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Abstract—We study the performance of multiple-input
multiple-output (MIMO) wireless systems employing linear min-
imum mean-squared error (MMSE) or zero-forcing (ZF) pro-
cessing at the receiver. In particular, we focus on a source-
destination pair communicating through a multiple scattering
channel affected by Rayleigh fading. This is an especially relevant
case, as it can well represent the communication between a pico-
base station and a user in 5G cellular networks. In this scenario,
we investigate the system performance in terms of achievable
sum rate. In the case of MMSE receiver, we provide a closed-
form expression, exploiting the relationship derived by McKay et
al. [1] between the achievable sum rate and the ergodic mutual
information corresponding to optimal nonlinear receivers. For ZF
receivers, instead, we leverage the results derived by Matthaiou et
al. [2] and Jiang et al. [3], and derive compact upper and lower
bounds to the sum rate. We validate the obtained expressions
through numerical results.

I. INTRODUCTION

Linear processing at the receiver side of a MIMO system is
a suitable strategy to limit computational burden, while achiev-
ing close-to-optimal performance, especially in certain signal-
to-noise (SNR) ranges. In spite of their practical relevance,
information-theoretic characterization of linear detectors is yet
to be performed in closed form but for some results regarding
the minimum mean-squared error (MMSE) receiver [1], [4],
under the assumption of Rayleigh/Rayleigh-product or uncor-
related Rician fading. Zero-forcing (ZF) receive processing has
been investigated by Matthaiou et al. in [2], [5] providing
bounds to the sum rate in the presence of Rayleigh fading,
with and without large-scale Lognormal fading component.
Furthermore, an upper bound to the single-branch signal-to-
interference-plus-noise-ratio (SINR) in the case of ZF re-
ceivers and Rayleigh fading has been given by Jiang et al.
in [3].

Finding a closed-form expression for the sum rate of MIMO
communications in presence of fading and suboptimal receive
processing is more difficult than the characterization in the
case of optimal reception, due to the expression of the SINR.
In [1], the authors unveiled a relationship between the sum
rate for linear MIMO receivers and the mutual information
conveyed by the same channel with optimal processing at the
receiving end. The strategy proposed in [1] finds its easiest
application when the channel matrix has independent columns,
but the approach can be conveniently extended to the case
of channels modeled by a product of independent matrices.

A first step in this direction has been made in [4], where
the performance of Rayleigh-product channel is investigated
along the lines of McKay’s result [1]. Throughout our paper,
we further extend the analysis to multiple Rayleigh scattering
MIMO channels, with an arbitrary number of scattering stages
(clusters) and of transmit/receive antennas. Such a fading
model is suitable for pico-cellular communication channels
[6], foreseen as one of the viable solutions for 5G. We provide
first an analysis of the spectral properties of the multiple-
scattering channel matrix. Then, relying on [1], we provide
a closed-form expression for the sum rate of a MIMO MMSE
receiver. Additionally, borrowing results from [2] and [3], we
analyze the ZF case and derive an upper and a lower bound
to the sum rate.

II. NOTATION

Boldface uppercase and lowercase letters denote matrices
ad vectors, respectively. The identity matrix is indicated by I.
The determinant and the conjugate transpose of the generic
matrix A are denoted by |A| and AH, respectively, while the
(i, j)-th element of A is indicated by [A]i,j . Moreover, Ea[·]
represents the average operator with respect to the random
variable a.

For any m × m Hermitian matrix A with eigenvalues
a1, . . . , am, the Vandermonde determinant is defined as [7,
eq. (2.10)]:

V (A) =
∏

1≤`<k≤m

(ak − a`) . (1)

Gc,da,b(·|·), with integer parameters a, b, c, d, denotes the
Meijer-G function [8, Ch. 8].

The probability density function of the random variable a
is denoted by fa(a), while its cumulative distribution function
(CDF) by Fa(a).

III. SYSTEM MODEL

Let us consider a source-destination pair of nodes commu-
nicating through a wireless MIMO channel with N − 1 in-
dependent scattering stages, hereinafter referred to as clusters
(see Figure 1). Let us denote by n0 and nN the number of
antennas at the source and destination, respectively. The signal
received at the destination can be written as

y =
√
αHx + n (2)
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Fig. 1. Scattering channel.

where y and x are vectors of size equal to nN and n0,
respectively. Assuming no CSI at the transmitter, the available
transmit power is uniformly distributed over all the n0 anten-
nas, hence x is modeled as a random vector with covariance
Ex[xxH] = Es

n0
I. Note that the total transmitted energy is

Ex[xHx] = Es. H is an nN × n0 random channel matrix,
hereinafter also referred to as multiple-scattering channel
matrix. α is a normalization constant defined as

α =
n0nN

Tr{EH[HHH]}
. (3)

As an example, if N = 1 and H has i.i.d. Gaussian complex
entries with zero mean and unit variance, we have α = 1.
Finally, n is a vector of additive white Gaussian noise with
covariance En[nnH] = N0I. Under such assumptions, the
overall SNR of the system is ρ = Es/N0.

