elements. These arrays offer improved spatial resolution,
among other benefits, but require more mixed-signal hardware
resources and computational power to process the large number
of input signals. In this work, we propose an efficient array
design with a large number of sensors that each produce a low-
resolution (e.g., 1 bit per sample) data stream. These streams
can be combined in a delay-and-sum beamformer to form a
high-resolution output signal.

There has been some recent work on coarsely quantized
arrays for communication applications. Low-resolution analog-
to-digital converters (ADCs) are advantageous for large arrays
because they have lower power and complexity requirements
than higher-resolution converters. In [3], a the authors con-
sidered a wideband multiple-input multiple-output array with
single-bit ADCs. The coarse quantization caused minimal
degradation in channel capacity in the low signal-to-noise ratio
regime. There have been a number of studies [4], [5], [6],
[7] on channel estimation based on single-bit measurements;
the spatial redundancy of large arrays and sparsity of the
channels helps to compensate for the reduced resolution of
the converters. The single-bit measurements can also be used
directly for some spatial signal processing applications, such as
direction-of-arrival estimation [8]. Low-resolution converters
can be especially advantageous in compact arrays with closely
spaced elements [9], which are the subject of this work.
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Single-bit signals have long been common in oversampled
ADCs, such as the celebrated sigma-delta converter [10]. A
sigma-delta modulator uses a low-resolution quantizer with
a feedback loop to shape the quantization noise spectrum
such that quantization effects are shifted to higher frequencies
outside the signal band. These errors are removed by a
discrete-time filter during decimation. Since a delay-and-sum
beamformer is essentially a discrete filter sampled in space
rather than time, it should be possible to apply the same error-
shaping technique to sensor arrays. In a conventional linear
beamforming array, the spacing between sensors is chosen
to be close to half of the shortest wavelength in the signal
of interest – the spatial equivalent of the Nyquist rate. In
a spatially oversampled array, the spacing is much smaller
than a half wavelength. Noise shaping is accomplished by
propagating quantization errors from one sensor to the next.
These errors accumulate at high spatial frequencies and are
filtered by the delay-and-sum operation.

There have been a few previous studies on spatial sigma-
delta noise shaping. In [11], the authors proposed a joint
space-time sigma-delta vector quantization scheme for transmit
arrays. However, the design resembles a conventional time-
domain modulator as quantization errors are fed back in time,
not in space. The nearest precedents to the present work are
[12], [13] and related papers, in which the complex weights
(phase shifts) of a phased array are coarsely quantized and the
quantization errors of the weights are shaped by spatial feed-
back. There are two major differences between [13] and this
work: first, we consider sigma-delta modulation of the received
signal itself rather than of the phase shifts of a phased array;
second, we consider wideband delay-and-sum beamforming
rather than narrowband phased-array beamforming.

Our focus here will be on low-frequency applications,
such as microphone arrays, in which the delay-and-sum beam-
forming operations are performed directly on the information
signal, avoiding the problems associated with operation on a
signal modulated by a high-frequency carrier. In these systems,
beamforming and other spatial processing operations, such as
direction-of-arrival estimation and source separation, can be
performed in the digital domain using the sampled data [14].
The proposed architecture applies sigma-delta modulation to
the received signal, propagating quantization errors between
adjacent sensors and producing a set of coarsely quantized out-
put signals. After analyzing the noise-shaping characteristics
of the first-order spatial sigma-delta structure, we will consider
higher-order modulators and hybrid time-space noise shaping,
which can further improve resolution for wideband systems.
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Figure 1. A first-order sigma-delta modulator in the time domain. The “Q”
block is a low-resolution quantizer.

