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Abstract—A novel approach for model-based interpolation of
sampled antenna pattern in azimuth, elevation and frequency
domain is presented. Using wavefield modelling, an algebraic
antenna model is derived, which incorporates Fourier transfor-
mation and is stated as Effective Time-Aperture Distribution
Function (ETADF). A method to automatically de-noise sampled
antenna pattern by estimating the model order is proposed. Fur-
thermore, numerically efficient interpolation of antenna pattern
data from the ETADF is presented. The ETADF approach is
validated on simulation data of a conical horn antenna.

I. INTRODUCTION

Exact knowledge of the antenna radiation pattern is im-
portant for e.g. radio channel modelling, direction finding
applications or antenna performance determination. As stated
in literature, the radiation pattern depends on the direction
as well as on the polarisation of excitation [1], [2] for
narrowband applications. Furthermore, the radiation pattern
becomes frequency dependent over the excited frequency band
for wideband and ultra-wideband applications. Therefore, the
antenna has to be known in angular, polarisation and frequency
domain.

Sampled antenna patterns in angular and frequency domain
are not sufficient, if the antenna pattern has to be known at ar-
bitrary sampling points. Furthermore, storage saving represen-
tation of sampled antenna pattern and efficient reconstruction
methods is quite important. Thus, an antenna model is required
to efficiently reconstruct or interpolate the antenna pattern. For
practical application, these models have to consider realistic
antenna data to incorporate e.g. antenna imperfections and
mutual coupling. Such models can be derived from wavefield
modelling [3]. There, sampled antenna patterns are decom-
posed in a sampling matrix and a basis vector, why this kind
of antenna models are stated as algebraic antenna models.

Known algebraic antenna models are the Effective Aperture
Distribution Function (EADF) [4], the scalar spherical har-
monics (SSH) [5], [6] or the vector spherical harmonics (VSH)
[7], which are limited to angular and polarisation domain.
Models which incorporate also the frequency domain are SSH
with Padé approximant [8], VSH with Slepian mode expan-
sion (SME) [9] or VSH with singularity expansion method
(SEM) [10]. In this contribution the Effective Time-Aperture
Distribution Function (ETADF) is presented, which extends
the Fourier transform based EADF approach to incorporate

the frequency domain (full 3D). Tensor algebra is used for
compact presentation of the ETADF.

The rest of the paper is organized as follows: we introduce
the basic antenna description and Fourier transform based
wavefield modelling in Section II. Furthermore, analytical
comparison of the ETADF approach with other full 3D wave-
field modelling approaches is presented. Section III describes
(i) the ETADF approach, (ii) a method for compression and de-
noising of ETADF data and (iii) calculation of antenna pattern
derivatives for e.g. optimisation algorithms or performance
measures like the Cramér-Rao bound. Efficient interpolation
of the antenna pattern utilising the ETADF is presented in
Section IV. A method to estimate the number of Fourier coeffi-
cients to sufficiently represent the antenna pattern will be given
in Section V. The ETADF approach is validated in Section VI,
by a comparison between simulated and reconstructed pattern
of a conical horn antenna. Section VII concludes the paper.

Mathematical notation in this paper is as follows: scalars
are italic lower-case letters, vectors (in column format, unless
declared otherwise) are written as bold faced lower-case let-
ters, matrices correspond to bold faced capitals, and tensors are
bold faced calligraphic letters. We define the matrix operations
(.)T , (.)† and (.)H as the transpose, pseudo-inverse and
conjugate transpose of a matrix, respectively. The Frobenius-
norm of a tensor is stated as ‖.‖F , see [11]. Real part and
imaginary part of a complex number are depicted as <{.} and
={.}, respectively. We define the q-mode product between a
tensor B ∈ CM1×...×Mq×...MQ and a matrix A ∈ CPq×...Mq

as B ×q A, which is obtained by multiplying the q-mode
unfolding U(q) {.} (column-order in accordance with [11])
of the tensor from the left-hand side by the matrix and
inverse unfolding: U−1

(q)

{
A · U(q) {B}

}
∈ CM1×...×Pq×...MQ .