We assume that x and H are independent and that the
communication between source and destination is affected
by Rayleigh fading. Also, each cluster is composed of ni
independent scatterers, i = 1, . . . , N−1. The random channel
matrix, H, can be thus expressed as

H = HN . . .Hi . . .H1 , (4)

where matrices Hi, independent across i due to the indepen-
dence of the scattering stages, have size ni × ni−1, and are
complex random with i.i.d. entries whose real and imaginary
parts are independent and have a standard normal distribution.
Given the communication system under study, in this work we
consider n0 ≤ n1 ≤ . . . ≤ nN . Under such assumptions, the
normalization constant α is given by

α =
n0nN

Tr{EH[HHH]}
=

n0nN∏N
i=0 ni

=

N−1∏
i=1

1

ni
. (5)

When perfect CSI is available at the receiver, the ergodic
mutual information achieved by optimal receive processing is
given by:

I(ρ, n0) = EH

[
ln

∣∣∣∣I +
ρα

n0
HHH

∣∣∣∣]
= EΛ

[
ln

∣∣∣∣I +
ρα

n0
Λ

∣∣∣∣]
= n0Eλ

[
ln

(
1 +

ρα

n0
λ

)]
(a)
= n0

∫ ∞
0

ln (1 + δλ) fλ(λ) dλ , (6)

where Λ and λ are, respectively, the diagonal matrix of
eigenvalues and an unordered eigenvalue of HHH. As far as
the equality (a) is concerned, we defined

δ =
ρα

n0
. (7)

We remark that, although I depends on several system param-
eters, for simplicity in (6) we highlighted only the dependency
on the SNR, ρ, and on the number of transmit antennas, n0.
The distribution of λ, fλ too depends on n0, as highlighted in
the last line of (6).

Assuming to employ a linear receiver instead of the optimal
one, the system incurs some performance loss. The relation-
ship between the optimal ergodic mutual information and the
sum rate achieved by the MMSE receiver has been unveiled
in [1]. Therein, compact expressions for achievable rates have
been derived in the case of Rayleigh and Rician-faded MIMO
channels, under various assumptions on the spatial correlation.

In this work we extend the analysis to the multiple-
scattering channel matrix in (4). Furthermore, we analyse the
case of ZF receiver for which no closed-form results on the
sum rate are available yet. Thus, in this case we derive upper
and lower bounds by exploiting the approaches proposed by
Matthaiou et al. in [2], [5] and by Jiang et al. in [3].

IV. MATHEMATICAL BACKGROUND

Hereinafter we list some results on the statistics of multiple-
scattering channel matrices, which are useful in our analysis.

Given a multiple-scattering matrix with N − 1 clusters as
in (4), the joint law of the entries of matrices Hi, i = 1, . . . , N ,
is given by [9]:

fHi(Hi) = e−Tr{Hi
HHi}π−nini−1 .

We further define the set of auxiliary variables νi = ni − n0,
i = 1, . . . , N . Since we assume n0 ≤ n1 ≤ . . . ≤ nN , such
variables are non-negative integers. It is worth mentioning,
however, that this assumption can be relaxed based on the
observations in [10, Sec. V].

The joint and marginal eigenvalue distributions of HHH
have been characterized, respectively, in [11] and in [10]. In
particular, the joint law of the n0 eigenvalues of HHH can be
written as [11]

fΛ(Λ) =
V (Λ)

Z
|G(Λ)| , (8)

where the normalizing constant Z is given by [10, Eq.(21)]

Z = n0!

n0∏
i=1

N∏
`=0

Γ(i+ ν`) ,

and G(Λ) is an n0 × n0 matrix such that

[G(Λ)]i,j = GN,00,N

(
−
νN , . . . , ν2, ν1 + i− 1

∣∣∣λj) ,

for i, j = 1, . . . , n0.