II. ARRAY MODEL

Sensor array processing is analogous in many ways to
discrete-time signal processing: in an array, signals are sampled
at regular intervals in space (or with a particularly convenient
spatial pattern) and filtered to isolate signals from a particular
direction. This analogy is valuable in understanding spatial
sigma-delta modulation. Consider a linear array of N elements
spaced distance d apart. For simplicity, we assume plane
wave propagation in a dispersionless linear medium. Let xn(t)
denote the continuous-time signal received at sensor n for
n = 0, . . . , N − 1, and let Xn(Ω) be its continuous-time
Fourier transform (CTFT). Let r = d

c cos θ be the relative time
delay between sensors for signals arriving at angle θ relative
to the array axis. Thus, r = d

c at endfire and 0 at broadside.
The output x̃r(t) of such a delay-and-sum beamformer steered
to an angle corresponding to delay r is given by

x̃r (t) =
1

N

N−1∑
n=0

xn (t− nr) . (1)

In the CTFT domain, the beamformer output is

X̃r (Ω) =
1

N

N−1∑
n=0

Xn (Ω) e−jΩnr, (2)

which is analogous to a discrete-time Fourier transform of
the narrowband signals {Xn(Ω)}N−1

n=0 with rΩ as the spatial
frequency.

III. SIGMA-DELTA ARCHITECTURE

A. Sigma-delta modulation

Figure 1 shows a first-order sigma-delta modulation struc-
ture. A discrete-time, continuous-valued input sequence x [k] is
quantized to produce a discrete-valued output sequence y [k].
The quantization operation is modeled as a linear additive
noise process so that Q(u[k]) = u[k] + q[k], where q[k] is
the continuous-valued quantization noise signal. To shape the
quantization noise at the output, each q[k] is fed back and
subtracted from the next input. The output of the time-domain
modulator can thus be written

y [k] = Q (x[k]− q[k − 1]) (3)
= x[k] + q[k]− q[k − 1]. (4)

Under this linear model, the modulator applies unity gain to the
signal but a highpass filter, H(z) = 1−z−1, to the quantization
noise. This highpass filter is called the noise transfer func-
tion (NTF). In a sigma-delta ADC, the oversampled coarsely
quantized sequence y [k] would then be lowpass filtered and
decimated to produce a more finely quantized Nyquist-rate
signal.
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Figure 2. A first-order spatial sigma-delta array with N elements.

B. First-order spatial sigma-delta structure

Figure 2 shows a first-order spatial sigma-delta array. It is
similar to the time-domain structure of Figure 1 except that
time delays are replaced by spatial propagation to the next
element. Furthermore, due to the finite extent of the array, the
input is defined only for 0 ≤ n ≤ N − 1. This system is
modeled by the input-output relation

yn (t) = xn (t) + qn (t)− qn−1 (t) , (5)

where qn(t) is the noise introduced by the nth quantizer for
0 ≤ n ≤ N − 1 and qn(t) = 0 for n < 0. The output of a
delay-and-sum beamformer steered to r is then

ỹr(t) =
1

N

N−1∑
n=0

yn(t− nr) (6)

=
1

N

N−1∑
n=0

[xn(t− nr) + qn(t− nr)− qn−1(t− nr)]

(7)

= x̃r (t) + q̃r (t)− 1

N

N−2∑
n=0

qn(t− (n+ 1)r) (8)

= x̃r(t) + q̃r(t)− q̃r(t− r) +
1

N
qN−1(t−Nr). (9)

The noise shaping effect can be seen when the output is written
in the frequency domain:

Ỹr(Ω) = X̃r(Ω) + (1− e−jΩr)Q̃r(Ω)

+
1

N
QN−1(Ω)e−jΩNr. (10)

Note that due to the finite length of the array, the quanti-
zation noise introduced by the last sensor is not shaped. For
each other noise signal, the NTF is Hr(Ω) = 1−e−jΩr, which
has gain

|Hr(Ω)|2 =
∣∣1− e−jΩr∣∣2 (11)

= 4 sin2

(
Ωr

2

)
(12)

= 4 sin2

(
d

2c
Ω cos θ

)
. (13)
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Figure 3. The spatial noise transfer function (12) of a first-order spatial
sigma-delta modulator for an array with d/c = 1. The noise is most strongly
attenuated near broadside.

For a fixed temporal frequency Ω, Hr (Ω) shapes the noise
to larger values of r, as shown in Figure 3. Thus, this array
configuration is most useful for steering directions close to
broadside (r = 0). The spatial noise shaping effect is strongest
for frequencies much smaller than c/d. Indeed, for fixed
nonzero r, (12) shifts quantization noise to higher temporal
frequencies, much like a time-domain sigma-delta modulator.