Concatenation of two tensors along dimension q is denoted by
tq .

II. ANTENNA DESCRIPTION AND WAVEFIELD MODELLING

We assume an antenna placed in the origin of a spherical
coordinate system Figure 1. Spherical coordinates are defined
by the elevation angle ϑ in the range from [−π/2 , π/2 ] and
the azimuth angle ϕ in the range of [−π, π]. Polarisation of an
impinging wave is defined according to the ϕ-ϑ-plane, spanned
by the spherical coordinate system basis vectors kϕ and kϑ
in the impingement point on the sphere.
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Figure 1. Spherical coordinate system and polarisation definition

Antennas are assumed as linear, time invariant systems [12]
with a finite impulse response duration. Basically, an antenna
is described by its radiated far-field electromagnetic wave e
at distance r:

e(ϕ, ϑ, f) =
e−2πr f

c

r

[
kϕ kϑ

] [bϕ(ϕ, ϑ, f)
bϑ(ϕ, ϑ, f)

]
=
e−2πr f

c

r
Kϕ,ϑb(ϕ, ϑ, f) (1)

with the speed of light c. An antenna is fully described
by the polarimetric radiation pattern b(ϕ, ϑ, f). In practise,
this pattern is known at discrete sampling points in spherical
coordinates, by e.g. measurements in an anechoic chamber
or simulations. Off-grid sampling points can be derived from
interpolation, which requires a proper antenna model.

An antenna model can be obtained from wavefield mod-
elling [3], where the antenna manifold is expanded by orthog-
onal decomposition. Extending this idea to incorporate the
frequency domain, the full 3D antenna pattern expansion is
given by integral transformation:

bϕ|ϑ(ω) =

∫
R3

gϕ|ϑ(µ) · ψ(µ;ω) dµ (2)

with ψ(µ;ω) the kernel function, gϕ|ϑ(µ) the expansion
coefficients, µ =

[
µϕ µϑ µf

]T
the vector of expansion

dimensions and ω =
[
ϕ ϑ f

]T
the vector of antenna

dimensions. This integral transform describes each antenna
dimension continuously and hence enables antenna pattern
interpolation. Assuming orthogonality and self-reciprocity of
the kernel function, the expansion coefficients are given by:

gϕ|ϑ(µ) =

∫
R3

bϕ|ϑ(ω) · ψH(µ;ω) dω (3)

Kernel functions which fulfil the orthogonality and self-
reciprocity condition are Fourier kernels, why wavefield mod-
elling becomes Fourier transformation. Applicable Fourier
transformations, in particular for the angular domain, are the
cartesian Fourier transform (CFT) (see [4], [13]) and spherical
Fourier transform (SFT) (see e.g. [5]–[7]). Extensions of SFT
to consider the frequency domain are e.g. [8]–[10]. Subse-
quently, extension of the CFT to incorporate the frequency
domain is presented, which is the basis to derive the ETADF
in Section III. Furthermore, CFT and SFT based wavefield
modelling are analytically compared w.r.t. the applied kernel
functions for expansion.

A. Cartesian Fourier transform based wavefield modelling

The kernel function ψ of the CFT in 3D is given by:

ψ(µx, µy, µz;x, y, z) = e2πµxx · e2πµyy · e2πµzz (4)

It is noticeable, that the 3-dimensional kernel function is given
as the product of 1-dimensional kernel functions and therefore
becomes easily computable.

