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Abstract—In this paper we consider the estimation of channel
coefficients and frequency offsets for LOS MIMO systems. We
propose that by exploiting the structure of the channel matrix,
which is present due to the geometrical nature of the channel, the
estimation process can be enhanced. If a single oscillator setup
is used at transmitter and receiver, respectively, this structure is
preserved and can be exploited. Some methods using this fact
are discussed and their performance is evaluated with respect to
estimation accuracy, revealing that with relatively short training
sequences, estimation results close to the fundamental bounds
can be achieved.

I. INTRODUCTION

Channel estimation and synchronization are fundamental
tasks that need to be solved for every communications system
in order to equalize the channel and provide the means for
data transmission. For MIMO systems this can become very
complex due to the possibly high number of parameters that
need to be estimated depending on the system setup. Estima-
tion of the MIMO channel coefficients and of carrier frequency
offsets is well established for classical fading channels. The
activity and progress in the field of millimeter wave circuits
have made line-of-sight (LOS) MIMO a prime technique for
indoor and outdoor communications scenarios requiring high
data rates. LOS MIMO is based on spherical wave modeling
[1], which generates a channel matrix that is highly dependent
on the geometry of the antenna arrangements.

For fading channels there have been several investigations
over the years determining fundamental limits and viable
training schemes that allow the estimation of the channel, as
well as frequency offsets. In [2] narrowband Rayleigh fading
channels in conjunction with different frequency offsets for
each transmit antenna are investigated for pilot based schemes.
The authors derive the Cramér-Rao Bound (CRB) for that case
and propose a simplified maximum likelihood (ML) and a
correlation-based estimator coming close to that bound. An
overview of training-based MIMO channel estimation can
be found in [3]. Several estimation methods are discussed
regarding their performance and complexity and the subject of
optimal training sequences for them is reviewed. The works
in [4] and [5] investigate the training design for the estima-
tion of MIMO channels, including frequency selective fading
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scenarios, with carrier frequency offsets. Suitable training
sequences and different estimation methods with reasonable
computational cost are suggested for different setups. Pilot-
assisted frequency synchronization for massive MIMO sys-
tems is studied in [6], where the channel gains are assumed
to be known. The CRB and ML estimation are provided and
an achievable rate analysis is carried out.

In this paper we will show some results on how to estimate
channel coefficients and frequency offsets specifically for LOS
channel MIMO systems, which has rarely been considered
in the literature. In principle, the same techniques used in
the literature can also be applied to LOS MIMO systems
for parameter estimation. However, the inherent structure of
the channel can be exploited in order to reduce estimation
complexity or improve estimation accuracy.

Consider ()7 and (-)f to denote transpose and conjugate
transpose, respectively. Boldface small letters, e.g., x, are used
for vectors while boldface capital letters, e.g., X, are used
for matrices. Furthermore, I is the N x N identity matrix,
while diag (x) and blkdiag (X) denote the diagonal and block
diagonal matrix with diagonal elements of vector x and matrix
X, respectively.

II. SYSTEM MODEL

Consider the narrowband received signal of a MIMO system
in baseband to be defined by

N
Ym (t) = Z B T (t) - @278 matgiBbmn 44y (1)

n=1

where n = 1...N and m = 1... M describe the index and
number of transmit and receive antennas. Furthermore, h,,,
is the channel coefficient between the corresponding antennas
and z,(t) is the continuous information carrying waveform
transmitted from the nth antenna in complex baseband repre-
sentation. The frequency and phase differences between the
different oscillators at transmitter and receiver are denoted
as Afmnn and Ad,,,. The term n,, () is additive noise with
complex Gaussian distribution at the mth antenna. Note that
the frequency offsets correspond to the normalized frequency
value, i.e., Af, = f”;# where f; is the symbol rate and
fn» fm are the frequencies of the corresponding oscillators at
transmitter and receiver.



For the case of a single oscillator at transmitter and receiver,
respectively, this reduces to

N
Ym (t) = eI2TASLIAG . Z B - T () + 1 (1) (2)
n=1
which is generally easier to estimate and compensate since
less parameters have to be considered. In practice, this setup
might not always be realizable, e.g., due to a large number of
antennas.
For a pure LOS channel [7], [8] the coefficients are depen-
dent on the geometric setup of the antenna arrays, determined
through

hmn = Qmn * €Xp (_]27Tfn . Tmn) (3)
= Gyn - exD <j27r7’;"”> )

where a,,, is the corresponding attenuation coefficient and
Tmn 18 the propagation delay between antenna n and antenna
m, which is given by the distance between the antennas 7,
and the wavelength of the nth transmit oscillator A\, = ¢/ f,
where c is the speed of light. The value of a,,, should in
a LOS scenario be approximately equal across the different
paths and can thus be assumed constant for all h,,, and be
neglected for the further analysis.

