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Abstract—The classical relay channel is well investigated in
literature. The most common relaying techniques are Decode-
and-Forward (DF) and Compress-and-Forward (CF), whereby
the achievable rates of these techniques outperform each other
depending on the quality of the links between nodes. Based on the
results from information theory assuming Gaussian codebooks,
this paper focuses on practical aspects of the CF relay protocol
which outperforms DF if the source-relay link becomes the
bottleneck of the system. In practice, appropriate quantizers have
to be found whose output can be exploited by real decoders.
As the relay’s receive signal contains also noise, maximum
entropy quantizers are unrewarding. Therefore, the Information
Bottleneck (IB) method is used to find the optimal quantizer
for a specific scenario. Furthermore, it is a priori not clear
whether signal processing before quantizing the received signal is
useful considering coded modulation with iterative decoders. In a
nutshell, the received signals may be either quantized directly, or
after a few iterations of decoding. For either case, it is shown how
the respective quantization indices are optimally exploited by a
joint decoder at the destination. Results reveal that performing
soft-output decoding at the relay prior to quantization can be
slightly rewarding in some cases. In general however, the gain
justifies not the additional decoding effort at the relay.

I. INTRODUCTION

The 3-node relay channel, introduced in [1], [2] by van
der Meulen, consists besides source and destination node of
only one relay node which can pursue different strategies [3].
The most common are Decode-and-Forward (DF), Compress-
and-Forward (CF), and Amplify-and-Forward (AF), whereby
the first two outperform the latter one [4]. Furthermore, it
is shown that CF reaches the upper bound on the capacity
for the relay being very close to the destination, whereby
DF approaches the bound when the relay is close to the
source [4], [5]. Due to practical issues, this work focuses
on a half-duplex relay in a Time Division Multiple Access
(TDMA) fashion with a broadcast and a subsequent Multiple
Access (MAC) phase. The length of the two phases has to
be optimized [5], [6]. Due to the half-duplex constrained, two
different transmission strategies regarding the MAC phase are
distinguished. In the orthogonal scheme, the source remains
quiet in the second time slot. Contrarily, the source transmits
jointly with the relay in the non-orthogonal scheme. While
distributed beamforming is of most interest when source-relay
link and source-destination link are equally good, mixing new
information under the source’s signal becomes better the more
the relay moves to the destination. For CF, beamforming is
of no interest because in scenarios, where it outperforms DF,
the relay is located much closer to the destination than to
the source. From information theory, non-orthgonal schemes
promise a considerable gain against orthogonal schemes. On

the contrary, taking the total consumed energy into account,
there are cases where the additional effort due to a non-
orthogonal scheme are not worthwhile [7], [8]. For this reason,
both schemes are considered and will be compared in the
results section.

Focusing on CF in this work, the most important question
is how to do compression at the relay practically. The answer
is given by use of the Information Bottleneck (IB) method
originally introduced in [9] and extended for the relay channel
in [10] which delivers the optimal quantizer as it maximizes
the mutual information between the source’s signal and the
output of the quantizer given a specific achievable rate on
the relay-destination-link. The quantizer delivers compression
indices which are Wyner-Ziv-source encoded and forwarded to
the destination. It will be shown how to obtain log-likelihood
ratios (LLRs) from these indices which can be optimally
exploited by any practical soft-input decoder. Furthermore, the
setup is implemented by means of a Bit Interleaved Coded
Modulation (BICM) scheme in conjunction with state of the
art coding and Quadrature Amplitude Modulation (QAM) used
in Universal Mobile Telecommunications System (UMTS) and
Long Term Evolution (LTE). The simulations determine the
respective quantizers by the iterative IB algorithm regarding
receive symbols as well as soft-values of an additional decoder
at the relay. Results are obtained from frame error rates (FERs)
of the joint decoder at the destination. Finally, the advantage
of optimal random quantization is compared to straightforward
deterministic quantization.

