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Abstract—In this paper we present a technique for the es-
timation of point sources in a diffusive environment that can
be applied to wireless sensor networks. It is based on methods
from the field of sparse recovery, using Gaussian kernels as basis
functions. After presenting the underlying physical process, a
linear system model is developed out of it. For the estimation of
its unknown parameters, solution approaches are presented. The
approach is verified by means of numerical simulations. Further-
more, we indicate ways to perform a distributed estimation of
the parameters within the network.

I. INTRODUCTION

Sensor networks play an important role in environmental
monitoring, e.g., of water quality in water bodies, air pollution
[1], or earthquake detection [2]; but also in monitoring of,
e.g., chilled food transports [3]. These scenarios have in
common that the source of the quantity to be measured, i.e., a
pollutant, seismic event, or a heat source, can be assumed
point-shaped. Additionally, the propagation of the quantity
under measurement follows differential equations, which often
represent a diffusion process. A spatially distributed sensor
network is able to perform a scalar measurement of the
quantity of interest at different positions. Now, the task of this
sensor network is to make an estimation of the location of the
sources and/or obtain an estimate of the spatial distribution
of the quantity of interest, i.e., of its field. In contrast to
previous works using Compressed Sensing (CS) techniques
for the estimation of diffusion fields, e.g., [4], we will present
a flexible framework able to use different basis functions
and demonstrate its effectiveness using radial basis functions
(RBFs), which are also known as Gaussian kernels.

Based on this framework, we will present in this paper a
practical approach to perform an estimation for both location
and field, based on the measurements of a sensor network. We
will also address the task of distributed estimation within the
network of sensors (In-Network Processing).

The remainder of the paper is structured as follows: In
Section II, we will present the underlying physical process and
derive a system model out of it. In the following, the estimation
problem and its solution approach is presented in Section III.
Subsequently, results for a centralized estimation in a data
fusion center are presented, while in the following section,
hints on the distributed estimation are given. Section VI
concludes the paper with an outlook of possible future work.
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II. SYSTEM MODEL

In this paper, we will investigate the problem of estimating
a physical quantity in a diffusive process. Therefore, we will
first introduce the underlying physics in order to derive a linear
system model, which is done in the following.

In general, the solution of any differential equation can be
expressed using its specific so-called Green’s function, which
can be interpreted as the spatio-temporal impulse response of
the system. For an n-dimensional diffusion process without
boundaries, it reads [5]:

G(x,t) = (4rDt)" e~ v | (D

with diffusion constant [J), Cartesian coordinate x =
(x1,...,2y) and time ¢t > 0. If the M sources within the
diffusive process are assumed to have a point nature, they can
be modeled as spatial delta functions with a temporal envelope

am (t):
Sm(X, t) = am(t) . 60(X - X'rn)a

The entire field f(x,t) can then be obtained by superimposing
the spatio-temporal convolution of each of the sources with the
Green’s function:

m=1...M. (2
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Taking into account the sifting property of the delta function,
only the temporal convolution remains:
M t
flx,t) = Z am (t) * G(x — X, t). (€h)
m=1
If furthermore the sources are assumed to be activated at
t = 0 and to maintain the same amplitude a,, afterwards,
the convolution integral can be expressed as

M ¢
f(x,t) = Z am/G(x — Xy, T)dT. Q)
m=1 0

In this paper, we will consider the case of a 2-dimensional
diffusion process, so the particular Green’s function in this
scenario reads
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Fig. 1. Shape of the exponential integral function for exemplary values of
t=1and D =0.1

Evaluating the temporal integral in (5), the result

O/G(x, T)dT
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is obtained, where E;(-) represents the exponential integral
function [6]. It is depicted in Fig. 1 for exemplary values of
t =1 and D = 0.1. This figure illustrates the characteristic

shape of a diffusion process caused by a point source.
Restricting to a single time instant ¢ = 7" for the time being,

the kernel I HQ
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is obtained as basis function for the following considerations.
The true field f(x) can now be approximated by the
superposition of M sources at positions X,,:

M
F) =" amgr(x — %) ©)
m=1

Please note that the value M for the approximation might
differ from the true number M of sources. Using (9), every
measurement y; of the sensor j = 1,..., J located at position
x; can now be described by

M
yi = F) + 0= D amgr(x5 — &m) + nj,

m=1

(10)

where n; accounts for any measurement error.

Now, the philosophy of [7] is generalized to a two-
dimensional grid, i.e., the possible source locations are quan-
tized to N - L possible coordinates and follow the form
Xy = (nmAl,KmAg) + xg, with n,, = 0,...,N — 1,
by, = 0,...,L —1 and X( an arbitrary offset. This offset,

as well as V, L, Ay and A,, need to be chosen properly and
according to the scenario.