C. Higher-order modulation

The first-order sigma-delta structure of Figure 1 is rarely
used in high-resolution applications, such as audio recording.
Its noise-shaping power can be improved using additional
sigma-delta stages. For example, a second-order sigma-delta
modulator has the input-output model

y[k] = x[k] + q[k]− 2q[k − 1] + q[k − 2], (14)

which corresponds to H(z) = (1− z−1)2. This transfer func-
tion provides stronger high-frequency noise shaping, further re-
ducing the output error in the signal band. The same approach
can be used to improve the spatial sigma-delta structure. The
second-order spatial sigma-delta modulator, shown in Figure 4,
is analogous to the time-domain modulator except that the last
sensor uses a first-order structure. The system has the input-
output model

yn(t) =

{
xn(t)+qn(t)−2qn−1(t)+qn−2(t), 0≤n≤N−2

xn(t)+qn(t)−qn−1(t)+qn−2(t), n=N−1.
(15)

Using this model, the beamformer output is given by

Ỹr(Ω) = X̃r(Ω) + (1− e−jΩr)2 1

N

N−3∑
n=0

Qn(Ω)e−jΩnr

+
1

N
(1− e−jΩr)QN−2(Ω)e−jΩ(N−2)r

+
1

N
QN−1(Ω)e−jΩ(N−1)r (16)

= X̃r(Ω) + (1− e−jΩr)2Q̃r(Ω)

+
1

N
(1− e−jΩr)QN−2(Ω)e−jΩ(N−1)r

+
1

N
(2− e−jΩr)QN−1(Ω)e−jΩNr. (17)
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Figure 4. A second-order spatial sigma-delta modulator. The final stage is
first-order.

The noise transfer function for the second-order modulator
is (1 − e−jΩr)2, which has gain 16 sin4 (Ωr/2). Because the
final sensor uses a first-order modulator, the penultimate noise
signal, qN−2(t), has first-order shaping, and the noise from
the final quantizer, qN−1(t), is not shaped. Thus, the first- and
second-order modulators have identical noise suppression at
broadside, but the second-order modulator provides stronger
spatial shaping. Third- and higher-order noise shaping designs
are also possible using modified feedback architectures to
prevent instability [10].

IV. SPATIO-TEMPORAL ARCHITECTURES

A. Modulation in sampled systems

The analysis in the previous section assumes that the
signals are acquired and processed in continuous time and that
the integrators and quantizers work instantaneously. A more
realistic model must account for hold times at the quantizers
and between stages. For simplicity, assume that all components
are controlled by a single clock with period τ . Figure 5 shows
a first-order spatial sigma-delta modulator with latches in front
of each quantizer.

Using the additive linear quantization noise model as
before, the system in Figure 5 is modeled by

yn (t) = xn (t− τ) + qn (t)− qn−1 (t− τ) . (18)

The beamformer output is then

Ỹr(Ω) = X̃r(Ω)e−jΩτ + (1− e−jΩ(τ+r))Q̃r(Ω)

+
1

N
QN−1(Ω)e−jΩ(τ+Nr). (19)

Notice that the target signal now has a delay of one sample
and the spatial NTF has been shifted by τ . Thus, the minimum
no longer occurs at broadside.

The second-order sampled modulator is similar to the
system in Figure 4, with latches in front of the quantizer inputs
and also on the propagation path of the first integration stage.
The resulting NTF is (1−e−jΩ(r+τ))2 for all but the final two
quantization noise signals.
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Figure 5. A first-order spatial sigma-delta modulator in a sample-and-hold
system. The z−1 blocks represent time delays of τ .

B. Symmetric spatial sigma-delta structure

The spatial sigma-delta structure is in some ways more
flexible than a time-domain sigma-delta modulator. For exam-
ple, the noise-shaping filter need not be causal. Consider the
second-order system shown in Figure 6. Quantization noise is
propagated both forward and backward in space. The first and
last stages have first-order shaping and all other stages have
second-order shaping. The propagation delays are necessary in
this structure to prevent instantaneous feedback loops.

