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Abstract—We study distributed queue-aware beamforming in a
multiple input single output (MISO) interference channel. Instead
of assuming full buffer traffic, we adopt a more realistic traffic
model where the data arrival rates are finite, and the beamform-
ers are adaptive to the data in the buffer. We propose a simple
dynamic beamforming strategy which significantly improves the
average sum rate compared to non-adaptive beamformers.

I. INTRODUCTION

The MISO interference channel (IFC) is a well investi-
gated model. Many linear beamforming strategies have been
proposed with the objective to maximize the instantaneous
sum of all user utilities [1], [2], [3], [4]. The beamforming
strategies using a distributed optimization framework [1], [2]
are more interesting due to lower requirements on network
infrastructures, reduced complexity and latency. All the above
work assumes a full buffer traffic model, i.e. all the transmitters
always have infinite amount of data to transmit. However, in
real networks, the data arriving at each transmitter is random,
and the amount of data in the buffer changes over time.

In this study, we design distributed and dynamic beam-
formers which take into account the dynamic change of
the data buffer. The transmitters update their transmission
strategies based on locally available channel state information
and exchange the buffer status parameters via the back haul.
Our objective is to maximize the time average of the sum user
utilities. To the best of our knowledge, there is not much work
in the literature on multiple antenna transmission with random
data arrivals. The most similar work is [5], where the authors
perform a theoretical analysis on the stability optimal policy
in the multiple antenna Multiple Access Channel (MAC).
However the optimal policy assumes centralized control and
non-linear precoding, so it can only serve as a theoretical
upper-bound instead of a practical solution. Another work is
[6], where the study is focused on user selection for MU-
MIMO systems, and uses only random beamforming. In our
work, we are mainly interested in providing simple queue-
aware distributed beamforming solutions which brings big
improvement compared to some of the existing queue-unaware
simple distributed solutions.

II. SYSTEM MODEL

We consider a data network which can be modeled as a
MISO interference channel with K interfering links. Each link
has a transmitter equipped with N antennas delivering data
intended only for its own single-antenna receiver while causing
interference to other links.

In the system, the design variables are the beamforming vec-
tors at the transmitters. We denote the matrix formed by these
beamforming vectors as W(t) = [w1(t) w2(t) ... wK(t)]H .
The transmission power is limited at each transmitter, e.g.∥∥wH

k (t)
∥∥2 ≤ pk. We denote W as the set of all feasible

beamformers.
Associated with each beamformers selection at time instant

t is the instantaneous achievable user rate vector r̂(t) =
[r̂1(t) r̂2(t) ... r̂K(t)]H , with

r̂k(t) = log

(
1 +

∣∣wH
k (t)hkk(t)

∣∣2∑
l 6=k
∣∣wH

l (t)hkl(t)
∣∣2 + σ2

k

)
, W(t) ∈ W

where hkl(t), k, l ∈ {1, 2, ...K} is the channel coefficient
from transmitter l to receiver k at time instant t, this coef-
ficient is locally available without involvement of information
exchange among the transmitters.

The data arrival rate at each transmitter is modeled as a
random process with a finite average arrival rate. We denote
a(t) = [a1(t) a2(t) ... aK(t)]H is the i.i.d. random arrival
process, and ā = [ā1 ā2 ... āK ]H is the average arrival rate
vector, ā = E[a(t)]. When the arrived data can not be deliv-
ered immediately, they will form a queuing backlog and wait
for the next transmission. The dynamic queue length (backlog
size) vector is denoted as s(t) = [s1(t) s2(t) ... sK(t)]H .
We assume the channels change slowly and can be estimated
accurately, and that the current queue lengths s(t) could be
obtained for all the transmitters (for example through back
haul communications).

