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Abstract—The quantizer design and resource allocation in the
uplink of Cloud Radio Access Network (C-RAN) are studied.
In C-RAN, multiple Radio Units (RUs) act as soft relays by
compressing and forwarding the correlated received signals
simultaneously to the Central Processor (CP) in the cloud, via
the fronthaul links with finite capacities. Wyner-Ziv coding is
utilized in order to exploit the correlation between the received
signals at neighboring RUs. Thus, a joint optimization of the
quantizers is necessary. Moreover, when the capacity resource
is shared among fronthauls, the design of quantizers is closely
related to the resource allocation. In this paper we aim to
maximize the achievable weighted sum rate by joint optimizing
all the quantizers and resource allocation. To make the problem
more tractable, at first we assume that the resource allocation is
predetermined, and perform a joint optimization of all quantizers,
the optimization algorithm is a combination of the Alternating
Information Bottleneck (AIB) method and the Alternating Bi-
Section method, which is proposed in our previous work. We
extend it to solve the problem in this work. Then we optimize
the resource allocation based on it. The simulation results justify
the correctness and effectiveness of our proposed algorithms.

I. INTRODUCTION

It has been shown that a key challenge of C-RAN [1] is
the transfer of baseband information to CP via the capacity-
constrained fronthaul links [2]. Thus suitable compression
strategies have to be developed in order to alleviate the re-
quirements on the fronthaul links. Basically, two compression
schemes can be exploited, e.g., point to point compression and
distributed compression [2]. For point to point compression,
each RU performs compression individually according to its al-
located fronthaul capacity. While for distributed compression,
the correlation between the signals received at neighboring
RUs is exploited, in order to further utilize the capacity of
the fronthaul. In this case, Wyner-Ziv coding [3] is used at the
compression step. It has been shown that the distributed com-
pression outperforms the point to point compression scheme
[2], [4]. While it should be noted that this scheme has a
higher complexity since a joint optimization among all RUs
is required. While for the point to point compression scheme,
the compression scheme can be optimized locally without the
knowledge of neighboring RU. In C-RAN, the CP with access
to all RUs and high computing capability makes this joint
optimization possible. There has been already some papers
considering the optimization of quantization noise levels, when
Compress and Forward (CF) or Noisy Network Coding (NNC)

[5] is performed at RUs, e.g. [4] and [6]. While these works
consider only Gaussian codebooks, and treat the quantization
as Gaussian test channels, the compression is modeled by
adding Gaussian distributed quantization noise. Optimization
of the quantization noise levels evaluates the performance only
from the information theoretic perspective. In practice, the
users might use arbitrary codebooks X with finite alphabet,
and the received signal at RU is discretized and sampled
firstly into finite alphabet Y , then based on the compression
scheme denoted by PŶ |Y , it will be compressed into several
quantization levels, with alphabet Ŷ . Usually |Ŷ| is much
smaller than |Y| due to the compression. In such scenarios,
the Information Bottleneck (IB) method [7] is often used
to optimize the quantizer PŶ |Y in order to maximize the
objective mutual information. While in most of the previous
works, only one quantizer is considered, the IB method is
utilized for different optimization objectives, e.g., [8], [9].
When it comes to the multi-quantizer case where Wyner-Ziv
coding is exploited, a joint optimization is required as we said
above. The problem is whether the IB method can still be
used. In our work [10], we propose the so-called Alternating
Information Bottleneck (AIB) method and the Alternating Bi-
Section method, which have been shown to be useful tools
for the joint optimization of quantizers in C-RAN. While in
that work, we aim to maximize the achievable sum rate in
the uplink of C-RAN with fixed or predetermined individual
fronthaul capacities, this may happen when the fronthaul are
optical fiber links, the optimization of each quantizer depends
on the fronthaul capacity allocated to that RU. While the
fronthaul might also be wireless, where the fronthaul capacity
can be dynamically shared among RUs. When the problem
of resource allocation is considered, the joint optimization of
all quantizers and resource allocation is necessary for different
optimization objectives. In this paper, we address this resource
allocation problem and propose an optimization scheme for it,
which is based on our previously proposed AIB method and
Alternating Bi-Section method and newly introduced Outer
Linearization Method (OLM) [11]. Moreover, we consider the
maximization of the weighted sum rate. We show that resource
allocation is critical in this case.