Let us now define the n0×n0 matrix Ah (with h ∈ Z) with
entries

[Ah]i,j = Γ(ν1 + i+ j + h− 1)

N∏
`=2

Γ(ν` + j + h) . (9)

Then, drawing on [12, Theorem I], the following proposition
holds.

Proposition 4.1: The marginal density of a single, unordered
eigenvalue λ of HHH is given by:

fλ(λ) =

n0∑
i,j=1

[D]i,jG
N,0
0,N

(
−
νN , . . . , ν2, ν1+i−1

∣∣∣λ)
λ1−jΓ−1(n0)Z

(10)

where [D]i,j is the (i, j)-th entry of the cofactor matrix of A0.
Proof: The proof is provided in the Appendix.

Clearly, fλ depends on n0, n1, . . . , nN , however, for sim-
plicity, we highlighted the dependency on n0 only. The above
expression differs from that in [10, Formula (52)], which is
normalized to the number of eigenvalues n0, and is based on
the classical approach of k-point correlation functions for the
density of an arbitrary subset of k < n0 eigenvalues of a given
random matrix. In particular, while (10) is a double sum of
terms where a single Meijer function appears, the expression in
[10] involves products of two Meijer functions. Thus, although
equivalent, we chose to use the more compact expression
in [12, Theorem I], particularized to our channel model, and
to complete it by expliciting the normalizing constant therein.

The CDF of the minimum eigenvalue of HHH is also
provided, relying on [13], in the following proposition.

Proposition 4.2: The CDF of the minimum eigenvalue λmin

of HHH is given by:

Fλmin
(λ) = 1− n0!|G̃(λ)|

Z
, (11)

where

[G̃(λ)]i,j = GN+1,0
1,N+1

(
1
0, νN+j, . . . , ν2+j, ν1+i+j−1

∣∣∣λ) .
Proof: The proof is provided in the Appendix.

Finally, the Shannon transform of HHH is defined as
V(δ, n0) = Eλ[ln(1+δλ)] [14, Def. 2.12], where δ is a positive
real number. Its expression for the multiple-scattering channel
can be obtained by replacing (10) in the above definition, by
writing ln(1 + δλ) in terms of a Meijer-G, and by exploiting
the properties of the Meijer-G functions [8]:

V(δ, n0) =

n0∑
i,j=1

Γ(n0)[D]i,j
Zδj

·

GN+2,1
2,N+2

(
−j, 1− j
−j,−j, νN , . . . , ν2, ν1+i−1

∣∣∣1
δ

)
. (12)

Using the definition of the Shannon transform and (6), we can
write:

I(ρ, n0) = n0V
(
ρα

n0
, n0

)
. (13)

V. PRELIMINARY RESULTS

The positive and negative moments of λ are given in [10].
Here we provide the expression of the moments of the determi-
nant of HHH, which we will exploit later in our analysis. We
also derive the first moment of ln |HHH|, which is largely used
in MIMO performance analysis (see e.g. [15, and references
therein]).

Proposition 5.1: The moments of |HHH| can be expressed
as

EH[|HHH|h] =
n0!

Z
|Ah| h ∈ N (14)

The proof is given in the Appendix.
Corollary 5.1:

EH[ln |HHH|] =
n0!

Z

n0∑
k=1

|A(k)
0 | , (15)

with A
(k)
0 a square matrix of size n0, whose elements coincide

with those of A0, but for the k-th column, for which [16]

[A
(k)
0 ]i,k = [A0]i,k

[
−γ +

ν1+i+k−2∑
t=1

1

t
+

N∑
`=2

(
−γ +

ν`+k−1∑
t=1

1

t

)]
, (16)

where γ is the Euler’s constant.
The proof is given in the Appendix.

VI. COMMUNICATION-THEORETIC ANALYSIS

Let us consider the MIMO communication channel de-
scribed in (2). Assuming to employ a linear filter at the receiver
output and independent decoding, the MIMO channel can
be decomposed into n0 parallel subchannels. Let ρk denote
the instantaneous SINR corresponding to the k-th subchannel.
Then the achievable sum rate can be written as

R ,
n0∑
k=1

Eρk [ln(1 + ρk)] . (17)

The expression of ρk depends on the adopted receiving strat-
egy (e.g., MMSE or ZF). Below we provide the exact closed-
form expression for the achievable sum rate in the case of
MMSE receiver, and an upper and a lower bound in the case of
ZF receiver. Notice that the results we present below are based
on the eigenanalysis of HHH, rather than on the (cumbersome)
statistics of ρk.