The rest of the paper is organized as follows. Sec. II de-
scribes the system setup including channel model, CF relaying
scheme, and Modulation and Coding Schemes (MCSs) used
for practical coding. Then, Sec. III introduces the IB method to
get the optimal quantizer for the given setup. Sec. IV describes
how to exploit the quantizer output in an iterative decoder for
different approaches. Finally, Sec. VI shows simulation results
and Sec. VII concludes the paper. For the general mathematic
notation: we use bold letters, e.g.x, to denote vectors of
realizations (lower case letters), e.g.x, of a random variable
(uppercase letters), e.g.X , with a corresponding alphabet in
calligraphic letters, e.g.X .

II. SYSTEM SETUP

A. The classical (3-Node) Relay Channel

The 3-node relay channel, as depicted in Fig. 1, consists of
one source node S, one relay node R, and one destination node
D, where links between nodes are modeled as Additive White
Gaussian Noise (AWGN) channels with nf ∼ CN (0, 1) being



the noise at receiving node f ∈ {R,D}. Furthermore, a path-
loss is considered by channel coefficients aef = d

(−α/2)
ef ∀e ∈

{S,R},∀f ∈ {R,D}, where α and def are path-loss exponent
and distance between node e and f , respectively.
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Fig. 1. The Classical Relay Channel

The transmission is organized in two time slots of length
τ ∈ [0, 1] and (1 − τ) denoted as broadcast and MAC phase,
respectively. First, S transmits xS1 to R and D

yR = aSR
√
PS1xS1 + nR (1)

yD1 = aSD
√
PS1xS1 + nD1, (2)

where PS1 denotes the transmit power of the related transmit
vector xS1 whose elements are realizations of random variable
XS1 with E{|XS1|2} = 1.

In the MAC phase, R transmits a compressed version of
yR and S a new message which is separately encoded and
modulated. Hence, D receives a superposition of both.

yD2 = aSD
√
PS2xS2 + aRD

√
PRxR + nD2 (3)

For comparison, the source may also be quiet in the 2nd time
slot to have orthogonal channel access, i.e. , PS2 = 0.

B. Compress and Forward

Ensuing from information theory, Wyner-Ziv coding [11]
is applied to compress the received sequence yR at the relay.
The adjustment of the compression rate considers the amount
of side information yD1 at the destination. First, yR will be
compressed following the distribution

Pr {z} =
∑
yR

Pr {z|yR}Pr {yR}, (4)

where z denotes the compression index of the compressed
received signal. The probabilities Pr {z|yR} are obtained by
the IB method and represent a random vector quantization
yR → z. In a second step, the indices z will be source encoded
with side information (binning) delivering indices s which are
actually transmitted via xR.

By decoding of yD2 (treating xS2 as noise) the destination
detects s and recovers z. Then z and yD1 are used jointly to
decode the message transmitted by S in the broadcast phase.
Please note that S transmits a second message directly in the
MAC phase. This can be detected from yD2 after subtracting
the influence of xR.

As the focus of this investigation lies on exploiting z in an
iterative decoder, the source coding step with side information
to get s from z is omitted, i.e. , z is assumed to be directly
available at D for the iterative decoding described in Sec. IV.

C. Modulation and Coding Schemes

For practical coding, a set of 40 MCSs is available,
whereby the practically relevant range is well covered. More
precisely, the well known UMTS/LTE turbo code [12] and M -
QAM with orders m = log2M,m ∈ {2, 4, 6, 8, 10} are used.
The inherent code rate Rc = 1/3 of the turbo code is extended
to a set of 8 code rates via puncturing as shown in Table I [13].

