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Abstract—Line-of-sight (LOS) delay estimation in multipath
scenarios is a central problem in global navigation satellite
systems (GNSS). Deterministic channel models can be used to
describe the multipath environment, but this usually requires
the estimation of several nuisance parameters. In order to avoid
this effort, stochastic channel models can be used. In this case
the multipath statistics have to be estimated. The correlated
path (CP) model combines the two approaches, dividing the
multipath signal into a part correlated with the LOS signal, and
the rest as uncorrelated multipath interference. In an earlier
version of the CP model the multipath interference was modeled
as temporally white noise. This is not an accurate assumption
however, especially in the case when a bank of correlators is
used for signal compression. In this paper we derive the temporal
covariance matrix of the multipath interference and show how
the temporal multipath correlation can incorporated into the
maximum-likelihood (ML) estimator of the CP model. Simulation
results show that this new approach leads to better LOS time-
delay estimation performance.

I. INTRODUCTION

GNSS are used in a wide variety of applications, whether
for positioning or time synchronization. In these applications
the estimation accuracy of the LOS signal time-delay estimate
directly influences the quality of the service. Multipath,
i.e. superimposed replicas of the LOS signal due to signal
reflections and scattering in the propagation path, can severely
degrade the LOS signal time-delay estimation performance [1].

In the past, different multipath mitigation techniques
have been studied. The ML estimator which estimates the
channel parameters of each multipath together with the LOS
parameters is the optimum approach for solving the multipath
problem [2]. However, the optimum ML estimator requires
knowledge of the number of multipath rays and often. In
order to avoid these problems advanced tracking loops [3]
and multi-correlator-bank based approaches [4] have been
proposed for single antenna receivers. If an array of multiple
antennas is used, the spatial diversity can be exploited for
multipath suppression. However, for multi-antenna receivers
the computational complexity of the ML estimator increases
due to the additional spatial dimension. Therefore, reduced
complexity methods like the Space Alternating Generalized
Expectation maximization (SAGE) algorithm [5] have
been developed. While offering a significant reduction in
computational effort in comparison to the exact ML estimator,
the SAGE algorithm and its extensions [6], [7] still require the
number of multipath rays. This can be avoided if a statistical
multipath model [8], [9] is employed.

All of the methods mentioned above perform best if LOS and
multipath signals are temporally and spatially uncorrelated,
i.e. sufficiently separated in time and space. Dual-polarization
antenna arrays, i.e. antenna arrays with right-hand-circularly
polarized (RHCP) and left-hand-circularly polarized (LHCP)
outputs can offer an additional degree of freedom to identify
and separate highly spatially and temporally correlated
multipath signals from the LOS signal. In [10] a multipath
mitigation approach based on dual-polarization arrays has
been proposed. Additionally, the problem of model order
estimation has been tackled by introducing the CP model,
which divides the multipath signal into a signal correlated
with the LOS signal and uncorrelated multipath interference.
To achieve a simple ML estimator, the multipath interference
is modeled as temporally white Gaussian noise in [10].

This white noise assumption is inaccurate when considering
the properties of GNSS signals. Moreover, the computational
complexity of [10] is high in comparison to using a multi-
correlator bank to compress the signal. Therefore, we
introduce the CP model for temporally correlated multipath
interference and multi-correlator bank based compression.
This leads to improved estimation performance for the LOS
signal delay while still maintaining the benefits of the CP
model:

• no model order estimation

• limited and constant number of parameters

• no selection of the LOS signal delay from the multi-
path signal delays

In order to incorporate the temporal correlation of the multi-
path interference, a spatio-temporal model is introduced. The
spatial multipath and noise parameters are estimated in the
same way as in [10], while the temporal multipath interference
covariance matrix is taken into account for the estimation of
the LOS signal time-delay. Finally, the performance of the
improved CP model is shown for a dual-polarization global
positioning system (GPS) receiver.

II. MULTIPATH SIGNAL MODEL

We consider a GNSS multipath scenario. One LOS signal
with time delay τ0 ∈ R and L multipath signals with time
delays τl ∈ R for l = 1, · · ·L, are impinging on a dual-
polarization antenna array composed of M antenna elements.