The remainder of the paper is organized as follows: In
Sec. II we introduce the channel model considered and state
the problem mathematically. Our optimization algorithms of
the quantizers are presented and explained in Sec. III. The



Fig. 1. The uplink of C-RAN with finite sum capacity fronthaul links [4].

optimization algorithm of capacity allocation is shown in Sec.
IV. Simulation results and conclusions are provided in Sec. V
and Sec. VI respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider the C-RAN model depicted in Fig. 1, where
L single-antenna Mobile Users (MSs) send independent mes-
sages to L single-antenna RUs. All RUs connect to a CP in
the cloud via fronthaul links with finite sum capacity denoted
by Csum, which will be shared among all fronthaul links. CP
is expected to decode all messages. We consider only single
antenna for simplicity, but the algorithm can be extended to
the MIMO case, as shown in [10]. The channel model between
the MSs and RUs is actually an L × L interference channel.
The received analog signal at the i-th BS is

Yi,analog =

L∑
j=1

hijXj + Zi, i ∈ {1, 2, ..L},

where Zi ∼ CN (0, σ2
n) is the independent Gaussian noise with

variance σ2
n, and hij denotes the complex channel coefficient

from j-th MS to i-th RU. Xj denotes the transmitted signal
of j-th MS, arbitrary modulation scheme can be utilized. The
available power of j-th MS is denoted as Pj = E{|Xj |2}.
At i-the RU, the received analog signal Yi,analog is firstly
sampled and discretized1 into Yi with finite alphabets Yi.
Then each RU performs Compress and Forward (CF): Its
quantizer compresses the signal Yi into Ŷi based on the
compression scheme denoted by PŶi|Yi

. |Ŷi| is assumed to be
much smaller than |Yi|. At each RU, Wyner-Ziv coding is to
be utilized by exploiting the correlation between the received
signals of its neighboring RUs. Then RUs independently
send compressed bits to the CP via the fronthaul links. The
CP employs successive two-stage decoding: It first decodes
all the compressed signals Ŷ = [Ŷ1, Ŷ2, ..., ŶL]

T and then
decodes MSs’ messages X = [X1, X2, ..., XL]

T based on
the decoded compressed signals. Compared to NNC, where
simultaneous joint decoding of compressed signals and the

1This discretization is actually a pre-quantization, then the discretized
signal should be further compressed by the quantizer due to limited fronthaul
capacity. In this paper we address the optimization of the quantizer used for
the compression.

desired messages over all received blocks is required [5], the
successive decoding nature of CF overcomes some difficulties
in the practical implementation of NNC, such as long delay
and high computational complexity. Moreover, we assume that
the modulation scheme of each MS and CSI are known to the
CP, and the design of the optimized quantizers can be feed-
backed to the corresponding RU.

B. Problem Statement

We aim to maximize the achievable weighted sum rate [2]
in the uplink of C-RAN as follows.

max
PŶ |Y

L∑
j=1

wjRj

Subject to I(Y ; Ŷ ) ≤ Csum,

(1)

where PŶ |Y =
L∏
i=1

PŶi|Yi
. Naturally

∑
|ŷi| PŶi|Yi

= 1, ∀yi
and PŶi|Yi

≥ 0, ∀ŷi, yi should be satisfied. Rj and wj denote
the achievable rate of j-th MS and its weight, respectively.
PŶi|Yi

denotes the compression scheme of the quantizer at i-
th RU, which should be jointly optimized at the CP. From CP’s
perspective, the network is actually MIMO-MAC, the capacity-
achieving strategy in the MIMO-MAC is based on Successive
Interference Cancellation (SIC). Moreover, according to [12],
the solution of (1) is given by the decoding order π that sorts
the weights in non-increasing order

wπ1
≥ wπ2

≥ · · · ≥ wπL
.