Application of the CFT to data measured in spherical
coordinates requires a projection of the spherical surface on
a planar surface. Several projections are known from map
projections, whereas the Plate Carrée projection [14] is applied
here. This projection preserves equidistant spacing, which is a
key assumption to apply CFT. The relation between spherical
and Cartesian coordinates is:

ϕ→ x

ϑ→ y

f → z

B. Comparison of CFT and SFT based wavefield modelling

Comparison of CFT and SFT based wavefield modelling
is conducted according to the kernel functions in terms of i)
suitability to describe an antenna pattern and ii) computational
complexity. Note, that expansion of the frequency domain and
angular domain are not related and therefore expansion in
these domains can be compared separately.

First, CFT and SFT approach are compared according to
their angular domain decomposition. Costa et.al. [13] showed,
that the antenna manifold expansion in CFT and SFT are
equivalent under some mild assumptions. Nevertheless, the
CFT approach has some disadvantages due to the applied
projection of the spherical surface on a planar surface. Tissot’s
indicatrix [15] can be used to visualise distortions introduced
by map projections. Small circles of equal radii are placed
at several sphere locations, which is projected on the map
afterwards. Modification of the circles in size and shape
indicate, whether the projection is non-equal-area or non-
conformal, respectively. The Tissot indicatrix for the Plate
Carrée projection is shown in Figure 2. Distortions do not
occur for the circles of longitudes but for the circles of
latitudes, because these circles are enlarged to the length of
the equator. Therefore, the distortions increase to the poles,
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Figure 2. Tissot indicatrix for the Plate Carrée projection

which results in three findings w.r.t the CFT based wavefield
modelling. First, projected data and their CFT are not rotation-
invariant. Second, more expansion coefficients compared to the
SFT approach are necessary for proper wavefield modelling.
Third, the antenna main beam should coincide with the az-
imuth plane, because significant radiation power at the poles
would require more coefficients for proper wavefield mod-
elling. The SFT does not feature this limitations and therefore
is more suitable for angular domain decomposition. On the
contrary, antenna pattern interpolation using the SFT approach
is computationally cumbersome, because the kernel functions
are hard to compute numerically. Furthermore, calculation of
derivatives w.r.t. the angles is computationally less complex
for the CFT.

Second, CFT and SFT approach are compared according to
their frequency domain expansion. Several frequency domain
expansion methods are stated in literature for the SFT, like
SME [9], SEM [10] or Padé approximation [8]. SME and
SEM were compared in [9], showing that SME outperforms
the SEM in terms of interpolation accuracy, calculation speed
and noise sensitivity. Compared with the Fourier expansion
in CFT, the Slepian expansion and Padé approximation are
computationally much more cumbersome, because their ker-
nel functions are difficult to calculate. Also, the bandwidth
parameter for the Slepain expansion is not a fixed value and
has to be determined by e.g. an optimisation algorithm [9].

Summarised, the CFT based wavefield modelling outper-
forms the SFT in terms of computational complexity, because
the kernel function in angular and frequency domain is compu-
tationally less cumbersome. This becomes a major advantage,
if the approaches are considered for algorithms, which require

many antenna pattern interpolation steps.

III. EFFECTIVE TIME-APERTURE DISTRIBUTION
FUNCTION

Subsequently, a Fourier-based algebraic antenna model is
described, which considers the previously introduced CFT
wavefield modelling approach and a discrete set of sampled
antenna radiation pattern. Thus, integral equation (3) is solved
numerically, to derive the expansion coefficients. This cubature
is calculated by discrete Fourier transform (DFT) of the
sampled antenna pattern.

A. Discrete Fourier transform of Antenna Pattern

The antenna radiation pattern is sampled according to the
Nyquist criterion in azimuth steps ∆ϕ, elevation steps ∆ϑ and
frequency steps ∆ν. The vectors of sampling points are give
as:

ϕ =
[
−π . . .∆ϕ . . . π −∆ϕ

]T ∈ RL1×1 (5)

ϑ =
[
π/2 . . .∆ϑ . . .− π/2

]T ∈ RL′
2×1 (6)

ν =
[
−B/2 . . .∆ν . . . B/2−∆ν

]T ∈ RL′
3×1 (7)

with B being the bandwidth. The sampled antenna pattern per
polarisation k forms a tensor Bk(ϕ,ϑ,ν) ∈ CL1×L′

2×L′
3 . Due

to the orthogonality of the individual polarisation components,
following investigations are limited to a single polarisation.