The unstructured base-band representation of the signal is [10]

y(t) = b0c(t− τ0) +

L∑
l=1

blc(t− τl) + η(t) , (1)

where c(t) ∈ R is the GNSS transmit signal with single-sided
bandwidth B ∈ R and bl ∈ C2M denotes the signal’s spatial
and polarization signature. A spatially structured model for bl
is given in [10]. In the following, η(t) ∈ C2M is assumed
to be temporally and spatially white Gaussian noise, i.e.
η(t) ∼ CN

(
0, σ2

ηI2M

)
. After collecting N time samples of

(1) at sampling rate fs = 2B, the discrete time representation
is

Y = b0c(τ0)
T

+

L∑
l=1

blc(τl)
T

+E, (2)

where Ts = 1/fs and

Y = [y[Ts] y[2Ts] . . . y[NTs]] ∈ C2M×N (3)

c(τl) = [c[Ts − τl] c[2Ts − τl] . . . c[NTs − τl]]T ∈ CN (4)
E = [η[Ts] η[2Ts] . . . η[NTs]] ∈ C2M×N . (5)

The noise covariance matrix is given by

E
[
vec(E) vec(E)

H
]

= σ2
ηIN ⊗ I2M , (6)

where vec(•) vectorizes a matrix by stacking its columns,
E[•] denotes the expected value and ⊗ denotes the Kronecker
product [11].

A. Compression with a Multi-Correlator Bank

Since the number of samples N is often large, the received
signal Y is compressed to a signal Z ∈ R2M×Q with lower
temporal dimension Q < N using a multi-correlator bank. The
compression can be represented by a multiplication of Y with
the compression matrix Q ∈ RN×Q from the right hand side:

Z = b0c(τ0)
T
Q+

L∑
l=1

blc(τl)
T
Q+EQ (7)

= b0q(τ0)
T

+

L∑
l=1

blq(τl)
T

+EQ. (8)

Eq. (8) can be parameterized by

ξ =
[
τ0, . . . , τL, b

T
0, . . . , b

T
L, σ

2
η

]T ∈ C(L+1)(2M+1)+1. (9)

For compression set Q = U , where U are the left singular
vectors of

UΣV H = [c(κ1) , c(κ2) , . . . , c(κQ)]
T
. (10)

Eq. (10) realizes the canonical component (CC) method [12].
The CC method is based on correlating the sampled received
signal Y with Q replicas of c(τ) with different delays κq
and minimizes the Fisher information loss due to compression
[12], as well as maintaining the multiple access properties of
the direct sequence code division multiple access (DS-CDMA)
system used in GNSS. Using the unitary matrix U ensures that
the noise EQ after correlation is still white Gaussian noise

E
[
vec(EQ) vec(EQ)

H
]

= Cov[vec(EQ)] (11)

= σ2
ηIQ ⊗ I2M , (12)

where Cov[•] denotes the covariance matrix operator.

III. CORRELATED PATH MODEL

The optimum estimator for τ0 in (8) is the ML estima-
tor which estimates all parameters in (9) [2]. However, this
estimator requires knowledge of the number of multipaths L.
Additionally, it must determine the actual LOS delay from
all other multipath delays, which can be difficult if LOS
signal and multipath signal are highly temporally correlated.
Moreover, this estimator has to cope with a number of nuisance
parameters. To avoid these problems we employ the CP model
proposed in [10]. Let

ρl = q(τ0)
T
q(τl) (13)

denote the temporal correlation between the LOS and l-th
multipath signal. In the case of only one multipath signal, i.e.
L = 1 the multipath signal can then be decomposed as

b1q(τ1)
T

= ρ1b1q(τ0)
T

+
√

1− ρ2
1b1u

T, (14)

where the multipath interference u ∈ RQ is uncorrelated with
the LOS signal q(τ0), i.e.

E
[
uHq(τ0)

]
= 0 (15)

and has a temporal covariance matrix

Cov[u] = Ru ∈ RQ×Q. (16)

In [10] it is assumed that u is temporally white Gaussian noise
and therefore Ru is an identity matrix. Due to the properties
of the signal q(τl) this is not the case.
The multipath space-time covariance matrix is

Cov
[
vec
(
b1q(τ1)

T
)]

= (IQ ⊗ b1)Rq1 (IQ ⊗ b1)
H (17)

with Rq1 = Cov[q(τ1)], while

Cov
[

vec
(
ρ1b1q(τ0)

T
+
√

1− ρ2
1b1u

T
)]

=

ρ2
1 (IQ ⊗ b1)Rq0 (IQ ⊗ b1)

H

+
(
1− ρ2

1

)
(IQ ⊗ b1)Ru (IQ ⊗ b1)

H (18)

is the correlated path model space-time covariance matrix with
Rq0 = Cov[q(τ0)]. Assuming that the second moment of the
multipath signal is maintained, (17) and (18) are equal, i.e.