With this decoding order, the resulting maximization problem
is convex [12]. Since the decoding order is fixed solely by the
weights, without loss of generality, we assume wL ≥ wL−1 ≥
· · · ≥ w1, i.e., x1 is decoded first and xL is decoded last. Thus
we have

Rj = I(Xj ; Ŷ |X1, X2, ..., Xj−1) ∀j ∈ {1, 2, ..., L} (2)

The constraint of (1) can also be expressed as

I(Yi; Ŷi|Ŷ1, Ŷ2, ..., Ŷi−1) ≤ Ci ∀i ∈ {1, 2, ..., L},
L∑
i=1

Ci ≤ Csum.
(3)

where Ci denote the capacity allocated to i-th RU. It can be
predetermined or optimized by the CP. We see that when the
modulations schemes, the capacity of each fronthaul link and
all channel configurations are fixed, the weighted sum rate de-
pends only on how RUs compress their received signals. While
when the capacity of each fronthaul link is not predetermined,
a simultaneous optimization of all quantizers and capacity
allocation is necessary. In order to make the problem more
tractable, we firstly assume that the capacity of each fronthaul
link is predetermined, and propose algorithms to optimize all
quantizers jointly, which are based on the AIB method and
the Alternating Bi-Section method proposed in [10]. Then we
adopt the Outer Linearization Method (OLM) and propose an
algorithm for the optimization of capacity allocation.



III. OPTIMIZATION ALGORITHM AND QUANTIZER
DESIGN (WITH PREDETERMINED FRONTHAUL CAPACITY

ALLOCATION)

In this section we assume the capacity of each fronthaul
link is predetermined. Firstly, we give a brief introduction to
the well-known Information Bottleneck (IB) method.

Since the capacity of each fronthaul is limited. On one
hand, the quantization in the compression step cannot be too
fine, such that the resultant compression rate exceeds the
fronthaul capacity. The compressed signal cannot be decoded
at CP. On the other hand, too coarse quantization cannot
fully utilize the fronthaul capacity. The overall performance is
limited. Hence, an optimal tradeoff between the compression
rates that can be supported and the achievable sum rate must be
found. The IB method is an effective tool to find this tradeoff
as well as the corresponding optimized quantizer.

The tradeoff problem described above can be mathemat-
ically formulated as follows. Consider three variables X →
Y → Ŷ forming a Markov chain, where Ŷ is the compression
of Y . We want the variable Ŷ to compress Y as much as
possible (smaller I(Y ; Ŷ )), while Ŷ captures as much of the
information about X as possible (larger I(X; Ŷ )). The IB
method proposed in [7] has been shown to be an useful tool to
solve this problem. According to [7] and [9], the maximized
I(X; Ŷ ) as the function of the compression rate I(Y ; Ŷ ) can
be numerically computed with the IB method, e.g.,

I(c) = sup
I(Y ;Ŷ )≤c

I(X; Ŷ )

can be computed and plotted. It has been proved to be a
concave and increasing function for c ∈ [0, H(Ŷ )]. The
IB method is a deterministic annealing approach such that
the whole curve I(c) is obtained through a third parameter
β, β > 0, where 1/β = dI(c)

dc corresponds to the slope of
the curve at the point (c, I(c)). Actually β is the Lagrange
Multiplier used in the IB method. We call it the tradeoff
factor between the compression rate c and the objective mutual
information. By choosing an arbitrary β > 0 as the input of
the IB method, the point on the tradeoff curve with slope 1/β
can be outputted. Since I(c) is concave and increasing, the
output compression rate c of the IB method increases with the
input β, the whole tradeoff curve can be obtained by ranging
the value of β from 0 to infinity and running the IB method
repeatedly. After obtaining this tradeoff curve, we can use the
Bi-Section method to find the specific value of β such that
at this point the compression rate c can be supported and the
objective mutual information is maximized.

In the uplink of C-RAN, a joint optimization among all the
quantizers has to be performed. In our work [10], we proposed
the Alternating Information Bottleneck (AIB) method and the
Alternating Bi-Section method to achieve this goal. The basic
idea of AIB method is to fix all the other quantizers, and
adopt the IB method to optimize one quantizer. Then fix this
newly optimized quantizer, and use the IB method to optimize
the next quantizer. This procedure is carried on alternatively
until reaching the convergence. The illustration for optimality
and convergence is in [10]. It has been shown there, with
AIB method, the trade-off between the compression rate vec-
tor
(
I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1), ..., I(YL; ŶL|ŶL−1, ..., Ŷ1)

)
of all

RUs and the corresponding maximized sum rate Rsum =
I(X; Ŷ ) can be set up through the trade-off factor vector
β = (β1, β2, ..., βL). For the specific predetermined fronthaul
capacities, the proposed Alternating Bi-Section method is
adopted to locate and compute the optimal trade-off factor vec-
tor βopt and optimized quantizers, such that its corresponding
compression rate vector fulfills the predetermined fronthaul
capacities simultaneously. More details can be found in [10].