A. MMSE receiver

The MMSE filter for the signal in (2) is given by F =
HH(HHH+I/δ)−1, where δ is as in (7). The k-th component
of the filtered signal Fy, has SINR, ρk, given by [17, Ch. 6]:

ρk =
1[

(I + δHHH)
−1
]
k,k

− 1 . (18)

An explicit expression for the pdf of (18) is only available
in the canonical Rayleigh case, i.e., when HHH is a central,



uncorrelated Wishart matrix with nN degrees of freedom [18].
However this problem can be circumvented by writing the term
[(I + δHHH)−1]k,k as [19][(

I + δHHH
)−1]

k,k
=

∣∣I + δH(k)HH(k)
∣∣

|I + δHHH|
(19)

where H(k) is the matrix obtained by removing the k-th
column from H. By using (19) and (18) in (17) (as done
also in [4]), we obtain

RMMSE =

n0∑
k=1

EH

[
ln
∣∣I + δHHH

∣∣]
−

n0∑
k=1

EH(k)

[
ln
∣∣∣I + δH(k)HH(k)

∣∣∣] . (20)

By using (6), the first term on the r.h.s. of (20) can be written
as n0I(ρ, n0). As far as the second term is concerned, this
depends on the distribution of the matrix H(k), which has
size nN × n0 − 1. By using the definition of H in (4), H(k)

can be rewritten as

H(k) = HN · · ·Hi · · ·H(k)
1

where H
(k)
1 is the matrix obtained by removing the k-th

column from H1. Since the entries of H1 are i.i.d., we
conclude that the term W = EH(k) [ln |I + δH(k)HH(k)|] does
not depend on k. Note that W is equivalent to the ergodic
mutual information of the linear system ỹ =

√
αH(k)x̃ + ñ

where Ex̃[x̃x̃H] = Es
n0

I and Eñ[ññH] = N0I. In particular,
note that, according to (3), the normalization constant α is the
same for both matrices H and H(k). It follows that

W = I (ρ, n0 − 1) .

In conclusion,

RMMSE =n0I(ρ, n0)− n0I (ρ, n0 − 1)

=n20V(δ, n0)−n0(n0−1)V (δ, n0−1) . (21)

From (21) immediately follows that the availability of an
explicit expression for the Shannon transform of the channel
matrix allows for a closed-form evaluation of the sum rate in
the MMSE case.

B. ZF receiver

When the ZF filter is employed at the receiver, the SNR on
the k-th sub-channel is given by,

ρk =
δ[

(HHH)
−1
]
k,k

. (22)

In absence of an exact expression for the sum rate of a
MIMO communication with ZF receiver, we work toward
bounding RZF. At first, we exploit the bounds provided in [2],
directly derived with reference to the sum rate, rather than on
ρk, and collect related results in the following proposition.

Proposition 6.1: The sum rate achievable with a ZF receiver
over a MIMO channel affected by Rayleigh fading, in presence
of multiple scattering, is upper bounded by [2, Thm.1]1:

RZF ≤ n0 ln

(
Eλ
[

1

λ

]
+ δ

)
+ n0EH[ln |HHH|]

−
n0∑
k=1

EH(k) [ln |H(k)HH(k)|]

= n0 ln

(
Eλ
[

1

λ

]
+ δ

)
+ n0EH[ln |HHH|]

−n0EH(k) [ln |H(k)HH(k)|] (23)

where recall that matrix H(k) is obtained from H by re-
moving the k-th column. Also, due to the independence and
identical distribution of the columns of H(k), the average
EH(k) [ln |H(k)HH(k)|] does not depend on k. Its value can
be computed by exploiting Corollary 5.1 and by noting that
H(k)HH(k) has size (n0 − 1) × (n0 − 1). The expression of
the first negative moment of λ can be found in [10, Eq. (59)].

The sum rate is lower bounded by [2, Thm.3]:

RZF ≥
n0∑
k=1

ln
(
1 + δeφk

)
= n0 ln

(
1 + δeφk

)
(24)

where for any k ∈ {1, . . . , n0},

φk = EH[ln |HHH|]− EH(k) [ln |H(k)HH(k)|] .

An explicit expression of (24) for the channel model at hand
is obtained by replacing (15) in the φk’s.