(IQ ⊗ b1)Rq1 (IQ ⊗ b1)
H

= ρ2
1 (IQ ⊗ b1)Rq0 (IQ ⊗ b1)

H

+
(
1− ρ2

1

)
(IQ ⊗ b1)Ru (IQ ⊗ b1)

H (19)

and therefore the mulitpath interference temporal covariance
matrix is

Ru =
Rq1 − ρ2

1Rq0
1− ρ2

1

. (20)

Eq. (20) can be simplified by noting that for highly temporally
correlated LOS and multipath signals, we have

Rq1 ≈ Rq0 . (21)

Inserting (21) into (20) yields the approximation

Ru ≈ Rq0 . (22)

Using (20) or (22) improves the performance of the LOS time-
delay estimation when the CP model is applied. Even though
the CP model is based on the assumption of L = 1 multipath



signals, simulation results show that it also performs well in
the case of more than one multipath signal, if the signals are
highly temporally or spatially correlated [10]. In this case ρ1

reflects the overall correlation between LOS and multipath,
Ru is the overall multipath interference temporal covariance
matrix and b1 is the overall multipath spatial signature. To
emphasize these properties we denote the correlation between
the LOS and multipath with ρ while bCP denotes the overall
multipath spatial signature. The CP model is finally given by

Z = (b0 + ρbCP) q(τ0)
T

+
√

1− ρ2bCPu
T +ER (23)

with parametrization

ξCP =
[
τ0, b

T
0, b

T
CP, ρ, σ

2
η

]
∈ C2M+3. (24)

IV. PARAMETER ESTIMATION

In the following we show how to estimate the parameters of
the CP model ξCP. Assuming Gaussian noise, the probability
density function of Z given ξCP is

p(Z|ξCP ) =
1

πMNdet(R(ξCP))

· exp
(
−vec(Z −M(ξCP))

H
R(ξCP)

−1

·vec(Z −M(ξCP))) (25)

with mean and covariance matrix

M(ξCP) = (b0 + ρbCP) q(τ0)
T (26)

R(ξCP) = Cov
[√

1− ρ2bCPu
T +EQ

]
= Ru ⊗

(
1− ρ2

)
bCPb

T
CP + σ2

ηIQ ⊗ I2M . (27)

The optimum estimator for ξCP in (23) is given by the ML
estimate

ξ̂CP = arg max
ξCP

p(Z|ξCP ) (28)

= arg min
ξCP

l(Z|ξCP ) , (29)

where the log-likelihood function is

l(Z|ξCP ) = ln det(R(ξCP))+ (30)

vec(Z −M(ξCP))
H
R(ξCP)

−1vec(Z −M(ξCP)) .

To solve for the estimate b̂0 we take the derivative of (30) with
respect to b0

∂l(Z|ξCP )

∂b0
=

2 (q(τ0)⊗I2M )
H
R(ξCP)

−1vec(Z−M(ξCP)) (31)

and equating (31) to 0 to find

b̂0(τ0) =
Zq(τ0)

‖q(τ0)‖
− ρbCP. (32)

Inserting (32) into (30) the optimization problem reduces to[
τ0, b

T
CP, ρ, σ

2
η

]
= arg min vec

(
Z − b̂0(τ0) q(τ0)

T
)H
R(ξCP)

−1

· vec
(
Z − b̂0(τ0) q(τ0)

T
)
. (33)

Due to the structure of R(ξCP), a closed-form expression for
the parameters of the multipath interference and noise b̂CP, σ̂2

η ,

and ρ̂ based on (33) is not straightforward to derive. Therefore,
we estimate these parameters with another approach and then
solve for the LOS delay τ0 using a line-search under the
assumption that R(ξCP) is known. In the following we show
how b̂CP, σ̂2

η , and ρ̂ can be estimated.