TABLE I. PUNCTURING PATTERNS (OCTAL)

4/5 2/3 4/7 1/2 4/9 2/5 4/11 1/3
100 101 101 121 125 125 335 377
001 021 261 263 363 377 377 377

For decoding, a turbo process with 8 iterations is imple-
mented exchanging soft information between two log-map de-
coders (Bahl Cocke Jelinek Raviv (BCJR) [14]). The demapper
is separated from the decoder by a random interleaver to split
error bursts. Furthermore, it is not included in the turbo process
known as BICM with parallel decoding [15].

III. INFORMATION BOTTLENECK METHOD

This section introduces the IB method [9], [10], [16], [17]
which finds the conditional distribution Pr {z|y} to quantize an
observation y of x to z forming a Markov chain X → Y → Z.
As this problem is non-convex, the proposed iterative algo-
rithm converges only to a local optimum. The algorithm finds
a trade-off between the mutual information I(X;Z) and source
coding rate I(Y ;Z) defining the information-rate function

I(r) , max
Pr {z|y}

I(X;Z) s.t. I(Y ;Z) ≤ r (5)

for 0 < r ≤ H(Y ). Considering the 3-node relay channel, (5)
can be extended to the trade-off between I(XS1;Z|YD1) and
I(YR;Z|YD1) exploiting the side information which is avail-
able at destination D due to the broadcast phase. Following
the derivation in [10], the extended information rate function
given the joint distribution Pr {xS1, yR, yD1} is defined as

I(r) , max
Pr {z|yR}

I(XS1;Z|YD1) s.t. I(YR;Z|YD1) ≤ r,

(6)

where 0 < r ≤ H(YR|YD1) denotes the rate after source cod-
ing with side information (Wyner-Ziv). Applying the method
of Lagrangian multipliers, (6) can be solved by an iterative
algorithm similar to the Blahut-Arimoto algorithm [9], [18].
Introducing the Lagrangian multiplier β > 0, (6) may be
rewritten as [10]

I(r(β))− 1

β
r(β) = max

Pr {z|yR}
I(XS1;Z|YD1)− 1

β
I(YR;Z|YD1)

=
1

β
min

Pr {z|yR}
I(YR;Z|YD1)− βI(X;Z|YD1).

(7)

From (7) the modified iterative IB algorithm, as shown in
Algorithm 1, can be derived [10].

This algorithm delivers Pr {z|yR} given Pr {xS1, yR, yD1}
with respect to a specific trade-off I(r(β)) depending on La-
grangian multiplier β > 0, i.e. , the algorithm takes β as input
parameter and outputs additionally the pair (I(r(β)), r(β)).



Input: Pr{xS1, yR, yD1}, XS1, YR, YD1, Z , β > 0,
ε > 0

Output: Pr {z|yR}, I(r(β)), r(β))

1 initialize Pr {z|yR}(0) according to Maximum Output
Entropy (MOE)

2 k ← 1

3 Pr{z}(0) ←
∑
yR

Pr{yR}Pr {z|yR}(0)

4 Pr{z, yD1}(0) ←
∑
yR

Pr{yR, yD1}Pr {z|yR}(0)

5 Pr{z|yD1}(0) ← Pr{z,yD1}(0)
Pr{yD1}

6 Pr{xS1|z, yD1}(0) ← 1
Pr{z,yD1}(0)∑

yR
Pr{xS1, yR, yD1}Pr {z|yR}(0)

7 d(0)(z, yR)← β
∑
yD1

Pr{yD1|yR}
DKL

(
Pr{xS1|yR, yD1}||Pr{xS1, z, y

(0)
D1}

)
−∑

yD1
Pr{yD1|yR} log2

(
Pr{z|yD1}(0)

)
8 Pr {z|yR}(1) ← 2−d

(0)(z,yR)/
∑
z 2−d

(0)(z,yR)

9 while |Pr {z|yR}(k) − Pr {z|yR}(k−1)|/(|YR| · |Z|) ≥ ε
do

10 Pr{z}(k) ←
∑
yR

Pr{yR}Pr {z|yR}(k)

11 Pr{z, yD1}(k) ←
∑
yR

Pr{yR, yD1}Pr {z|yR}(k)