Every sensor measurement 3/; is now interpreted as superpo-
sition of the effect of IV - L hypothetical, grid-aligned sources’
with amplitudes a,,, m =1,..., NL:

N-L
Y=Y amgr(x; — Xm) + ;. (11)
m=1
Combining these equations for all sensors j = 1,...,J, the
equation system
y=®a+n (12)
is obtained, with
(0 a
Y2 X as
y=1| . |, a= ) (13)
Ys an.L

noise vector n and measurement matrix

QT(Xi - XN-L)
g7 (X3 — XN.L)

gr(x] — x2)
gr (x5 — x2)

gr(xi —x1)
gr (x5 — x1)

S

gr (x5 gr(xy —xN.1)

(14)
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III. SOLUTION OF THE EQUATION SYSTEM

(12) can be solved for a, e.g., by a Least Squares (LS)
approach. If the measurements y; possess a common, but
unknown offset aqmset (Which is, e.g., the case for a heat source
activated in a diffusive medium of certain temperature), this
can be accounted for by augmenting the vector a by this offset
coefficient and extending the matrix ® by an all-ones column:

a
a=/| . , &=]® 1|, 15
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resulting in the modified system equation
y=®a+n. (16)

An LS solution ensures minimum error between measured
values and reconstructed field at sensor location, but does
not consider the field distribution between the sensors. Since
the underlying physical process is assumed to only exhibit
few sources, i.e., M < N - L, a sparse estimate for a (or
a, respectively) is expected to show a better performance in
the sense of reproducing the original field. If the estimation
of a is performed in a sparse fashion, i.e., the sparsity of
the estimate is enforced within the estimation criterion, a
better recontruction of the field can be achieved. One possible
algorithm to perform such an estimation is the Orthogonal
Matching Pursuit (OMP) [8] algorithm. This algorithm starts
by picking the column from ® with maximum correlation
with y, subtracts its contribution to y from it, picks the next

IN . L is significantly larger than M and M, the consequences of this fact
will be addressed in the next section.



column with maximum correlation to the updated y and so on,
until the prescribed number of M columns have been selected.
The corresponding elements of a are obtained using a least
squares criterion on the selected columns only. This algorithm
is also frequently used in the context of CS, but was originally
developed for sparse recovery. Therefore it serves the purpose
very well in this application, as will be shown in the results
section.

A. Extension into temporal direction

The extension of the approach into temporal direction is
straightforward: Instead of restricting to a single time instant
t = T in (8), we define kernels for every time instant of
interest. If, e.g., the field is sampled at time instants k7" with

=1... K, the kernels

2
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are defined, which are then used to construct the multi-time
matrix ®y;r shown in (18). Likewise, the measurements at all
K time instants are collected in the vector

y1(7T)
y2(T)

yMT = (19)

ys—1(KT)
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However, in this paper, we will restrict to single-time mea-
surements.

B. Non-point-shaped sources

In reality, sources of, e.g., heat or substances are not
exactly point-shaped, but possess a spatial extent. Therefore,
the aforementioned exponential integral function (8) might not
be a good choice for practical modeling. However, the basis
function can be modified to better accomodate for this fact. If
gr(x) as defined in (8) is integrated over a disc shape, another
base function is obtained. This function cannot be calculated
in closed form and is depicted in Fig. 2 for exemplary values
of D = 0.1 and a disc radius of 0.1.

It can be seen that this function strongly resembles a
Gaussian function, for which one example is depicted in Fig. 3.
The similarity is corroborated by Fig. 4 that compares a
crosssection of both functions along one axis. If the bandwidth
of the Gaussian kernel is adapted (in this case to half the value
as in the underlying Green’s function), a very good match can

0.4

Fig. 2. Shape of the exponential integral function integrated over a disc with
radius 0.1 for exemplary values of t =1 and D = 0.1

Fig. 3. Shape of the Gaussian function for exemplary values of ¢ = 1 and
D =0.05

be achieved. Therefore, we will in the following use Gaussian
functions as basis functions, i.e.,

L~
47D ’

Please note that this kind of modeling is also very common
in the field of kernel adaptive filtering, e.g., [9]. Also, the
Kriging method [3], [10] uses a modified Gaussian kernel to
approximate the so-called variogram, i.e., the effect of sources
on the measurements.

grr(X) = k=1.K. (20)

IV. PERFORMANCE EVALUATION

For assessment of the estimators’ performance, figures of
merit need to be defined. Here, we will use the Reconstruction
MSE, defined as mean square error between true field and
reconstruction averaged over the whole considered area. This
measure is not to mistaken with the Training MSE, which is
defined as mean square error between sensor measurement and
reconstructed field at sensor location.
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Fig. 4. Comparison of integrated exponential integral function and Gaussian
function
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Fig. 5. Diffusion field to be estimated
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Fig. 6. Diffusion field to be estimated, with sensor locations

Fig. 5 shows an exemplary field with 3 disk shaped sources
and a combined diffusion and advection process that has been
generated using the COMSOL CFD software [11]. We decided
to use this field instead of a pure diffusion problem with
point-shaped sources, since it better matches typical real-world
scenarios. This field is sampled by a fixed number of randomly
placed sensors.

In order to illustrate the difference between Least Squares
and OMP estimation, this field is now sampled by J = 100
sensors, as it is denoted in Fig. 6 by crosses. Each sensor
measurement is superimposed with Gaussian distributed, un-
correlated noise of variance o2.