A. Estimation of R(ξCP)

The multipath interference plus noise spatio-temporal co-
variance matrix R(ξCP) is

R̂(ξCP) = E
[

vec
(
Z − b̂0(τ0) q(τ0)

T
)

vec
(
Z − b̂0(τ0) q(τ0)

T
)H
]
. (34)

However, for only one sample of Z this covariance matrix
cannot be estimated with sufficient accuracy. Therefore, we
exploit the structure of R(ξCP). Under the assumption that the
multipath interference plus noise temporal covariance is still
approximately white, i.e.

E
[(
Z − b̂0(τ0) q(τ0)

)H(
Z − b̂0(τ0) q(τ0)

)]
≈ IQ (35)

we can approximate(
1− ρ2

)
bCPb

T
CP + σ2

ηI2M

≈
(
Z− b̂0(τ0) q(τ0)

T
)(
Z− b̂0(τ0) q(τ0)

T
)H

(36)

= B (τ0) . (37)

The white noise assumption is not exact, as Ru will usually
have one dominant eigenvalue. However, simulations show
that this approach still leads to good results. Eq. (37) can be
rearranged to

bCPb
H
CP =

B(τ0)− σ2
ηI2M

1− ρ2
. (38)

This allows us to use the singular value decomposition ap-
proach presented in [10] to calculate b̂CP, σ̂2

η and ρ̂. A reason-
able estimate b̂CP is given by the eigenvector corresponding to
the largest eigenvalue of (38). For the estimation of σ2

η and ρ,
we notice that (38) is of the form G = H − αIM , where

H =
B (τ0)

(1− ρ2)
(39)

α =
σ2
η

1− ρ2
. (40)

The eigenvalues of G are in general given by [11, p. 31]

λG,i = λH,i − α. (41)

Therefore, the following system of equations holds

λ−1
η =

λB,1
(1− ρ2)

−
σ2
η

1− ρ2

0 =
λB,i

(1− ρ2)
−

σ2
η

1− ρ2
for i = 2 . . . 2M, (42)

where λB,1 ≤ λB,2 ≤ . . . ≤ λB,2M are the sorted eigenvalues
of B(τ0). Eq. (42) can be solved by

[
σ̂2
η

1− ρ̂2

]
=


1 λ−1

η

1 0
...

...
1 0


+ 

λB,1
λB,2
...
λB,2M

 (43)



in the minimum mean-squared error (MMSE) sense, where •+
denotes the Moore-Penrose pseudo inverse [11]. Inserting b̂CP,
ρ̂ and σ̂2

η into the optimization problem (33) allows us then to
solve for the LOS estimate τ̂0. Ru is calculated together with
τ0 in the line search algorithm if (22) is used or calculated
with an additional search over τ1 if (20) is used.

V. SIMULATION RESULTS

We assume a GPS C/A code with chip duration Tc =
997.52 ns, bandwidth B = 1.023 MHz and Nd = 1023 chips
per code period as transmit signal c(t). The receive array
is a 2 antenna dual-polarization uniform linear array (ULA)
with 10 dB cross-polar isolation between RHCP and LHCP
channels. The RHCP channel signal-to-noise ratio (SNR) is

SNR = C/N0 − 10 log10 (2B) + 10 log10 (Nc) , (44)

with carrier-to-noise density C/N0 = 40.3 dB-Hz and number
of observed code periods Nc = 1. During the observation
interval, the channel parameters are assumed to be constant.
The LOS azimuth angle-of-arrival is φ0 = 70◦ and the signal
to multipath ratio (SMR) is 6 dB. The spatial signatures bl
are calculated with the structured dual-polarization multipath
model introduced in [10]

bl =


γ0

[
sR,c (φ0)

sL,x (φ0)

]
for l = 0

γl

[
αR,lsR,c (φl) + αL,lsR,x(φl)

αL,lsL,c (φl, θl) + αR,lsL,x (φl, θl)

]
for l = 1 . . . L.

(45)

αR,l and αL,l determine the polarization of the signal

αR,l =

{
1 for l = 0

1/
√

2 for l = 1 . . . L
(46)

αL,l =

{
0 for l = 0

1/
√

2 for l = 1 . . . L.
(47)

sR,c, sR,x, sL,c, and sL,x denote the steering vectors of a ULA
with a small random phase distortion to make sure the vectors
are linearly independent. For comparison the Cramer Rao
Lower Bound (CRLB) for the estimation of the structured
model and the root mean squared error (RMSE) of a single
path estimator [8] are applied. The single path estimator is
equivalent to ρ = 0 and models the multipath signal as
uncorrelated with the LOS signal.