12 Pr{z|yD1}(k) ← Pr{z,yD1}(k)

Pr{yD1}
13 Pr{xS1|z, yD1}(k) ← 1

Pr{z,yD1}(k)∑
yR

Pr{xS1, yR, yD1}Pr {z|yR}(0)

14 d(k)(z, yR)← β
∑
yD1

Pr{yD1|yR}
DKL

(
Pr{xS1|yR, yD1}||Pr{xS1, z, y

(k)
D1}

)
−∑

yD1
Pr{yD1|yR} log2

(
Pr{z|yD1}(k)

)
15 Pr {z|yR}(k+1) ← 2−d

(k)(z,yR)/
∑
z 2−d

(k)(z,yR)

16 k ← k + 1
17 end
18 Pr {z|yR} ← Pr {z|yR}(k)

19 r(β)←
∑
yR,z

Pr {z|yR}Pr{yR} log2

(
Pr {z|yR}

Pr{z}

)
−
∑
yD1,z

Pr {z|yD1}Pr{yD1} log2

(
Pr {z|yD1}

Pr{z}

)
20 I(r(β))←∑

xS1,yD1,z
Pr {xS1|z, yD1}Pr {z, yD1} log2

(
Pr {xS1|z,yD1

Pr {xS1|yD1

)
Algorithm 1: Iterative IB algorithm [10], where DKL de-
notes the Kullback-Leibler-Divergence.

To calculate the whole information rate curve, a range
of β is used, whereby the resulting quantizers are random
except for β → ∞. The maximum β delivers the maximum
rate r = H(Z|YD1) leading to a deterministic quantizer, i.e. ,
Pr {z|yR} equals either zero or one. According to the CF
relay protocol, r is restricted by the capacity of the relay
destination link such that τ · r ≤ (1 − τ)I(XR;YD2) holds.
As the algorithm is iterative, usually a random initialization
for Pr {z|yR} is needed. However, due to the non-convex
nature of the problem, a random initialization needs several
runs until a close to optimum value for (I(r(β)), r(β)) is
obtained. To avoid repeatedly executions, MOE initialization
is used in this work which is known to perform very well [19].
Please note that the input distribution Pr {xS1, yR, yD1} to the
IB algorithm is discrete whereas the relay channel delivers a

yR

QAM-Demap. Turbo-Dec.

Quant.

Source End.Turbo-Enc.QAM-Map.xR

LcR LuR

z

scR

Fig. 2. Processing chain at the relay with either direct quantization or
additional prior decoding.

continuous distribution pXỸRỸD1
(x, ỹR, ỹD1), that is, a pre-

quantization of the channel outputs is necessary. In practice,
this is mostly done in any case due to usual digital signal
processing.

IV. JOINT DECODING

From an information theoretic perspective it is optimal to
compress the received signal yR and apply Wyner-Ziv coding
exploiting yD1. In practice, however, two questions arise. First,
the quantization obtained with the IB method is random and,
thus, delivers no deterministic index for a received symbol.
Hence, the question has to be answered how this index can
be exploited in a practical soft-input decoder. Second, CF
is usually applied when error free decoding is not possible.
However, considering iterative decoding, the reliability of
LLRs may be improved after a few iterations in an iterative
decoder. Therefore, the approaches depicted in Fig. 2 will be
distinguished:

1) Direct quantization of yR to compression indices zy,
2) additional soft-output decoding to get LLRs LuR

=
L(u|yR) and subsequent quantization to zu.

A symbol-by-symbol Maximum-A-Posteriori (MAP) de-
coder delivers

L(ûl) = log
Pr {ul = 0,yD1, z}
Pr {ul = 1,yD1, z}

(8)

for the final decision. As these joint distributions are not
directly accessible, the set of all possible code words is divided
into two subsets Γ

(1)
l and Γ

(0)
l containing code words c whose

lth information bit is ul = 1 and ul = 0, respectively.