Now we go back to the problem (1) addressed in this paper.
In this subsection we assume that the each fronthaul capacity
is predetermined, thus (1) becomes similarly to the problem
we solved in [10]. For the ease of illustration, we start with
the 2 MSs and 2 RUs case to show the optimization scheme,
and at the end of this section, we will show our proposed
optimization algorithms can be easily extended to the case
with more devices. According to (1), the problem becomes

max
PŶ1|Y1

PŶ2|Y2

w1I(X1; Ŷ1, Ŷ2) + w2I(X2; Ŷ1, Ŷ2|X1),

Subject to I(Y1; Ŷ1) ≤ C1,

I(Y2; Ŷ2|Ŷ1) ≤ C2.

(4)

For arbitrary capacity allocation such that C1 +C2 = Csum is
fulfilled. Let Rwsum = w1I(X1; Ŷ1, Ŷ2)+w2I(X2; Ŷ1, Ŷ2|X1).
Similar to the steps in [10], with the AIB method, we firstly set
up the trade-off between the compression rate pair of 2 RUs
and the corresponding maximized weighted sum rate Rwsum in
Sec. III-A. Then in Sec. III-B, with the Alternating Bi-Section
method, we locate the specific point where the constraints in
(4) is satisfied and the weighted sum rate is maximized.

A. The Alternating Information Bottleneck (AIB) method –
Setting up the trade-off between the compression rate pair(
I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)

)
and the maximized weighted sum

rate Rwsum, through the trade-off factor pair (β1, β2)

In this subsection we try to set up the trade-off between
the compression rate pair

(
I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)

)
and its

corresponding maximized weighted sum rate Rwsum. Since the
two quantizers need to be optimized jointly, the IB method
cannot be used directly. However, as we have shown in [10],
when one quantizer is fixed, the other quantizer can be readily
optimized by the IB method.

1. Now we assume that the first quantizer PŶ1|Y1
is fixed

with an arbitrary valid distribution, then we need to find
the optimal trade-off between the compression rate c2 =
I(Y2; Ŷ2|Ŷ1) and max

PŶ2|Y2

Rwsum. Because of the chain rule, we

have

Rwsum =w1I(X1; Ŷ1, Ŷ2) + w2I(X2; Ŷ1, Ŷ2|X1)

=w1I(X1; Ŷ1) + w2I(X2; Ŷ1|X1)

+w1I(X1; Ŷ2|Ŷ1) + w2I(X2; Ŷ2|Ŷ1, X1).

(5)

we see that when the quantizer PŶ1|Y1
is fixed, it is

sufficient to compute the trade-off between I(Y2; Ŷ2|Ŷ1)

and max
PŶ2|Y2

(
w1I(X1; Ŷ2|Ŷ1) + w2I(X2; Ŷ2|Ŷ1, X1)

)
=

max
PŶ2|Y2

(
w1I(X1, X2; Ŷ2|Ŷ1) + (w2 − w1)I(X2; Ŷ2|Ŷ1, X1)

)
.



We follow the similar procedure proposed in [9] to find this
trade-off by the IB method. We have adopted this idea in [10],
while in that paper, the sum rate is considered. The algorithm
Function IB2 of optimizing quantizer PŶ2|Y2

conditioned
upon fixed PŶ1|Y1

is on the right part of this page. The fixed
quantizer P fixed

Ŷ1|Y1
is the input and an local invariant. The

Lagrange Multiplier β2 > 0 is the trade-off factor between
I(Y2; Ŷ2|Ŷ1) and Rwsum and ε1 denotes the tolerance and
DKL(·||·) denotes the Kullback-Leibler divergence.

2. Similarly, when the second quantizer PŶ2|Y2
is fixed,

the trade-off points

{
I(Y1; Ŷ1), max

PŶ1|Y1

Rwsum

}
can also be

obtained with the IB method, as summarized in Function IB1.
More details of obtaining these two functions can be found in
[9] and [10].