The evolution of the queue length is

s(t+ 1) = s(t) + a(t+ 1)− r(t+ 1). (1)

Here, r(t + 1) = [r1(t) r2(t) ... rK(t)]H denote the actual
transmitted rate at time t+ 1, i.e.

r(t) = min [s(t) + a(t+ 1), r̂(t)] . (2)

III. AVERAGE SUM RATE MAXIMIZATION

A. Lyapunov drift algorithm

Note that when the data arrival rate a(t) is an i.i.d. random
arrival process, the queue length s(t) is an Markov process.
This allows us to use the drift technique to minimize the
Lyapunov function of s(t) as in [7]. The resulting dynamic
rate allocation policy is stability-optimal, and is given by

r̂∗(t) = argmax
r̂(t)

K∑
k=1

r̂k(t)sk(t). (3)
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This is a weighted sum rate maximization problem and can
be rewritten as

maximize
∑K
k=1 sk(t) · log

(
1 +

|wH
k (t)hkk(t)|2∑

l6=k|wH
l (t)hkl(t)|2+σ2

k

)
(4)

subject to
∥∥wH

k (t)
∥∥2 ≤ pk, k = 1, ...,K.

Problem (4) is NP-hard[8] but can for example be solved via
the BRB algorithm in [3]. However, such a centralized solution
is practically unfeasible in terms of computational complexity,
back haul signaling, and scalability, and we are more interested
in a low complexity distributed solution.

B. Distributed algorithm

The algorithm introduced in [2] could be used to reach a
stationary point of (4). However, that algorithm still needs
several iterations to converge. Since we are aiming at updating
beamformers each time instant, it is preferred to have an
even simpler algorithm. In [9] it is proven that all the Pareto
optimal points in the achievable rate region are achieved by
beamforming vectors which can be parameterized as

wk(t) =

(
µk

pk
INt

+
∑
l 6=k

λl

σ2
l
hlk(t)hHlk(t)

)−1
hkk∥∥∥∥(µk

pk
INt

+
∑
l 6=k

λl

σ2
l
hlk(t)hHlk(t)

)−1
hkk

∥∥∥∥ , (5)

k = 1, 2, ...,K

where {µk}Kk=1 and {λl}Kl=1 satisfy
∑K
k=1 µk =

∑K
l=1 λl = 1.

From (5) we can see that when µk is large compared to∑
l 6=k λl, the beamformer acts more selfishly. On the other

hand, when µk is small compared to
∑
l 6=k λl, the beamformer

acts more altruistic. Intuitively, we want the links with long
queues to act more selfish and the links with short queue
lengths altruistic. Therefore, we can adjust the parameters
µk and λk in (5) to be monotonically increasing with the
queue length. Similar to the heuristic algorithm proposed in
[10](4.36). We propose the following parametrization to λ and
µ:

µk = λk =
sαk∑K
k=1 s

α
k

(6)

for some choice of α > 0. Numerical experiments have shown
that a good choice of α is 1.

IV. SIMULATION RESULTS

A. Channel model

Here we generate the simulation results considering a sim-
ple MISO interference channel scenario. We consider three
transmitter-receiver pairs, each transmitter equipped with three
antennas. The channel vector from transmitter l to receiver k,
hkl is i.i.d and modeled as complex Gaussian

hlk ∼

{
CN (0, IK), when k = l

CN (0, 14IK), when k 6= l
, (7)

where ∀k, l ∈ {1, 2, 3}, K = 3. In the simulations, we
will generate 20 channel realizations randomly and study the
average performance over these channel realizations.

The system SNR is defined as

SNR =
P

σ2
,

where P is the constant power constraint at each transmitter,
and σ2 is the constant noise power at each receiver.

For each channel realization and SNR combination, we
select a number of points on the convex hull of the Pareto
boundary. To do this, we refer to the robust fairness-profile
optimization algorithm in [3]. We randomly choose a certain
number of starting points and the same number of directions,
then apply the robust fairness-profile optimization algorithm to
find the corresponding points on the Pareto boundary of the
rate region. Then the convex hull of these boundary points is
found by applying a triangulation technique such as ’convhull’
in MATLAB. In our simulations, for each channel with a
certain SNR, we find 10 points on the convex hull of the
Pareto boundary, and these points will be used to find a proper
traffic load to simulate, which will be explained in details in
the following section. Notice that in practice when we use
the beamformers, the rate region and the Pareto boundary
information is not needed. We compute these points here only
to facilitate our choices of the average data arrival rates for
the simulations. Another issue to mention is that since we only
generate a limited number of points on the boundary, it is not
enough to calculate the convex hull with high precision.