The quantizer outputs are modeled as

yn(t) =


xn(t−τ)+qn(t)−qn+1(t−τ), n=0

xn(t−τ)+qn(t)−qn−1(t−τ)

−qn+1(t−τ)+qn(t−2τ), 1≤n≤N−1

xn(t−τ)+qn(t)−qn−1(t−τ), n=N−1.
(20)

The beamformer output is modeled as

Ỹr(Ω) =X̃r(Ω)e−jΩτ+(1−e−jΩ(τ+r))(1−e−jΩ(τ−r))Q̃r(Ω)

+
1

N
(1− e−jΩ(τ+r))Q0(Ω)e−jΩ(τ−r)

+
1

N
(1− e−jΩ(τ−r))QN−1(Ω)e−jΩ(τ+Nr). (21)

The NTF gain for the central stages of the second-order
symmetric modulator is 16 sin2(Ω

2 (τ + r)) sin2(Ω
2 (τ − r)).

Figure 7 compares the noise shaping performance of the
second-order feed-forward structure with and without prop-
agation delays and the symmetric second-order structure. The
symmetric response may be preferable in some applications. It
is particularly advantageous in small-N arrays because there
are no unshaped noise signals in the beamformer output.

Spatial noise shaping can be applied to other array config-
urations as well. For example, the bidirectional error propaga-
tion in Figure 6 could be used in a circular sensor array. In such
an array, the time delays between elements are nonuniform,
leading to more complicated noise-shaping behavior.

C. Cascaded space-time architectures

The spatial sigma-delta structures presented in this paper
shape the quantization noise signals by first propagating the

x0(t) z−1

z−1

Q y0(t)

x1(t) z−1

z−1

Q y1(t)

...
...

xN−2(t) z−1 Q yN−2(t)

xN−1(t) z−1 Q yN−1(t)

−
−

−

−

−

−

Figure 6. A second-order symmetric spatial sigma-delta modulator. The first
and last stages are first-order.
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Figure 7. Example output error curves for second-order feed-forward
and symmetric modulators with sample-and-hold delays. The curves were
generated using N = 200, d

c
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5
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4
and |Qn(Ω)|2 = 0 dB.

noise through space, then passing the resulting outputs through
a delay-and-sum beamformer. If the quantization noise signals
were truly noiselike, with flat frequency spectra, then the
error in the beamformer output would be concentrated at high
frequencies. However, because the inputs to the sensors in an
array are typically strongly correlated, the quantization noise
signals may also be correlated. As a result, the output error
spectrum may have strong low-frequency components. Figure
8 shows the average unshaped quantization noise spectrum,
Qn(Ω), for several modulator structures based on the simula-
tion data from Section V. With no modulation, the quantization
noise is concentrated near the signal band. The unshaped
noise in the spatial modulator is similarly concentrated at
low frequencies. The noise signal in the temporal modulator,
however, has a flatter spectrum even before shaping.
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Figure 8. Average unshaped quantization error power spectrum, |Qn(Ω)|2,
for several modulator structures using a single-bit quantizer. The noise power
is measured relative to the error-free output power.

To reduce the temporal correlations in the quantization
error signal, we can incorporate traditional time-domain sigma-
delta modulation. Any of the spatial modulators presented
in this paper can be modified using a cascade structure,
sometimes referred to as a multi-stage noise shaping (MASH)
modulator. The cascade architecture, in which the quantization
noise of the first stage is modulated by a second stage and then
subtracted, is often used in higher-order time-domain convert-
ers to prevent instability. Figure 9 shows a first-order spatial
modulator cascaded with a first-order temporal modulator. For
simplicity, it is assumed that both stages operate with sample
period τ , though a practical system may use different rates.

Let un(t) be the output of the spatial stage and let q∗n(t)
be the quantization noise of that stage. The negative of this
noise is used as the input to the temporal stage. Let vn(t) and
qn(t) be the output and quantization noise, respectively, of the
second stage. The two stages of Figure 9 are governed by the
equations

un(t) = xn(t− τ) + q∗n(t)− q∗n−1(t− τ) (22)
vn(t) = −q∗n(t− τ) + qn(t)− qn(t− τ). (23)

Thus, un(t) is a delayed approximation of xn(t) and vn(t) is
a delayed approximation of −q∗n(t). Finally, the vn(t) signals
are combined so as to cancel the q∗n(t) terms in the output:

yn(t) = un(t− τ) + vn(t)− vn−1(t− τ) (24)
= xn(t− 2τ) + qn(t)− qn(t− τ)

−qn−1(t− τ) + qn−1(t− 2τ). (25)