After obtaining these two functions, we alternatively run
them in order to optimize both quantizers. The optimized
quantizer obtained from one IB function is set as the input
fixed quantizer of the other, until reaching the convergence. as
shown in Function AIB, where ε2 denotes the tolerance. With
this AIB method, the trade-off between the compression rate
pair

(
I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)

)
and the maximized weighted

sum rate Rwsum can be set up, through the input trade-off
factor pair (β1, β2). Since the problem is generally non-convex
with respect to PŶ |Y , similar to the IB method, we can try
different valid initial distributions to get better results. By
inputing different trade-off factor pair (β1, β2) to the AIB
function, different trade-off between the compression rate pair
and the maximized weighted sum rate can be obtained.

Function IB2(P fixed
Ŷ1|Y1

, P init
Ŷ2|Y2

, |Ŷ2|, β2, ε1)

Input : P fixed
Ŷ1|Y1

, P init
Ŷ2|Y2

, |Ŷ2|, β2, ε1

Output : [P optimal

Ŷ2|Y2
, c2, Rwsum]

1 begin
Initialization: k ← 0, set the initial mapping

P
(k)

Ŷ2|Y2
← P init

Ŷ2|Y2
.

2 do
3 Based on P fixed

Ŷ1|Y1
and newly generated P (k)

Ŷ2|Y2
,

4 update d(k)(y2, ŷ2)←
w1β2

∑̂
y1

PŶ1|Y2
DKL

(
PX1X2|Ŷ1Y2

||P (k)

X1X2|Ŷ1Ŷ2

)
−∑̂

y1

PŶ1|Y2
log2

(
P

(k)

Ŷ2|Ŷ1

)
+ log2

(
P

(k)

Ŷ2

)
+ (w2 −

w1)β2

∑̂
y1

PŶ1X2|Y2
DKL

(
PX1|Ŷ1Y2X2

||P (k)

X1|Ŷ1Ŷ2X2

)
5 Set P (k+1)

Ŷ2|Y2
←

P
(k)

Ŷ2
2−d

(k)(y2,ŷ2)/
∑̂
y2

P
(k)

Ŷ2
2−d

(k)(y2,ŷ2)

6 Set k ← k + 1

7 while
∑
y2,ŷ2

∣∣∣P (k)

Ŷ2|Y2
− P (k−1)

Ŷ2|Y2

∣∣∣ /(|Y2| · |Ŷ2|) ≥ ε1

8 Set P optimal

Ŷ2|Y2
← P

(k)

Ŷ2|Y2
, based on P optimal

Ŷ2|Y2
, compute

c2 = I(Y2; Ŷ2|Ŷ1) and Rwsum

Function IB1(P fixed
Ŷ2|Y2

, P init
Ŷ1|Y1

, |Ŷ1|, β1, ε1)

Input : P fixed
Ŷ2|Y2

, P init
Ŷ1|Y1

, |Ŷ1|, β1, ε1

Output : [P optimal

Ŷ1|Y1
, c1, Rwsum]

1 begin
Initialization: k ← 0, set the initial mapping

P
(k)

Ŷ1|Y1
← P init

Ŷ1|Y1
.

2 do
3 Based on P fixed

Ŷ2|Y2
and newly generated P (k)

Ŷ1|Y1
,

update d(k)(y1, ŷ1)←
w1β1

∑̂
y2

PŶ2|Y1
DKL

(
PX1X2|Y1Ŷ2

||P (k)

X1X2|Ŷ1Ŷ2

)
+

(w2 −
w1)β1

∑̂
y2

PŶ2X2|Y1
DKL

(
PX1|Y1Ŷ2X2

||P (k)

X1|Ŷ1Ŷ2X2

)
4 Set P (k+1)

Ŷ1|Y1
←

P
(k)

Ŷ1
2−d

(k)(y1,ŷ1)/
∑̂
y1

P
(k)

Ŷ1
2−d

(k)(y1,ŷ1)

5 Set k ← k + 1

6 while
∑
y1,ŷ1

∣∣∣P (k)

Ŷ1|Y1
− P (k−1)

Ŷ1|Y1

∣∣∣ /(|Y1| · |Ŷ1|) ≥ ε1

7 Set P optimal

Ŷ1|Y1
← P

(k)