B. Traffic model

We assume independent Poisson data arrival process for
each user, and the average data arrival rates ā are selected
as

ā = ρ · r, r ∈ Rhull (8)

where Rhull is the collection of the points on the convex
hull of the rate region which is described in the previous
subsection. And ρ is a parameter indicating how much traffic
loaded in the system. For example, if ρ > 1, the data arrives
to the system at a rate larger than the maximum rates that
can be transmitted. Thus the queue(s) will accumulate and
the traffic model is more like a full buffer model as time
goes by. But when ρ < 1, it is possible in theory to find
a transmission strategy to keep the queue lengths for all users
stable and do not grow monotonically over time [11]. The
beamforming strategy that can keep the queue lengths for all
users stable as long as ρ < 1 is defined as stability optimal
beamforming strategy. And the beamforming strategy which
satisfy (3) is stable optimal. We will change the value of ρ in
our simulations to test the queue length stability performance
of different beamforming schemes.

Here we explain how to choose r from Rhull in (8) to
determine the average arrival rate. We test two kinds of traffic:
balanced traffic and unbalanced traffic.

Balanced traffic: choose a point r such that all the users
have similar rates. Thus, all users have similar average data
arrival rates and traffic.

Unbalanced traffic: choose a corner point from the convex
hull, which means one user has a much larger rate and the
remaining users have very small rates. This results in an
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unbalanced traffic among users with one user with a large
traffic, and the other two users have very small traffic. We
think this model is more relevant when we want to capture the
extreme behavior of a dynamic data arrival system, where the
queue lengths are very different for different users. To model
unbalanced traffic, we choose the rate point that corresponds
to user 1 applying MRT beamformer and user 2 and 3 applying
zero forcing beamformers.

Later in the simulations we can see that the proposed
beamformer gives larger performance gain under unbalanced
traffic.

C. Reference beamforming strategies
In this subsection, we will describe a few beamformers

that will be used to compare performance with the proposed
beamformer. First we introduce a queue-aware beamformer:

a) WMMSE (weighted MMSE): This beamforming strat-
egy is proposed in [2], which is an iterative algorithm max-
imizing the weighted sum rate of the system. At each time
instance, we set the weight to each user as the current queue
length of the user as in (3), then the WMMSE beamformer
gives the optimal performance over time in the sense of
maximizing average sum rate and minimizing average queue
lengths. Therefore, WMMSE beamformer can serve as a
performance upper bound for queue-aware beamformers.

We would also like to compare performance with some
queue-unaware beamformers: SLNR, ZF and MRT. These
beamformers do not take the queue lengths into consideration,
but only use channel information.

b) MRT (Maximum Ratio Transmission): The MRT
beamformer aims to maximize its own SNR at the receiver,
the beamformer can be expressed as

wMRT
k =

hkk
‖hkk‖

,

where hkk(t) is the channel coefficient from transmitter k to
receiver k.

c) ZF (Zero Forcing): The ZF beamformer aims at
completely eliminate interference causing to others, and beam-
former is given by

wZF
k =

Π⊥kkhkk∥∥Π⊥kkhkk
∥∥ ,

where Π⊥kk is the projection matrix onto the null space of
hkk(t).