L(ûl) = log

∑
c∈Γ

(0)
l

Pr {c,yD1, z}∑
c∈Γ

(1)
l

Pr {c,yD1, z}
(9)



A. Direct Quantization

For the direct quantization with no previous processing at
the relay, z corresponds to zy . Then, (9) can be simplified to

L(ûl) = log

∑
c∈Γ

(0)
l

Pr {yD1, z|c}Pr {c}∑
c∈Γ

(1)
l

Pr {yD1, z|c}Pr {c}

= log

∑
c∈Γ

(0)
l

Pr {yD1|c}Pr {z|c}Pr {c}∑
c∈Γ

(1)
l

Pr {yD1|c}Pr {z|c}Pr {c}

= log

∑
c∈Γ

(0)
l

n−1∏
i=0

Pr {yi|ci}Pr {zi|ci}
k−1∏
j=0

Pr {uj}

∑
c∈Γ

(1)
l

n−1∏
i=0

Pr {yi|ci}Pr {zi|ci}
k−1∏
j=0

Pr {uj}

= log

∑
c∈Γ

(0)
l

n−1∏
i=0

e−(L(yi|ci)+L(zi|ci))ci
k−1∏
j=0

e−L(uj)uj

∑
c∈Γ

(1)
l

n−1∏
i=0

e−(L(yi|ci)+L(zi|ci))ci
k−1∏
j=0

e−L(uj)uj

.

(10)

The first exponential term in (10) represents information about
the code bits from the channels (S → D, S → R) and
the second exponential term a priori knowledge about the
information bits. Both will be given as input to an appropriate
decoder like the BCJR [14]. It becomes clear that the decoder
itself needs not to be modified. Solely, the LLRs L(zi|ci)
have to be found and added to the LLRs L(yDi|ci) which
are delivered by the demapper. The LLR of interest for each
i is then

L(zy|c) = log
Pr {zy|c = 0}
Pr {zy|c = 1}

= log

∑
yR∈YR

Pr {zy, yR|c = 0}∑
yR∈YR

Pr {zy, yR|c = 1}

= log

∑
yR∈YR

Pr {zy|yR, c = 0}Pr {yR|c = 0}∑
yR∈YR

Pr {zy|yR, c = 1}Pr {yR|c = 1}

= log

∑
yR∈YR

Pr {zy|yR}Pr {yR|c = 0}∑
yR∈YR

Pr {zy|yR}Pr {yR|c = 1}
, (11)

where the condition on c in the first term cancels due to
Markov property C → X → YR → Z. The first distribution
Pr {zy|yR} is known from IB method. The second distribution
Pr {yR|c} can be considered as the demapper output L(yR|c)
for all possible yR ∈ YR. In this context (11) may be seen as
a virtual relay demapper delivering an average LLR.

B. Quantization of Soft-Decoder-Output

When the relay applies additional decoding prior to quan-
tization, the IB method delivers Pr {zu|LuR

} given the dis-
tribution Pr {u, LuR

, LuD1} which is obtained numerically.
As zu represents knowledge about the information bit, (9) is

simplified in another way exploiting Pr {z|c} = Pr {z|u}.

L(ûl) = log

∑
c∈Γ

(0)
l

Pr {yD1|c}Pr {z|u}Pr {u}∑
c∈Γ

(1)
l

Pr {yD1|c}Pr {z|u}Pr {u}

= log

∑
c∈Γ

(0)
l

n−1∏
i=0

Pr {yi|ci}
k−1∏
j=0

Pr {zj |uj}
k−1∏
j=0

Pr {uj}

∑
c∈Γ

(1)
l

n−1∏
i=0

Pr {yi|ci}
k−1∏
j=0

Pr {zj |uj}
k−1∏
j=0

Pr {uj}

= log

∑
c∈Γ

(0)
l

n−1∏
i=0

e−L(yi|ci)ci
k−1∏
j=0

e−(L(uj)+L(zj |uj))uj

∑
c∈Γ

(1)
l

n−1∏
i=0

e−L(yi|ci)ci
k−1∏
j=0

e−(L(uj)+L(zj |uj))uj

,

(12)

where L(zj |uj) is now added to the a priori information L(uj)
that is fed into a practical decoder. Similarly as before, the LLR
of interest for each i is