III. CRAMER-RAO BOUND
The CRB offers the fundamental limit that an estimator can
possibly achieve. To derive it first assume that x,, () is now a
training signal that is going to be used to estimate the unknown
parameters of the channel. Using P discrete samples of rate
fs, we can write the signal received at the mth antenna as a
vector with

—_—
th,w h"l-,(f’
where y,, = [ym(]-)v cee 7ym<P) T’ h,, = [hmla ceey th]T
and n,, = [n,(1),...,n,(P)]" ~ CN(0,0%Ip). Further,
the phase shift is in ®,,, = diag (ejA‘l""l, ey ejA‘l""N), O is
the Hadamard product, and

z1(1) -+ zn(1) x(1)T
n(P) - an(P)]  |x(P)T
ejAWml . ejAWmN

ejQAwnll . ejzAwrnN

ejPAWnLI . ejPAUJnLN

with Awp, = 27A f,. Note that for the single oscillator
setup, there is no dependence on m and n in the matrices ®,,
and €2,,.

We can also write the complete received vector as

Yy = th¢ +n (6)

7. y5]" hy = WT®,,... hE@y]",
n = [nl e nﬂ] , and the frequency offset impaired
training matrix is in X,, = blkdiag (2 © X, ..., Qy ® X).
As noted in other works [2], [4], the estimation of the
parameters for each of the receiving antennas is decoupled
(fisher information matrix is block diagonal, CRB is block
diagonal) and can be carried out independently, and hence we
will focus in the following on (5) rather than (6). Note that
we have merged the channel coefficients and the phase shifts
into one term h,,, 4, this will be explained in the next section.

A. No Frequency Offset

Let us first investigate the case when Aw,,,, = 0. Then, the
model reduces to

Ym = Xhm,d) +n, (7)

where the parameter vector to be estimated per receive antenna
is 0, = [Re{h%;,qb} Im{hgwb}]T, and since n,, is a white
Gaussian noise vector, the CRB is readily found [2], [9] by

o? [Re{X!"X} —Im{XUX}]""

CRB(Om) = 5 |iixiX}  Refxix} | = ®

B. Frequency Offset Impaired

Using the full form also including the frequency offsets
Ym = Xm,whm,¢ +n,, (9)

the new parameter vector of interest to be determined is 6,,, =
T .
[Re{hl ,} TIm{h] ,} w!]", where the vector conjtﬂammg
the frequency offsets is w,, = [Awmi,...,Awyy] . The
CRB is found, e.g., in [9] and repeated at the bottom of the
page (10), with D,,, = diag (1,...,P) - X o - diag (B, ¢).

IV. LOS MIMO

As can be seen in (4), the channel coefficients in the LOS
MIMO case are determined by the distances between transmit
and receive antennas r,,,. We write the channel coefficients
including the phase shifts

R = €XD (—j%ﬁ”") cexp (jAGmn) (1)

n

which can be considered as one joint term, c.f. (5). This is
possible because the introduced phase shifts, which do not

2 Re{X%me’w}
Im{X%me)w}
Re{DEX,, .}

CRB (0,,) = %
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Fig. 1. Example of a symmetric uniform rectangular array setup generating
a channel matrix with block Toeplitz structure.

vary in time, correspond to row and column operations on the
initial H = [hy,...,hy]” which do not change the condition
number of the matrix. The phase shifts will thus be fully
compensated as part of a generic MIMO receiver by using
the joint channel matrix Hy, = [®1h, ..., <I>MhM]T, whose
entries are determined through (11). Nevertheless, the phase
shifts will have an impact on the estimation of the channel
matrix as will be seen later.

Due to the geometrical structure of the channel, the channel
coefficients from one receive antenna to another typically do
not vary randomly as is the case for Rayleigh scattering. For
example, for all of the optimal symmetric (M = N) uniform
array designs, e.g., [7], [8], [10], the matrix H will have a
block Toeplitz structure, i.e.,

H, H, Hy,

H2 H1 HNyfl

H= | Hs H, Hy, 2
Hy, Hy,—1 H,

where IV, is the number of elements in the first array dimen-
sion and the sub-matrices of index n, have Toeplitz structure
with

hny 1 hny2 hny N
ny2 nyl hﬂme—l
H = hnyS hny2 hnyN172
Ny
hnme hnnyfl hnyl

where N, is the number of elements in the second array
dimension and N = NN, - N,;. Note that there are IV, different
sub-matrices with N, different entries. An example of such
a setup is given in Fig. 1. For the case of uniform linear ar-
rays (ULAs), a special case where N, = 1 or N, = 1, the
matrix reduces to standard Toeplitz form, i.e., hy, ..., h;; are
circularly shifted versions of each other.