Subsequently, co-elevation θ instead of elevation is used
with sampling vector θ′ =

[
0 . . .∆ϑ . . . π

]T
. Furthermore, the

normalised frequency sampling vector is introduced:

f ′ = π · ν −min {ν}
max {ν} −min {ν}

=
[
0 . . .∆f . . . π

]T
(8)

The sampled antenna pattern is only periodic in azimuth
domain. Hence, in order to avoid truncation errors during
DFT, periodic extension of the elevation domain [4] and the
frequency domain is necessary. Calculation of the periodical
antenna pattern B(p)

k (ϕ,θ,f) ∈ CL1×L2×L3 is given in
equation (9), with θ =

[
−π +∆θ . . .∆θ . . . π

]T
and f =[

−π +∆f . . .∆f . . . π
]T

being the sampling vectors of the
periodic antenna pattern in co-elevation and frequency domain,
respectively.

Utilising the periodic antenna pattern, the antenna pattern’s
DFT is given by:

Gk = B(p)
k (ϕ,θ,f)×1 E(ϕ)×2 E(θ)×3 E(f) (10)

B(p)
k (ϕ,θ,f) =

[
−
(
Bk(ϕ

′,θ′′,f ′′) t1 Bk(ϕ
′′,θ′′,f ′′)

)
t2 Bk(ϕ,θ

′,f ′′)
]

t3

[
−
(
Bk(ϕ

′,θ′′,f ′) t1 Bk(ϕ
′′,θ′′,f ′)

)
t2 Bk(ϕ,θ

′,f ′)
]

(9)

θ′′ =
[
π −∆θ . . .∆θ

]T
ϕ′ =

[
0 . . . π −∆ϕ

]T
ϕ′′ =

[
−π . . .−∆ϕ

]T
f ′′ =

[
π −∆f . . .∆f

]T



with the DFT matrices

E(ϕ) =
(
eϕµT

ϕ

)†
∈ CL1×L1 (11a)

E(θ) =
(
eθµ

T
θ

)†
∈ CL2×L2 (11b)

E(f) =
(
efµ

T
f

)†
∈ CL3×L3 (11c)

µϕ =
[
−L1

2 . . . L1

2 − 1
]T ∈ RL1×1

µθ =
[
−L2

2 . . . L2

2 − 1
]T ∈ RL2×1

µf =
[
−L3

2 . . . L3

2 − 1
]T ∈ RL3×1

Tensor Gk contains the Fourier coefficients and is stated as the
Time-Aperture Distribution Function (TADF) of the antenna
for polarisation k.

Considering the TADF, the Fourier-based algebraic antenna
model for each polarisation k is given as:

bk(ϕ, θ, f) = Gk ×1 d(ϕ)×2 d(θ)×3 d(f) (12)

with d the inverse discrete Fourier transform (iDFT) row-
vectors per dimension.

B. Compression and De-Noising
Naturally, the Fourier transformed angular domain is band

limited [3], [4] and, because we assumed a finite antenna
impulse response duration, the same holds for the Fourier
transformed frequency domain. Furthermore, if the antenna
pattern is oversampled, their Fourier transformation is also
band limited. Hence, a finite number of Fourier coefficients is
sufficient for accurate antenna pattern modelling. The TADF
can be compressed to energy carrying Fourier coefficients,
whereas noise carrying coefficients can be truncated.

Compression of the TADF has several advantages. First,
the amount of data to store is reduced. Second, because noise
carrying signal parts are dropped, the measured data are de-
noised. Last, the computational complexity of the antenna
interpolation (see next section) is reduced, because less data
points have to be considered. Therefore, the compressed
version of the TADF is called ETADF.