A. One Multipath Signal

First, we consider the case L = 1. Figure 1 shows the
CRLB and RMSE of the estimate τ̂0 for different choices
of Qu over the delay difference ∆τ = τ1 − τ0. The multi-
path azimuth angle of arrival is φ1 = 150◦. All CP model
methods have a better performance than estimating with a
single path assumption. In comparison to the white multipath
interference assumption the approximate temporal multipath
interference covariance matrix leads to a better performance
for the LOS time-delay estimation. Using the exact multipath
approximation (20) instead of (22) does not yield a better
estimation performance for τ0 even though the computational
effort is significantly higher, due to the second line search
which has to be performed. Figure 2 shows the CRLB and
RMSE of the estimate τ̂0 for different choices of Qu over the
multipath azimuth angle of arrival φ1. The delay difference is
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10

20

30

40

∆τ/Tc

R
M

SE
in

m

single path Qu = IQ
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Figure 1. Estimation Performance of the CP Model for Different Choices
of the Multipath Interference Temporal Covariance Matrix Qu over ∆τ/Tc
(L = 1)
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Figure 2. Estimation Performance of the CP Model for Different Choices of
the Multipath Interference Temporal Covariance Matrix Qu over φ1 (L = 1)

∆τ = 0.2Tc. Again all CP model algorithms perform better
than the single path algorithm.

B. L = 6 Multipath Signals

The CP path algorithm is designed under the assumption of
L = 1 multipath signals. However, in [10] it has been shown
that an even better performance can be obtained in the case
of multiple multipath signals if these are highly temporally
and spatially correlated. Figure 3 shows the RMSE of the
estimate τ̂0 for different choices of Qu over the mean delay
difference ∆τ̄ = 1

L

∑L
l=1 τl − τ0. The τl are evenly spread
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Figure 3. Estimation Performance of the CP Model for Different Choices
of the Multipath Interference Temporal Covariance Matrix Qu over ∆τ̄/Tc
(L = 6)

within an interval of 0.4Tc. The multipath azimuth angles of
arrival are spread within 155◦ and 185◦. The CRLB cannot be
calculated for the problem where all parameters are estimated,
as the multipath signals are highly correlated and therefore
the multipath parameters are not identifiable [13]. All CP-
based methods yield a better performance than estimating with
the single path assumption. Using the temporal interference
covariance matrices (20) or (22) yields a better LOS time-
delay estimation performance than assuming white multipath
interference. Applying the exact multipath approximation (20)
instead of (22) yields an even better estimation performance
for τ0 in this case. Figure 4 shows the RMSE of the estimate
τ̂0 for different choices of Qu over the mean azimuth angle
of arrival φ̄L = 1

L

∑L
l=1 φl. The mean delay difference is

∆τ̄ = 0.2Tc. The φl are evenly spread within an interval
of 30◦. This example shows that especially in the case of
highly spatially correlated LOS and multipath signals the CP
model can yield a large performance gain in comparison with
the single path model. Again the exact multipath interference
covariance matrix (20) shows the best performance.

VI. CONCLUSION

In this paper we have derived the CP model for temporally
correlated multipath interference. Under the assumption that
the multipath plus noise covariance matrix is still approxi-
mately white, the parameters of the CP model can be estimated
in the same way as in the case of white multipath interfer-
ence. For the estimation of the LOS time delay however, the
temporal covariance of the multipath interference has to be
considered. In comparison to the CP model with assumption,
the approach presented in this paper achieves a better perfor-
mance while still offering the benefits of the CP model, i.e
no model order estimation, a limited number of parameters
to estimate and no separation of the LOS delay estimate from
the multipath delay estimates. Simulation results show that the
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Figure 4. Estimation Performance of the CP Model for Different Choices of
the Multipath Interference Temporal Covariance Matrix Qu over φ̄L (L = 6)

CP model with temporally correlated multipath interference
leads to significantly better estimation results for the LOS time-
delay than a single path estimator or the CP model with the
white noise assumption. This is not only the case for a single
multipath signal, but especially for multiple highly temporally
and spatially correlated multipath signals.
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