In general, for every regular shaped antenna arrangement,
including non-symmetric cases, there will be a part of the
matrix that has block Toeplitz structure and a part that depends

more specifically on the chosen arrangement and alignment
of the arrays. We will in this paper focus on symmetric
uniform rectangular array (URA) setups as they deliver the
highest capacity with the lowest form factor for pure LOS
channels [10].

A. Estimation in Frequency Offset free Case

Any training matrix X having orthogonal columns under
transmit power constraint is optimal in the sense that it
minimizes the CRB [3], ie., X7X = Iy. Note that this
requires a pilot sequence of length P > N samples.

First, let us consider the URA arrangement mentioned above
generating a block Toeplitz structure in a single oscillator
setup, as in (2), without frequency offset. In that case the joint
channel matrix Hy will also be of block Toeplitz character and
we can use that information to infer the full channel matrix
from one transmitted training vector x(p) (P = 1) and its
received vector. In doing so we gain one row/column h,, 4
of the matrix which is sufficient to build up the complete
channel matrix. Using more training vectors can in this case
be useful to improve the accuracy of the estimates by, for
example, averaging the corresponding entries of two rows to
reduce the impact of the Gaussian noise.

Now let us look at the case where there are multiple
oscillators (1). In general, a longer training sequence is needed
because the Toeplitz structure is completely obscured by
introducing M - N unknown independent phase shifts and thus
we may resort to the methods discussed in [3].

B. Estimation in Frequency Offset corrupted Case

The case including frequency offset estimation is more com-
plex and has been discussed various times in the literature. It
was shown that maximum likelihood estimators can be used to
achieve the CRBs in a Rayleigh channel case for such a setup
[2], but requiring a high computational complexity. Those
estimators are based on the premise that M - N random channel
coefficients and frequency offsets have to be estimated.

We start again with the case of a single oscillator as
in (2). Then, for the LOS MIMO case we can exploit the
non-randomness of the channel coefficients similarly to the
previous section. Assume that the P training vectors are

given by x(p) = [1,0,...,0]" and circularly shifted versions
thereof, which results in the easiest case to the training matrix
10 --- 0
01 --- 0
X=1. . .
00 --- 1

of dimensions P x N. We now focus on ULAs, namely
standard Toeplitz structure H = H;, for the sake of clarity.
The received vectors after P pilots for the first two receive
antennas will contain the following

e‘jAwhH,q5

BjAwh12,¢
6]2Awh12 P j

632Awh11,¢

iPA
e YhiN_1,4



Note that the frequency offset part stays the same through-
out the receive vectors y,, while the channel coefficients
follow the Toeplitz structure. It should be visible that there
are numerous entries of the received vectors from different
antennas, which can be used to eliminate the impact of channel
coefficients and gain an estimate of the frequency offset Aw.
One example using y; and ys from above yields

eIy g eI3BYRhyy 4
eIA N1 4 B €122 N5 4 B
eIPAYhIN 1 4
T PRy

e]Aw _

=l (12)
where Aw is the estimated frequency offset. Note that in this
case two training vectors, P = 2, are sufficient to gain multiple
estimates of the frequency offset, which can in turn be used to
obtain channel estimates. As before, additional training vectors
can be used to improve the estimates.

For the multiple oscillator setup, the same problem of losing
the Toeplitz structure occurs and more training vectors are
needed. Furthermore, there are M - N independent frequency
offsets which need to be estimated and additionally obscure
the initial structure of the matrix, we may use [2], [5].

C. Comments on Estimators and Optimality

From (12) we can write a simple estimator for the frequency
offset of ULAs (M = N) that uses the received vectors from
two neighboring antennas as

M P—1
o= Zzarg{meP+1)} (13)

AL =
m=1 p=1 Y2m—1(p)

M/2

which works if the number of antennas is even. As an example
we can also give an estimator for the diagonal entries of the
channel matrix for this case as

P
. 1 .
N )

m=p=1

(14)

Generally, we can choose among many different options when
it comes to determining which of the entries and how they
should be used for the estimation of frequency offsets, as
well as channel coefficients. The performance of the different
options will mostly depend on how the Toeplitz structure
is exploited and how distinct it is throughout the matrix.
Therefore, note that none of the estimators used in this work
are necessarily optimal in the sense of achieving the small-
est possible estimation error, but rather they are a trade-off
between accuracy and susceptibility to non-optimal Toeplitz
structure.