For sake of completeness of our analysis, we also report the
upper [3, Eq. (6)] and lower [20, Eq. (8)] bounds to the SINR,
both related to the smallest eigenvalue of HHH. I.e.,

λminδ ≤ ρk ≤
λminδ

u
, (25)

where u is a Beta random variable2, hence fu(u) = (n0 −
1)(1 − u)n0−2, 0 ≤ u ≤ 1. From (25) and the fact that the
bounds are independent of k, it follows that

RZF ≥ n0Eλmin ln (1 + λminδ) , (26)

while

RZF ≤ n0Eλmin,u ln

(
1 +

λminδ

u

)
. (27)

With regard to the upper bound, due to the independence of
λmin and u, (27) can be further expressed as:

RZF ≤ n0 {Eλmin
[ln (λminδ)] +Hn0−1}

+ Eλmin

 2F1

(
1, 1;n0 + 1;− 1

λminδ

)
λminδ

 (28)

1This bound explicitly depends on the first negative moment of an un-
ordered eigenvalue of the channel matrix; in case it does not exist, one can
resort to the upper bound [2, Thm.2], which holds irrespectively from the
availability of Eλ[λ−1].

2With reference to the proof technique of [3, Lemma V.I], we notice that
the rightmost inequality (25) holds for any unitarily invariant matrix, and thus
in particular to (4). As to the leftmost one, it holds also for MMSE receivers.



with

Hn0−1 =

n0−1∑
`=1

1

`
.

Thus, an upper bound to the sum rate can be evaluated via
numerical integration over the law of λmin.

VII. NUMERICAL RESULTS

Here we validate the expressions of the mutual information
and of the rates derived in the previous sections, against
numerical (i.e., Monte Carlo) simulations.

Figure 2 shows the mutual information I(ρ, n0), the sum-
rates RMMSE and RZF, and the upper and lower bounds to
RZF plotted against the SNR ρ. In this scenario, we consider
a channel with one scattering cluster (N = 2), 4 transmit
antennas (n0 = 4), 5 scatterers (n1 = 5), and 6 receive
antennas (n2 = 6). In the plot, the lines represent the results
obtained by evaluating the expressions in (13), (21), (23), (24)
and (28). Note that the lower bound in (26) is not shown,
as it results to be quite loose. The markers, instead, refer to
the results obtained by averaging over M = 1000 randomly
generated samples of the matrix H. In particular,
• square markers have been obtained by computing

Ī(ρ, n0) =
1

M

M∑
m=1

ln |I + δH[m]HH[m]|

• circles have been obtained by computing

R̄MMSE = − 1

M

M∑
m=1

n0∑
k=1

ln

[(
I + δH[m]HH[m]

)−1]
k,k

• triangles have been obtained by computing

R̄ZF = − 1

M

M∑
m=1

n0∑
k=1

ln

1 +
δ[(

H[m]HH[m]
)−1]

k,k


where H[m] is the m-th realization of random matrix H.

The figure shows a perfect match between Monte Carlo and
analytical results for the MMSE case.

As far as the ZF case is concerned, upper and lower bounds
based on Proposition 6.1 are very tight for high SNR, while
at low SNR the upper bound exhibits a floor. In this last
SNR range, the upper bound (27) is to be preferred. This
is in contrast with the Rayleigh fading case, for which the
upper bound in [2] was generally tight over a wide range of
SNR. An intuitive explanation of this behavior is provided by
the spectral density analysis in [10, Sec. IV]. Therein, it is
shown that the marginal eigenvalue density for a non-trivial
(i.e., N ≥ 2) product model exhibits a quite different behavior
with respect to the Rayleigh case. Indeed, while (23) depends
on the statistics of an unordered eigenvalue of HHH, (27)
relies on the minimum eigenvalue. On the contrary, the lower
bound based on λmin, and herein not depicted in any figure, is
quite loose in the presence of multiple scattering. A refinement
of the lower bounding techniques will be subject of future
investigation.

In Figure 3, we compare the sum-rates achieved by the
MMSE and ZF (the latter is numerical) filters in the case
where N = 1, 2, 3 and ni = 4, for i = 0, . . . , N . Note that
for N = 1 the channel reduces to a classical Rayleigh MIMO
without scattering clusters. The figure also reports the lower
and upper bounds to RZF. We observe that as N increases, the
performance of the system decreases. Also, for the ZF case,
the gap between the numerical curve and the upper bound
decreases while the lower bound to RZF tends to become
looser .
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Fig. 2. Ergodic mutual information, sum rate and bounds as functions of the
SNR ρ, for N = 2, n0 = 4, n1 = 5, and n2 = 6.
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VIII. CONCLUSIONS

We studied the performance of a MIMO communica-
tion system in presence of Rayleigh fading and a multiple-
scattering channel between source and destination. We derived



the exact closed-form expression for the achievable sum rate
in the case of MMSE receivers. When ZF receiver is adopted,
we provided a lower and an upper bound to the achievable
sum rate by leveraging results available in the literature. Our
analysis has been validated by numerical results. Future work
will address lower-bounding techniques for ZF receivers, the
case of correlated channels and a possible extension to multi-
level MIMO relay systems.