The delay-and-sum beamformer output is then

Ỹr(Ω) =X̃r(Ω)e−jΩ2τ + (1− e−jΩτ )(1− e−jΩ(τ+r))Q̃r(Ω)

+
1

N
(1− e−jΩτ )QN−1(Ω)e−jΩ(τ+Nr). (26)

The noise shaping effect of the cascade structure is stronger
than that of the spatial modulator alone. Furthermore, as Figure
8 shows, the cascade has a nearly flat unshaped quantization
noise spectrum and so does not exhibit the strong low-
frequency error components present in the spatial modulator
output.
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u0(t)

z−1 Q v0(t)

z−1

z−1

y0(t)

...
...

xN−1(t) z−1 Q
uN−1(t)

z−1 Q vN−1(t)

z−1 yN−1(t)

− −

− −

−

Figure 9. Cascaded spatio-temporal architecture. The quantization noise
signal from each spatial modulator stage is shaped by a time-domain sigma-
delta modulator.

If the spatial stage were a second-order feed-forward mod-
ulator, then the output stage would be modified so that

yn(t) = un(t−τ)+vn(t)−2vn−1(t−τ)+vn−2(t−2τ), (27)

and the resulting transfer function would be (1− e−jΩτ )(1−
e−jΩ(τ+r))2 for all but the final two stages. Similarly, the
output stage for the symmetric modulator would be

yn (t) = un(t− τ) + vn(t)− vn−1(t− τ) (28)
−vn+1(t− τ) + vn(t− 2τ), (29)

and the noise transfer function would be (1 − e−jΩτ )(1 −
e−jΩ(τ+r))(1− e−jΩ(τ−r)) for all but the first and last stages.

V. SIMULATIONS

The noise shaping responses derived in the previous sec-
tions are based on a linear model of the quantization noise
feedback loop. Like any nonlinear modulation scheme, the
spatial and spatio-temporal sigma-delta architectures are best
evaluated using real or simulated signals. In this section, we
simulate a spatial sigma-delta microphone array using recorded
speech data. The array consists of N = 50 linear isotropic
elements spaced d = 1 cm apart. The propagation speed is
assumed to be 330 m/s, giving an interelement time delay
of d

c = 30.3 µs. The sample rate is fs = 240 kHz, giving
τ = 4.17 µs. The target signal is a one second recording
of the author speaking the phrase “sigma-delta”. This signal
originates from θ = 90◦, at the array broadside. Four speech
babble signals are placed at 30◦, 60◦, 120◦, and 150◦. Each
microphone is subject to independent additive white Gaussian
noise with power 10 dB below the signal level. If the frequency
range of interest is 0 to 3 kHz, then the spatial oversampling
ratio is 5.5. The quantizer is a single bit.

Figures 10, 11, and 12 show the error power at the
beamformer output for several architectures. The error power,
|Ỹr − X̃r|2, is presented in dB relative to the error-free output
power. The dotted curves show the expected output error
power based on the noise transfer functions derived above,
assuming that the quantization noise samples are independent
and uniformly distributed on [−1, 1]. The solid black curve
shows the error spectrum with no modulation.
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Figure 10 shows the error power as a function of steer-
ing direction for the first- and second-order feed-forward
modulators, the second-order symmetric modulator, and the
second-order symmetric cascade. All the modulators shape
the quantization noise away from broadside, with a stronger
shaping effect for higher-order modulators. Notice that the
first- and second-order curves are minimized at r = −τ , while
the symmetric structures have minima at ±τ . The second-order
symmetric modulator outperforms the second-order forward
modulator near broadside because the symmetric modulator
shapes all N noise signals, while the feed-forward modulator
does not shape the noise introduced by the final quantizer.

Figure 11 shows the output error power spectrum when the
array is steered to broadside for the first- and second-order for-
ward modulators with and without a cascaded temporal stage.
For the two cascaded architectures, the simulated performance
closely matches the predictions based on the linear model.
The spatial-only architectures exhibit unexpectedly large error
in the passband. This discrepancy is due to the strong low-
frequency components of the unshaped quantization noise
spectrum. The temporal stage of the cascade flattens this noise
spectrum before shaping.