L(zu|u) = log
Pr {zu|u = 0}
Pr {zu|u = 1}

= log

∑
LuR
∈Lu

R

Pr {zu, LuR
|u = 0}∑

LuR
∈Lu

R

Pr {zu, LuR
|u = 1}

= log

∑
LuR
∈Lu

R

Pr {zu|LuR
}Pr {LuR

|u = 0}∑
LuR
∈Lu

R

Pr {zu|LuR
}Pr {LuR

|u = 1}
, (13)

where Pr {zu|LuR
} is the distribution of the quantizer

known from the IB method. Furthermore, the distribution
Pr {LuR

|u = 0} is given by Pr {u, LuR
, LuD1} which is an

input of the IB method.

V. RATE ALLOCATION FOR PRACTICAL CODES

This section describes the allocation of a discrete rate Rb =
m · Rc (ensuing from the MCSs presented in Sec. II-C) to
a specific link which is defined by its signal to noise ratio
(SNR) or its signal to interference plus noise ratio (SINR).
Therefore, Monte Carlo Simulations are applied to a simple
AWGN channel to find FER vs. SNR for all MCS. From these
curves, one can find a threshold SNR for each rate Rb such
that a target FER of 10−2 is reached (cf. Fig. 3). Then, Fig. 3
is used to determine the MAC rates RRb and RS2

b of xR and
xS2, respectively.

−5 0 5 10 15 20 25 30
0

2

4

6

8

SNR in dB →

R
b
→

m = 2 m = 4

m = 6 m = 8

m = 10 Capacity

Fig. 3. Achievable rates Rb versus SNR for FER = 10−2 on direct link.
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Fig. 4. Simulation Setup excluding Wyner-Ziv coding.

As the influence of the indices z on the destination de-
coder cannot be analytically described, the modified Monte
Carlo simulation depicted in Fig. 4 is applied to determine
the broadcast rate RS1

b of xS1. Following the description
in Sec. IV, this simulation includes optimal quantization re-
garding YR and LuR

and extended decoding exploiting the
compression indices zy and zu in the form of (11) and (13),
respectively.1 The optimal quantizers are determined on the
fly for |Z| = 16 and for different values of the parameter
β ∈ [1, 5, 25, 100, 200, 500] delivering a set of compression
rates r(β) as the optimal r is a priori unknown. Moreover the
quantizers are stored in a Look-Up-Table (LUT) so that they
are calculated only once. Regarding the compression of LuR

additional decoding prior to quantization is simulated for 1 to
4 iterations.

−5 0 5 10 15
0

2

4

SNR in dB →

R
b
→

m = 2 β = 500

m = 4 β = 500

m = 6 β = 500

Fig. 5. Achievable rates Rb for FER = 10−2 versus SNR on direct link
exploiting compression indices zy (β = 500) received through the relay.
Additionally dashed lines correspond to the rates of Fig. 3.

To visualize the gain in the destination’s decoder due to the
compression indices from the relay, Fig. 5 shows exemplary
achievable rates RS1

b (direct quantization) in the broadcast
phase versus the SNR of the direct link for a typical CF
scenario with β = 500 for all quantizers. Such rates RS1

b (β)
are obtained for all β ∈ [1, 5, 25, 100, 200, 500] in combination
with 4 turbo iterations at the relay for the second approach.
Hence, RS1

b (β) can be straightforward determined given the
SNR

SNR = a2
SD · PS1. (14)

In the following, the total CF-rates RCF will be determined by
means of Figures 3 and 5 as well as the corresponding SNRs
of the specific links. Regarding the SNR or SINR, respectively,
of the MAC phase (3), non-orthogonal and orthogonal channel
access need to be distinguished.