Note that the ZF beamforming above is valid since we have
the number of transmission antennas equal to the number of
receivers. If the number of antennas at the transmitter smaller
than the number of users, completely removing interference is
not possible.

d) SLNR (maximum Signal to Leakage and Noise Ratio):
The SLNR beamformer aims at maximizing the ratio between
its own received signal strength and the interference leakage
to unintended receivers. Expressed in formula:

wSLNR
k =

(
1
pk
INt

+
∑

1
σ2
l
hlk(t)hHlk(t)

)−1
hkk∥∥∥∥( 1

pk
INt

+
∑

1
σ2
l
hlk(t)hHlk(t)

)−1
hkk

∥∥∥∥ .

D. Performance measures

In this study, we use average sum rate and average queue
length of the system as two figure of merits. The average
sum rate measures the transmission rate and the average queue
length measures the queuing stability.

To calculate the average sum rate, we first generate 20
channel realizations, for each channel realization, we generate
a data arrival sequence for each user for 104 channel uses.
At each time instance, different beamforming strategies are
applied to calculate the actual transmitted rates as in (2). The
average sum rate is then calculated as the average of the
instantaneous sum rate over 104 channel uses and then over
the 20 channel realizations.

Similarly, the average queue length is the instantaneous
queue lengths (1) averaged over different users, different
channel uses and different channel realizations.

E. Sum Rate Performance

In Figure 1 and 2, we compare the average sum rate for
different beamformers: The weighted MMSE (WMMSE) [2];
the proposed beamformer (Proposed) (5); the maximum Signal
to Leakage and Noise Ratio (SLNR), the Zero Forcing (ZF)
and the maximum Ratio Transmission (MRT) beamformers[9].
The traffic load indicator ρ is 0.99. Figure 1 is generated under
balanced traffic and figure 2 is generated under unbalanced
traffic.

We can see that the beamformer we proposed in this paper
performs equally well as the weighted MMSE beamformer,
and much better than the other beamformers under unbalanced
traffic. But if we set α = 0 for the proposed beamformer,
which means the proposed beamformer do not adapt with the
queue lengths, then it performs worse than SLNR beamformer
and even ZF for high SNR scenario. So we can conclude that
the sum rate gain brought by the proposed beamforming is
mainly due to its adaptive nature. Since the unbalanced traffic
is more relevant and shows more gain, we will focus our later
simulations for unbalanced traffic.
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Figure 1. Average sum rate achieved by different beamformers under balanced
traffic

In Figure 3, we study the impact of the traffic load on
the beamformer performance. The SNR is set to 5dB and
the average sum rate for each beamformer is calculated
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Figure 2. Average sum rate achieved by different beamformers under
unbalanced traffic

as the average of instantaneous system sum rate over 104

channel uses and 20 channel realizations. We can see from
the figure that the sum rate gain brought by the queue-aware
beamformers increases with the traffic load until the traffic
become overloaded (ρ > 1). The proposed beamformer in the
simulation corresponds to α = 1.
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Figure 3. Average sum rate achieved for different traffic load

F. Queue length stability

In Figure 4, we plot the average queue length for different
beamformers respective to different traffic load (ρ). The SNR
is set to 5dB. We notice from the figure that when ρ < 1,
the queue-aware beamformers (WMMSE and Proposed) are
good at maintaining a stable queue length. That is, the average
queue length for the queue-aware beamformers do not increase
linearly with the traffic load. However, the queue lengths
to the queue-unaware beamformers (SLNR, ZF and MRT)
increase almost linearly with the traffic load, thus making the
corresponding queues unstable. When ρ > 1, all beamforming
strategies fail to hold the system queue stable. This is rea-
sonable, since when ρ > 1, the average data arrival rates are
outside the convex hull of the Pareto boundary of the system,
so it is impossible to find a transmission strategy that prevents
the queues from increasing over time.
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Figure 4. Average queue length achieved by different beamforming strategies

V. CONCLUSION

In this study, we have proposed simple and distributed
beamforming strategy considering random data arrival process.
The proposed strategy dynamically changes beamforming ac-
cording to the queue length. Simulation results show that the
proposed beamformer gives near optimal performance in the
sense of maximizing sum rate and minimizing average queue
length under dynamic traffic.
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