Calculation of the ETADF is possible by truncating the DFT
matrices. The truncated DFT matrices are:

Ē(ϕ) =
(
eϕµ̄ϕ

)† ∈ CN1×L1 (13a)

Ē(θ) =
(
eθµ̄θ

)† ∈ CN2×L2 (13b)

Ē(f) =
(
efµ̄f

)† ∈ CN3×L3 (13c)

µ̄ϕ =
[
−N1−1

2 . . . N1−1
2

]
∈ R1×N1

µ̄θ =
[
−N2−1

2 . . . N2−1
2

]
∈ R1×N2

µ̄f =
[
−N3−1

2 . . . N3−1
2

]
∈ R1×N3

with N1, N2, N3 are odd numbers, with N1 < L1, N2 < L2,
N3 < L3 for truncation. The ETADF for polarisation k is:

Ḡk = B(p)
k (ϕ,θ,f)×1 Ē(ϕ)×2 Ē(θ)×3 Ē(f) (14)

An ETADF tensor is visualised in Figure 3. The yellow fields
refer to tensor entries, where µϕ = 0, µϑ = 0 or µf = 0
holds.

µ
ϕ

µ
θ µf

Figure 3. ETADF tensor Ḡk with yellow sub-tensors where µϕ = 0, µϑ = 0
or µf = 0 holds

C. Antenna Pattern Differential

Utilising the Fourier-based algebraic antenna model (12)
and application of the product rule, the partial derivative of
the antenna pattern w.r.t. azimuth ϕ becomes:

∂

∂ϕ
bk(ϕ, θ, f) = Ḡk ×1

∂

∂ϕ
d(ϕ)×2 d(θ)×3 d(f)

= Ḡk ×1 d(ϕ) ·U(ϕ)×2 d(θ)×3 d(f) (15)

with the iDFT row-vectors:

d(ϕ) = e(µϕϕ) ∈ C1×N1 (16a)
d(θ) = e(µθθ) ∈ C1×N2 (16b)
d(f) = e(µff) ∈ C1×N3 (16c)
µϕ =

[
−N1−1

2 . . . N1−1
2

]
∈ R1×N1

µθ =
[
−N2−1

2 . . . N2−1
2

]
∈ R1×N2

µf =
[
−N3−1

2 . . . N3−1
2

]
∈ R1×N3

and diagonal matrix U(ϕ), containing the partial derivatives
of the iDFT row-vector in azimuth:

U(ϕ) = diag
{
µϕ

}
(17)

Because matrix U(ϕ) is fixed, pre-multiplication with the
ETADF tensor to save computation time is applied. Defining

Ḡ∂ϕ

k = Ḡk ×1 U(ϕ) (18)

the partial derivative in azimuth becomes:

∂

∂ϕ
bk(ϕ, θ, f) = Ḡ∂ϕ

k ×1 d(ϕ)×2 d(θ)×3 d(f) (19)

Partial derivative w.r.t. elevation can be derived similarly
and is not stated here.

IV. EFFICIENT ANTENNA PATTERN INTERPOLATION

Utilising the ETADF, reconstruction and interpolation of
the antenna radiation pattern (and also its differential) is
possible by iDFT [3]. The iDFT row-vectors (16a), (16b),
(16c) are built according to the azimuth ϕ0, co-elevation θ0



and normalised frequency f0 of interest. Applying the iDFT
row-vectors to the ETADF tensor, the antenna radiation pattern
for polarisation k is calculated as follows:

bk(ϕ0, θ0, f0) = Ḡk ×1 d(ϕ0)×2 d(θ0)×3 d(f0) (20)

Calculating the antenna pattern using the above formula
requires O(4N1N2N3) real-valued multiplications and thus
becoming rapidly computationally cumbersome. Therefore,
methods for efficient calculation are necessary. In the follow-
ing, a two stage approach is presented to 1) reduce the number
of real-valued multiplications and 2) skipping redundancy,
which allows a much more efficient calculation.