1Please remember that the Wyner-Ziv coding and decoding as well as
the transmission R → D are not included into the simulation rather the
compression indices z ∈ {zy, zu} are assumed to be available at the
destination’s decoder.

A. Orthogonal Channel Access

For the orthogonal scheme, PS2 = 0 holds. Hence, the
SNR of (3) to determine RRb is given by

SNR = a2
RD · PR. (15)

The total throughput, where RS1
b (β) is determined with (14)

as depicted in Fig. 5, is

RorthCF = max
τ
{τRS1

b (β)} s.t. τ ·Rs(β) ≤ (1− τ)RRb , (16)

where Rs(β) = 2 · ry(β), or Rs(β) = RS1
b (β) · ru(β)

depending on the processing strategy of the relay introduced
in Sec. IV.2 Solving the condition in (16) with equality
gives τ depending on a specific source coding rate r(β) ∈
{ry(β), ru(β)} since RRb and RS1

b (β) are given due to (15)
and (14), respectively. Hence, the maximizing rate is chosen
from all available rates r(β).

B. Non-orthogonal Channel Access

For the non-orthogonal scheme in (3), the SINR3

SINR =
a2
RD · PR

a2
SDPS2 + 1

(17)

is used to determine RRb . Hence, the interference
aSD
√
PS2xS2 is treated as noise. After interference

cancellation, the SNR with respect to xS2, to determine the
rate RS2

b , is given as

SNR = a2
SD · PS2. (18)

Similarly as above, the total throughput is

RnonCF = max
τ
{τRS1

b (β) + (1− τ)RS2
b } s.t. τ ·Rs(β) ≤ (1− τ)RRb ,

(19)

where (1 − τ)RS2
b depicts the non-orthogonal amount of

information.

VI. RESULTS

For the results in this section, all nodes are placed on a
line with S, D and R at positions 0, 1, and d, respectively.
Its transmit powers are set equally to PS1 = PS2 = PR = P .
To ensure a fair comparison the total consumed energy per
transmission will be considered as follows

Enontotal = τnonP + (1− τnon)2P =(2− τnon)P (20a)
Eorthtotal = τorthP + (1− τorth)P =P, (20b)

whereby the total transmission time is normalized to 1. Fig. 6
shows results for R being at d = 0.8. As expected, CF
outperforms DF (Results taken from [7]) almost in the whole
depicted range due to S → R being the bottleneck of the
system. Anyhow for some SNRs in the low range, DF is
superior or equally good. Moving the relay closer to the
destination at d = 0.9 as in Fig. 7, DF is clearly outperformed
by CF in the whole range.

2Here, the factors in front of the specific source coding rates ry , and
ru (given by the IB method) denote the rate change due the specific pre-
processing at the relay. The factor 2 related to ry is necessary because inphase
and quadrature component are quantized independently.

3Please remember that the noise power is normalized to σ2
N = 1
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Fig. 6. Total achievable rates for CF and DF versus SNR at d = 0.8 for
non-orthogonal channel access in the MAC phase. Non-orthogonal scheme
considered.
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Fig. 7. Total achievable rates for CF and DF versus SNR at d = 0.9 for
non-orthogonal channel access in the MAC phase. Non-orthogonal scheme
considered.
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Fig. 8. Total achievable rates for CF versus SNR at d = 0.8 for strategies,
where the relay performs either direct quantization (blue) or additional soft-
output decoding (red). Non-orthogonal scheme considered

Regarding the different processing strategies (cf. Fig. 8) at
the relay, it becomes visible that soft-output decoding with 4
iterations at the relay prior to quantization can be rewarding for
some SNRs. Generally however, there is no significant advan-
tage (sometimes even a loss) compared to direct quantization.
It has to be noted that direct quantization affects modulated
symbols while the quantization of the decoder output (bit level)
may affect considerably more values depending on the spectral
efficiency. For less iterations, e.g. , only one, decoding at the
relay becomes even worse. In a nutshell, the additional effort
due to decoding does not pay off.
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Fig. 9. Total achievable rates for CF versus SNR at d = 0.8 comparing
orthogonal to non-orthogonal channel access in the MAC phase for direct
quantization at the relay.