Ŷ1|Y1
, based on P optimal

Ŷ1|Y1
, compute

c1 = I(Y1; Ŷ1) and Rwsum

Function AIB(|Ŷ1|, |Ŷ2|, β1, β2, ε1, ε2)

Input : |Ŷ1|, |Ŷ2|, β1, β2, ε1, ε2
Output : [c1, c2, Rwsum]
OptionalOutput: [P optimal

Ŷ1|Y1
, P optimal

Ŷ2|Y2
]

1 begin
Initialization : Randomly choose valid initial

mappings P (0)

Ŷ1|Y1
and P (0)

Ŷ2|Y2

Set `← 0
2 do
3 Run function IB1 :

P
(`+1)

Ŷ1|Y1
= IB1(P

(`)

Ŷ2|Y2
, P

(`)

Ŷ1|Y1
, |Ŷ1|, β1, ε1)

4 Run function IB2 :
P

(`+1)

Ŷ2|Y2
= IB2(P

(`+1)

Ŷ1|Y1
, P

(`)

Ŷ2|Y2
, |Ŷ2|, β2, ε1)

5 Set `← `+ 1

6 while
∑
y1,ŷ1

∣∣∣P (`)

Ŷ1|Y1
− P (`−1)

Ŷ1|Y1

∣∣∣ /(|Y1| · |Ŷ1|) +∑
y2,ŷ2

∣∣∣P (`)

Ŷ2|Y2
− P (`−1)

Ŷ2|Y2

∣∣∣ /(|Y2| · |Ŷ2|) ≥ ε2

7 Set P optimal

Ŷ1|Y1
← P

(`)

Ŷ1|Y1
, P optimal

Ŷ2|Y2
← P

(`)

Ŷ2|Y2
, based

on them, compute
c1 = I(Y1; Ŷ1), c2 = I(Y2; Ŷ2|Ŷ1) and Rwsum



B. The Alternating Bi-Section method – Locating the optimal
trade-off point

The AIB method shown in the last subsection can only be
used to set up different trade-offs While in order to solve the
problem in (4), only the trade-offs with resultant compression
rate pair that simultaneously fulfill the conditions in (4) are
valid. Moreover, in order to fully utilize the fronthaul links, the
specific trade-off where I(Y1; Ŷ1) = C1 and I(Y2; Ŷ2|Ŷ1) =
C2 is what has to be located. If it can be located, its
corresponding maximized weighted sum rate Rwsum and the
quantizers PŶ1|Y1

, PŶ2|Y2
are the solution for (4). Naturally,

this trade-off can be located by inserting different trade-off
factor pairs (β1, β2) over a sufficiently fine grid of values until
finding the point where c1 = C1 and c2 = C2. Obviously this
approach is rather inefficient. In our work [10], we propose a
so-called Alternating Bi-Section method for efficient location.
This method can be readily used in the problem considered in
this paper. This idea is somehow similar to the AIB method, we
fix one trade-off factor βi, i ∈ {1, 2} and combine the AIB
method and Bi-Section method to locate the other trade-off
factor, such that its corresponding compression rate just satisfy
its fronthaul constraint. Then we fix this newly located trade-
off factor and locate the other. This procedure is also carried
on alternatively, as shown in Algorithm AIB . [βimin, βimax]
denotes the searching range of βi. Ci is the target compression
rate of the i-th RU, which equals to the capacity of its fronthaul
link, η1, η2 are the tolerance. More details can be found in
our paper [10].

C. Extension to more MSs and RUs with multiple antennas

This alternative idea can be readily extended to the case
where more MSs and RUs exist in C-RAN. A specific quan-
tizer can be optimized with the IB method, while fix all the
other quantizers. The optimized quantizer is set as the starting
point to optimize the next quantizer. This procedure can be
carried on alternatively until reaching convergence. For the
multiple antenna case, Wyner-Ziv coding is also to be utilized
since the received signals between different antennas of each
RU are statistically correlated. For a specific RU, different
quantizers will compress the received signals at different
antennas by exploiting the correlation. The proposed algorithm
can also be readily utilized in this case.