APPENDIX A
PROOF OF PROPOSITION 4.1

The marginal density of the unordered eigenvalue of HHH
can be obtained by applying [12, Theorem I] to the joint pdf
in (8), i.e.,

fλ(λ) =

n0∑
i,j=1

[D]i,jG
N,0
0,N

(
−
νN , . . . , ν2, ν1+i−1

∣∣∣λ)
λ1−jKZ

(29)

where K is a proper normalization constant and [D]i,j is the
(i, j)-th entry of the cofactor matrix of A0.

In order to derive K, we impose
∫
fλ(λ) dλ = 1. Using the

Laplace determinant expansion (as done in the proof of [12,
Theorem I]) and applying [22, Corollary I], we obtain:

K =
1

(n0 − 1)!
=

1

Γ(n0)
. (30)

By replacing (30) in (29), we get the assertion.

APPENDIX B
PROOF OF PROPOSITION 4.2

The CDF of the minimum eigenvalues of HHH can be
obtained by following the same steps as in [13]. In order to
get an expression for Fλmin

(λ), one exploits first [13, Eq. (7)]
and then, using (8), applies [22, Corollary I]. By doing so, we
get:

Fλmin
(λ) = 1− n0!|G̃(λ)|

Z
, (31)

where

[G̃(λ)]i,j =

∫ +∞

λ

xj−1GN,00,N

(
−
νN , . . . , ν2, ν1+i−1

∣∣∣x) dx,

can be written in closed form via [8, (7.811.3)], as reported
in the proposition statement.

APPENDIX C
PROOF OF PROPOSITION 5.1 AND COROLLARY 5.1

In order to prove Proposition 5.1, recall that |HHH| =∏n0

`=1 λ`. Then, using (8), we have:

EH[|HHH|h] =
1

Z

∫
[0,+∞)n0

V (Λ)|G(Λ)|
n0∏
i=1

λhi dλ1 . . . dλn0

=
n0!

Z
|Ah|,

by virtue of [22, Corollary I]. Note that

[Ah]i,j =

∫
[0,+∞)

λj−1+h[G]i,j dλ

which results to be equal to the expression in (9) [8, 7.811.4].
In order to prove Corollary 5.1, we can write:

EH[ln |HHH|] =
d

ds
EH[exp(s ln |HHH|)]

∣∣∣∣∣
s=0

=
d

ds
EH[|HHH|s]

∣∣∣∣∣
s=0

=
n0!

Z
d

ds
|As|

∣∣∣∣∣
s=0

(32)

where in the last line we exploited the above Proposition. To
compute the derivative of a matrix determinant, we apply the
result in [16, Eq. (1)] and write:

d

ds
|As| =

n0∑
k=1

|[as1, . . .
·
ask, . . . . . .asn0

]| (33)

where ask is the k-th column of matrix As and
·
ask denotes

the derivative of ask. The derivative of the generic i-th entry
of ask is given by:

[
·
ask]i=

d

ds
Γ(ν1 + i+ k + s− 1)

N∏
`=2

Γ(ν` + k + s)

= Γ(ν1 + i+ k + s− 1)

N∏
`=2

Γ(ν` + k + s) ·[
−γ +

ν1+i+k+s−2∑
t=1

1

t
+

N∑
`=2

(
−γ +

ν`+k+s−1∑
t=1

1

t

)]

= [As]i,k

[
−γ +

ν1+i+k+s−2∑
t=1

1

t
+

N∑
`=2

(
−γ +

ν`+k+s−1∑
t=1

1

t

)]
(34)

where γ is Euler’s constant. By computing (33) and (34) for
s = 0 and using the results in (32), we obtain the assertion.
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finite-dimensional random matrices for MIMO wireless communications,”
IEEE International Conference on Communications (ICC), Istanbul,
Turkey, June 2006.

[13] M. Chiani, M. Z. Win, and A. Zanella, “On the marginal distribution of
the eigenvalues of Wishart matrices,” IEEE Trans. on Wireless Commu-
nications, Vol. 57, No. 4, pp. 1050–1060, Apr. 2009.
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