The depicted area of size 2 x 2 is now overlayed with a grid
of N x L = 100 x 100 possible source locations, for which
the corresponding amplitudes are subsequently estimated. Note
that the equation system (12) (or (16), respectively) is heavily
underdetermined, with only J = 100 equations for NL =
10,000 unknowns.

The LS estimate a of (16) thus is not unique, one possible
solution resulting in the minimum squared ¢s-norm of the



80 [ ) B I
5
60 | :
~ -0
40
20 | : -
0t | | | |
0 20 40 60 80

Fig. 8. Estimated field using the LS criterion

estimate is given by

a=29o"y, ey
with (-)* denoting the Moore-Penrose pseudo inverse.
For Gaussian basis functions, 7" = 1, D = 0.005 and

afb = 0.01, the estimated coefficients a as shown in Fig. 7
are obtained. The coefficient vector has been reshaped into the
100 x 100 grid of possible source locations in order to indicate
where the effective sources have been placed by the estimation
algorithm. Please note that only J = 100 coefficients out
of 10,000 are nonzero due to the application of the pseudo
inverse. J — 1 = 99 of these are depicted in the figure, while
the J*" nonzero element is @ofret, Which is also estimated as
nonzero, but not shown explicitly.

The reconstructed field according to (9) is shown in Fig. 8.
It obviously shows no resemblance to the original field, which
also can be quantified by means of the Reconstruction MSE
between original field and estimate, which evaluates to 0.7944
in this case.
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Fig. 9. Estimated coefficients a using the OMP algorithm for a sparsity of 4
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Fig. 10. Estimated field using the OMP algorithm for a sparsity of 4

A. Sparse estimate

The sparse estimate obtained by the OMP [8] algorithm for
Gaussian basis functions and an exemplary prescribed sparsity
of M = 4 is depicted in Fig. 9. The resulting recontructed
field is shown in Fig. 10. This field follows the shape of the
original field in a better way, which also is reflected in a much
smaller MSE of 0.1179.

However, the estimation accuracy depends on the choice of
D on the one hand and, at least for a sparse estimator, on
the prescribed sparsity M. Therefore, we will show results
of a manual optimization of these parameters for the scenario
shown above. While the diffusion field itself was kept constant,
sensor locations and individual noise realizations have been
generated randomly for every run of the simulation. The
presented MSEs are averaged over 100 runs each. Fig. 11
shows the resulting Reconstruction MSE for an alternating
optimization of M and D. The minimal value of 0.0319 is
achieved at M = 33 and D = 0.005, the corresponding
reconstructed field is shown in Fig. 12.
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Fig. 11. Reconstruction MSE over M and D using the OMP algorithm
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Fig. 12. Estimated field using the OMP algorithm for the optimal parameters
of M =33 and D = 0.005

V. ALTERNATIVE SPARSE RECONSTRUCTION ALGORITHMS

The OMP algorithm requires the explicit specification of the
sparsity, i.e., M, which needs to be found in a seperate step.
Another commonly used method for sparse reconstruction is
the Lasso algorithm that stems from the field of statistical
regression [12]. Instead of a fixed sparsity, this algorithm uses
a tuning parameter A that implicitly controls the algorithm’s
“aggressiveness” to find a sparse solution. Exemplary, Fig. 13
shows the resulting Reconstruction MSE and the average value
of M for D = 0.005 and 0.01 < X < 0.3. It can be seen
that the average M corresponding to the minimum MSE is
approx. 21, which differs from the value of 33 obtained above,
and consequently, the achieved MSE of 0.1925 therefore is
considerably larger than the MSE obtained above. This is due
to the fact that the Lasso algorithm does not consider the
Reconstruction MSE, but only the Training MSE, which do
not directly relate to each other.

average MSE

avg. M + std. deviation

A

Fig. 13. Reconstruction MSE and mean M over A for D = 0.005 using the
Lasso algorithm

A. Outlook on distributed reconstruction

However, for the Lasso, distributed, iterative implementa-
tions exist, e.g., the D-Lasso and its variants presented in
[13]. This algorithm is able to perform sparse linear regression
following the Lasso principle in a distributed fashion within a
network. However, this algorithm proved to be very sensitive
w.r.t. choice of its parameters, in particular step size and A
[14], so that the performance of the “centralized” Lasso could
not be achieved for the scenario investigated here without
putting a very high amount of effort into parameterization. In
literature, there exist further algorithms for distributed sparse
regression that, similar to the Lasso, also feature thresholding
functions to promote sparsity of the solution, e.g., [15] and
[16]. Unfortunately, these algorithms also share the same
sensitivity to parameterization, whose in-depth analysis is
beyond the scope of this paper.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework for the estimation of
sources in a diffusive environment using Gaussian basis func-
tions and sparse estimation techniques. The use of Gaussian
basis functions was motivated through the physical process
and verified through numerical simulations.

In order to perform a truly decentralized estimation of the
sources, a distributed sparse estimation algorithm needs to be
applied. Its design and in particular its parameterization are
the subject of future investigations.
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