Let us next compare the non-orthogonal to the orthogonal
scheme. Fig. 9 shows corresponding rates for direct quanti-
zation at d = 0.8. In the low SNR-range up to 0 dB, no
MCS supports the transmission of new information over the
direct link, i.e. the non-orthogonal scheme brings no benefit.
For moderate SNRs both schemes perform similarly, that is, the
additional effort to separate the signals received by source and
relay in the MAC phase is not worthwhile. In fact, this state-
ment holds only for fixed total energy consumption. Without
the energy constraint (20), the non-orthogonal scheme would
be slightly advantageous. In the high SNRs-range however,
the non-orthogonal scheme clearly outperforms the orthogonal
even with the total energy constraint. The reason lies in the
limited range of available MCSs in practice. Please note that
the highest considered MCS of 8Bit/s corresponds to a 1024-
QAM with a code rate of 4/5 which is even beyond state of
the art implementations. Due to this limit, the R → D link
saturates for d→ 1 and, thus, its capacity cannot be exploited.
Consequently, more time is needed in the MAC phase to
transmit the information from R to D. Hypothetically, if the
capacity of the link could be exploited, the total throughput
would be greater due to more available time in the first time
slot. This effect degrades the orthogonal more than the non-
orthogonal scheme because the non-orthogonal scheme reveals
a huge gain due to the direct link in the second time slot.

Another interesting question is whether the loss due to sub-
optimal deterministic quantization compared to optimal ran-
dom quantization carries weight regarding the limited amount
of discrete rates Rb. Thus, Fig. 10 compares optimum random



with deterministic quantization which may also be determined
by the IB method setting β → ∞. In the whole range, the
scheme using deterministic quantization is outperformed by the
one using optimal random quantization, and is consequently
not a recommendable alternative.
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det. quant. non-orth.
det. quant. orth

Fig. 10. Total achievable rates for CF versus SNR at d = 0.8 comparing
random and deterministic quantization at the relay. Direct quantization without
decoding at the relay is considered.

VII. CONCLUSION

In this paper, practical aspects of the CF relay protocol
were investigated. The major emphasis was the analysis of
optimum practical quantization obtained by the iterative IB
algorithm and the optimal integration of outcoming quan-
tization indices into a joint decoder at the destination. As
a result achievable rates of a system with state of the art
coding and modulation were obtained by the help of Monte
Carlo simulations. Therefore, the available MCSs provide
rates Rb ∈ [2/3, 8] Bit/s which cover the practically relevant
range. Furthermore, it was investigated if additional soft-
output-decoding at the relay prior to quantization improve
the performance of the overall system. Results reveal that
there is small gain for some SNRs. Considering the additional
effort however, it is not worthwhile. In comparison to the DF-
protocol, CF is mostly superior or at least similarly good, and,
therefore preferable for relay positions close to the destination.
Results regarding non-orthogonal channel access in the MAC
phase expose on the one hand an advantage in the high SNR-
range against straightforward orthogonal access. On the other
hand, the additional effort of the non-orthogonal scheme to
separate the superimposed signals of source and relay does
not pay off in the moderate SNR-range. For low SNRs non-
orthogonal channel access cannot be established due to the in
practice limited range of available MCSs. Finally, it was shown
that the use of more complex random quantizers leads to a
high gain in performance compared to the use of deterministic
quantizers which need a much higher compression rate.
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