V. RESULTS

In this section we will provide numerical results for some
of the setups and methods discussed above. Note that the CRB
for the complete system CRB (@) is approximately M times
lower than (8) and (10) for the single oscillator case due to
the fact that there are essentially M observations of the same
parameters, as partly discussed in [2], [6].
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Fig. 2. MSE for the estimation of the channel matrix based on a URA with
My = My = Ny = Ny = 3,ie, M = N =9, in a single oscillator setup
without frequency offset.

A. Frequency Offset free Case - single Oscillator

In Fig. 2 we show the mean squared error (MSE) results
for an ideally designed URA with a single oscillator setup
having a random initial phase offset A¢. To get the channel
estimates we use the training matrix X = I, but truncated
after P rows. Then, the received vectors y,,, contain the block
Toeplitz structured rows/columns of the channel matrix. We
average the equal entries within the sub-matrices and across
equal sub-matrices to improve the accuracy of the estimates.

As can be seen, the performance exploiting the Toeplitz
structure is at least as good as the least-squares (LS) standard
solution [3], which does not take the similarity between matrix
rows/columns into account. By increasing the number of
training vectors the MSE decreases due to averaging of noise
as expected. The reason why the performance with P = 9
training vectors is not equal to the CRB is that for the results
shown here, only the structure in the blocks itself and across
equal blocks is exploited. For this specific setup there are,
however, also certain channel matrix entries that are equal over
different sub-matrices H,, ,.

B. Frequency Offset - single Oscillator

Fig. 3 shows the MSE for a ULA with single oscillator
setup with random initial phase offset and Gaussian distributed
frequency offsets with variance of 0.3 rad? /sample. ULAs are
used here so that (13) can be applied. For block Toeplitz
structures the same strategy can be used but it needs to be
applied on each of the sub-matrices H,,, separately.

We start with the estimation of the frequency offset by
eliminating the impact of the channel gains from the receive
vectors of neighboring antenna pairs as shown in (13). Con-
secutively, the estimated frequency offset is removed from the
received vectors and the Toeplitz structure is exploited to gain
the channel estimates as in the case without frequency offset.

A comparison to other techniques from the literature is dif-
ficult as they need longer training sequences, usually P > N.
Nevertheless, the CRBs should be a good indicator for the
performance of the discussed method. The results show that
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Fig. 3. MSE for the consecutive estimation of the frequency offset and channel for a ULA with M = N = 6 in a single oscillator setup: (a) Frequency
offset; (b) Channel coefficients.
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packed antennas, where neighboring antennas will naturally
experience highly dependent channels. Additionally, if longer
training sequences are used the structure of the channel can
be used in order to improve the accuracy of the estimates.
Relevant extensions of this work are the consideration of
time varying the phase shifts [11], which can be partly dealt
with by the methods presented here, and the consideration of
setups where certain antenna groups have a shared oscillator,
for which a Toeplitz structure may also exist. Furthermore, it
is of interest how the geometrical dependencies that constitute

-5
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Fig. 4. MSE for estimation of the frequency offset for ULAs with different
numbers of antennas in a single oscillator setup, M = N and SNR = 20dB.

with the minimum number of training vectors P = 2 the
parameters can be reasonably well estimated and that with
P = N results close to the CRB are achievable.

In Fig. 4 the results of the frequency offset estimation
is shown versus the number of antennas. As expected, the
estimation accuracy improves with N as there are more
observations of the same parameter. We have also added a case
where the uniform antenna arrangement, i.e. Toeplitz structure,
is impaired by small random positioning errors of the elements
in all three possible array dimensions.

VI. CONCLUSION

In this paper we have discussed how parameter estimation
can be performed for pure LOS MIMO channels. It was
shown that antenna arrangements with regular polyhedral
structure generate channel matrices that are fully or partly of
block Toeplitz structure. This structure is preserved if single
oscillator setups are considered at transmitter and receiver.
We showed that by exploiting this fact, very short training
sequences are sufficient to gain accurate parameter values with
simple estimators. This can be very useful to reduce training
overhead for arrays with a very high number of densely

the channel can be exploited in a more general framework.
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