IV. OPTIMIZATION SCHEME FOR THE CAPACITY
ALLOCATION

In the last section, we assume that the fronthaul capacity
allocated to each RU is predetermined. We use the AIB method
to set up the trade-off between the compression rate vector and
its corresponding maximized weighted sum rate, through the
help of trade-off factor vector. Then we exploit the Alternating
Bi-Section method to locate the specific trade-off factor vector
whose corresponding compression rate vector exactly fulfill the
predetermined fronthaul capacity constraints simultaneously.
In this section, we address the problem of resource allocation,
where the total fronthaul capacity is to be allocated to each RU
in order to maximized the achievable weighted sum rate in the
uplink of C-RAN, by exploiting the algorithms proposed in
the last section. We propose the algorithm by combining the
AIB method, the Alternating Bi-Section method with the Outer
Linearization Method (OLM) [11].

Algorithm: Alternating Bi-Section method

Input : |Ŷ1|, |Ŷ2|, β1max, β1min, β2max, β2min

Input : C1, C2, ε1, ε2, η1, η2

Output : Rwsum, P
optimal

Ŷ1|Y1
, P optimal

Ŷ2|Y2

OptionalOutput: c1, c2
1 begin
2 Set `← 0, β

(0)
1 ← (β1max + β1min)/2,

3 β
(0)
2 ← (β2max + β2min)/2

4 do
5 Set β1U ← β1max, β1L ← β1min

6 while β1U − β1L > η1 do
7 Set β̃1 ← (β1U + β1L)/2
8 Run Function AIB: [c1,∼,∼]=AIB

(|Ŷ1|, |Ŷ2|, β̃1, β
(`)
2 , ε1, ε2)

9 if c1 < C1 then
10 Set β1L ← β̃1

11 else
12 Set β1U ← β̃1

13 Set β(`+1)
1 ← (β1U + β1L)/2

14 Set β2U ← β2max, β2L ← β2min

15 while β2U − β2L > η1 do
16 Set β̃2 ← (β2U + β2L)/2
17 Run Function AIB: [∼, c2,∼]=AIB

(|Ŷ1|, |Ŷ2|, β(`+1)
1 , β̃2, ε1, ε2)

18 if c2 < C2 then
19 Set β2L ← β̃2

20 else
21 Set β2U ← β̃2

22 Set β(`+1)
2 ← (β2U + β2L)/2

23 Set `← `+ 1

24 while |β(`)
1 − β

(`−1)
1 |+ |β(`)

2 − β
(`−1)
2 | ≥ η2

25 Run Function AIB:
[c1, c2, Rwsum, P

optimal

Ŷ1|Y1
, P optimal

Ŷ2|Y2
]=AIB

(|Ŷ1|, |Ŷ2|, β(`)
1 , β

(`)
2 , ε1, ε2)

Note that in the original problem (1), the objective function
is a concave function of the compression rates, and the sum of
all compression rates is limited by the sum capacity Csum,
which is a linear inequality constraint. Thus the original
problem is a convex optimization problem with respect to the
compression rate vector c. Since the AIB method and the Bi-
Section method can be easily used to compute the value of
the objective function for different c, the original problem (1)
can be solved by standard convex optimization methods. Here,
similar to [9], we adopt the the Outer Linearization Method
and list the procedures as follows.

1. Start with a random valid capacity allocation, C(0) =(
C

(0)
1 , C

(0)
2 , ..., C

(0)
L

)
, such that

∑L
i=1 C

(0)
i = Csum. Set k =

0, fLB = −1 and fUB to be large enough. Set δ be the desired
tolerance.

At iteration k, repeat step 2 to step 4 until fUB−fLB ≤ δ.

2. Use the Alternating Bi-Section method to compute the



trade-off factor vector β(k) =
(
β

(k)
1 , β

(k)
2 , ..., β

(k)
L

)
associated

with the current capacity allocation C(k).

3. Insert β(k) to the AIB method, then compute current
maximized weighted sum rate R

(k)
wsum. Set fLB = R

(k)
wsum

and the sub-gradient g(k) =
(
1/β

(k)
1 , 1/β

(k)
2 , ..., 1/β

(k)
L

)
and

b(k) = R
(k)
wsum −C(k) · (g(k))T .

4. Solve the linear problem

max
s,C

s

s.t. C · (g(`))T + b(`) ≥ s, ` = 0, 1, ..., k − 1,
L∑
i=1

Ci = Csum

Let (s∗,C∗) be the maximizer, set fUB = s∗ and C(k+1) =
C∗. Set k = k + 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed algorithms and use them to study C-RAN.