Figure 12 shows the error spectrum when the array is
steered to 60◦ for the same architectures as Figure 10. At
this angle, the error is shaped into relatively lower frequencies
than at broadside. The second-order feed-forward modulator,
for example, places significant error around 10 kHz, which is
audible to human listeners. The array performance could be
improved by increasing the spatial oversampling ratio; that
is, by decreasing the microphone spacing. Notice that the
symmetric modulator attenuates the noise more strongly than
the feed-forward modulator near zero frequency, even away
from broadside.

VI. CONCLUSIONS

The theory and simulation results presented above suggest
that spatial sigma-delta modulation can significantly reduce
error in the output of a delay-and-sum beamformer with coarse

−80 −60 −40 −20 0 20 40 60 80

−40

−20

0

20

Frequency [kHz]

O
u
tp
u
t
E
rr
o
r
[d
B
]

None

1st order

2nd fwd.

1st casc.

2nd fwd. casc.

Figure 11. Output error power spectrum, relative to the error-free output
power, of the simulated array steered to broadside. The dotted curves show
the predicted error.
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Figure 12. Output error power spectrum, relative to the error-free output
power, of the simulated array steered to θ = 60◦. The dotted curves show the
predicted error.

quantization. The spatial modulators work by shifting the
errors introduced by the quantizer in space and time. The
resulting spatio-temporal filtering effects can be characterized
by the noise transfer functions derived in Section IV. Table I
summarizes these NTFs, omitting the 1

N terms due to finite
array length. The simulation results of Section V suggest that
these theoretical NTFs are accurate for first- and second-order
spatial modulators, but the quantization error signals on which
they act are generally not flat unless the system also includes
a temporal modulator.

There are two interpretations of the noise shaping gain
functions. As a function of angle, the gains shape the error
away from broadside, as in Figure 10. If the array is over-
sampled in space, i.e. d � c

2f , then much of the noise can
be shaped to |r| > d

c , outside the visible region, where it
is removed by the delay-and-sum beamformer. The spatial
shaping effect is strongest for low frequencies, as shown in
Figure 3. In terms of temporal frequency, the gain functions



Architecture Large-N Noise Shaping Gain

1st-order 4 sin2( Ω
2 (τ + r))

2nd-order forward 16 sin4( Ω
2 (τ + r))

2nd-order symmetric 16 sin2( Ω
2 (τ + r)) sin2( Ω

2 (τ − r))

1st-order cascade 16 sin2( Ω
2 (τ + r)) sin2( Ω

2 τ)

2nd-order forward cascade 64 sin4( Ω
2 (τ + r)) sin2( Ω

2 τ)

2nd-order symmetric cascade 64 sin2( Ω
2 (τ + r)) sin2( Ω

2 (τ − r)) sin2( Ω
2 τ)

Table I. NOISE SHAPING FOR PROPOSED ARCHITECTURES

shape the error to higher frequencies. For large oversampling
ratios, the noise is pushed above the Nyquist rate, where it
can be removed by a lowpass filter. This temporal shaping
effect is strongest for small r, as in Figure 11, and weaker
for larger r, as in Figure 12. Both the spatial and temporal
shaping are improved by increasing the spatial oversampling
ratio. Meanwhile, the temporal sample rate affects the noise
shaping gain of the time-domain stage, if any, and shifts the
nulls in the NTF.

The spatial sigma-delta array is most useful in low-
frequency applications, such as acoustics, for which the circuit
hold times and delays can be made small compared to d/c.
In such systems, the internal time delays will not significantly
distort the NTFs. Furthermore, if the sample rate is sufficiently
high, the delay-and-sum operation can be performed digitally
by simply shifting and adding the bit streams. Further work
is required to find efficient algorithms and architectures to
use these bit streams for beamforming and other directional
signal processing, such as direction-of-arrival estimation and
source separation. The spatial noise-shaping idea can also be
generalized to arbitrary array configurations, such as planar
and circular arrays.

Like traditional sigma-delta converters, spatial sigma-delta
arrays exploit oversampling to shift quantization noise away
from the signal of interest. Such arrays can therefore be
constructed with lower-resolution quantizers than conventional
systems, reducing constraints on the mixed-signal hardware.
By improving resolution and reducing cost, spatial and spatio-
temporal sigma-delta modulation can enable novel signal pro-
cessing architectures for dense wideband arrays.
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