General Setup: In the simulation we assume that all MSs
use BPSK modulation for simplicity. All received signals
at the RUs are sampled and discretized with 7 bits/sample,
thus |Yi| = 128. The RUs will compress the signals into 8
quantization levels (at most 3 bits/sample), thus |Ŷi| = 8.
Moreover, we set β1max = β2max = 260, β1min = β2min =
0.1, ε1 = 3× 10−4, ε2 = 10−5, η1 = η2 = 0.01, δ = 0.01.

We consider a 3MS - 3RU C-RAN and set w3 = 3, w1 =
w2 = 1. We assume that the channel is configured as
h11 = 1, h12 = 0.3, h13 = 0.2, h21 = 0.2, h22 = 1, h23 =
0.3, h31 = 0.2, h32 = 0.1, h33 = 0.5, σ2

n = 1. At first
we use the proposed algorithms to optimize the quantizers
as well as the capacity allocation, in order to maximize the
sum rate (case 1). Then we fix this capacity allocation, and
use the AIB method and the Alternating Bi-Section method to
optimize the quantizers only, so as to maximize the weighted
sum rate, under the current capacity allocation (case 2). At last,
we optimize both the quantizers and the capacity allocation
for maximizing the weighted sum rate (case 3). The results
is shown in Fig. 2 - 5. From the figures we see that when
the quantizers and capacity allocation are optimized in order
to maximize the sum rate, the individual rate of the third user
R3 is the smallest, while the achievable sum rate is maximized.
Moreover, R1 and R2 are the largest in these 3 cases. While
when we put more weight on R3 by setting w3 = 3, only
optimizing the quantizers is not sufficient, the improvement of
R3 in case 2 compared to the former case is not significant.
This is because the received signals at different RUs are the
superposition of the signals from all users, only optimizing the
quantization will not impose a prominent impact on individual
rates. In order to further improve the individual rate with larger
weight, it is necessary to consider a simultaneous optimization
of both capacity allocation and compression. From Fig. 4, we
see that by comparing with case 1, the improvement of R3 in
case 3 is much more significant than that of case 2. While this
improvement is at the cost of a larger decrease of R1, R2 and
sum rate Rsum.
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Fig. 2. R1 with sum capacity of fronthaul.
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Fig. 3. R2 with sum capacity of fronthaul.
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Fig. 4. R3 with sum capacity of fronthaul.
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Fig. 6. Optimal capacity allocation for maximizing the sum rate.

Now we consider the same model as above, and assume
the sum capacity available is 3 bits/cu, the optimal capacity
allocations obtained from the proposed algorithm for different
optimization objectives are shown in Fig. 6 and Fig. 7. We
see that when the quantizers and the capacity allocation are
optimized for maximizing the sum rate, only 18% of the
capacity is allocated to the third RU. While when we want
to maximize the weighted sum rate (w3 = 3, w1 = w2 = 1),
38% of the capacity should be allocated to the third RU. The
reason is that the signal from the third user at the third RU is
the strongest, while at the first RU it is the weakest. Moreover,
the observation of the superposed signal is more reliable at the
first and second RU than that at the third RU. Thus, when the
capacity allocation is optimized for maximizing the sum rate,
the capacity allocated to the third RU should be the least, while
it grows larger when the achievable rate of the third user has
larger weight.

VI. CONCLUSION

In this paper we extend the Alternating Information Bot-
tleneck (AIB) method and the Alternating Bi-Section method,
which are proposed in our work [10], to maximize the
weighted sum rate in the uplink of C-RAN, subjected to a sum
fronthaul capacity. At first we suppose the capacity allocated
to each fronthaul is predetermined, these two algorithms can

Fig. 7. Optimal capacity allocation for maximizing the weighted sum rate.

be readily used to find the optimal trade-off between the
compression rates and the maximized weighted sum rate. Then
based on these two algorithms, we propose the optimization
for the capacity allocation. It has been shown that in order
to maximize the weighted sum rate in the uplink of C-RAN,
a joint optimization of all the quantizers and the resource
allocation is necessary. The algorithms are suitable for the
centralized optimization of the compression step in C-RAN.
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