A. Reducing of Multiplications

Due to the symmetry property of the iDFT vectors, the num-
ber of real-valued multiplications are reducible [16]. Generally,
this property can be written as:

d =
[
(Π · a)H 1 aT

]T
a =

[
eυ . . . e

N−1
2 υ

]T
with the permutation matrix Π as:

Π =

0 . . . 1
. . .

1 . . . 0


Due to this symmetry, the inner product of vector d and an
arbitrary vector w =

[
xT y zT

]T
can be simplified as

follows:

dT ·w =
[
1 <

{
aT

}
=

{
aT

}]
·

 y
z +Π · x
z −Π · x


The number of real-valued multiplications is reduced by half.
Vector w is folded by either summation or subtraction of his
left and right part.

This relationship is utilised to reduce the computational
complexity of the iDFT. First, we define the folding matrix
F :

F (N) =

 oTN−1
2

1 oTN−1
2

ΠN−1
2

oN−1
2

I N−1
2

−ΠN−1
2

oN−1
2

I N−1
2

 ∈ RN×N (21)

with IN ∈ RN×N the identity matrix and oN ∈ RN×1 vector
of zero values. The ETADF folding is now given by:

˜̄Gk = Ḡk ×1 F (N1)×2 F (N2)×3 F (N3) (22)

with ˜̄Gk ∈ CN1×N2×N3 the folded ETADF. A folded ETADF
tensor is depicted in Figure 4, whereas the yellow blocks
represent the sub-tensors where µϕ = 0, µϑ = 0 or µf = 0
holds.

µf

µ
ϕ

µ
θ

Figure 4. Folded ETADF tensor ˜̄Gk with yellow sub-tensors where µϕ = 0,
µϑ = 0 or µf = 0 holds

The antenna radiation pattern for polarisation k can now be
calculated by:

bk(ϕ0, θ0, f0) = Ḡk ×1 d(ϕ0)×2 d(θ0)×3 d(f0)

= ˜̄Gk ×1 d̃(ϕ0)×2 d̃(θ0)×3 d̃(f0) (23)

with the iDFT row-vectors:

d̃(ϕ0) =
[
1 <

{
eµ̃ϕϕ0

}
=
{
eµ̃ϕϕ0

}]
∈ R1×N1 (24a)

d̃(θ0) =
[
1 <

{
eµ̃θθ0

}
=
{
eµ̃θθ0

}]
∈ R1×N2 (24b)

d̃(ϕ0) =
[
1 <

{
eµ̃ff0

}
=
{
eµ̃ff0

}]
∈ R1×N3 (24c)

µ̃ϕ =
[
1 . . . N1−1

2

]
∈ R1×N1−1

2

µ̃θ =
[
1 . . . N2−1

2

]
∈ R1×N2−1

2

µ̃f =
[
1 . . . N3−1

2

]
∈ R1×N3−1

2

The number of real-valued multiplications is reduced to
O(2N1N2N3).

B. Skipping of Redundancies

Due to the periodical extension of the radiation pattern in
elevation and frequency domain, redundant data are added in
azimuth domain [16]. This results in zero valued samples in the
folded ETADF, which are negligible during iDFT calculation.

First, matrices Se and So are introduced, which selects even
and odd rows of a matrix, respectively:

Se =


0 1 0 0 . . . 0 0
0 0 0 1 . . . 0 0

:
0 0 0 0 . . . 1 0

 ∈ R
N1−1

2 ×N1 (25)

So =


1 0 0 0 . . . 0 0
0 0 1 0 . . . 0 0

:
0 0 0 0 . . . 0 1

 ∈ R
N1+1

2 ×N1 (26)



Second, matrices Su and Sl are introduced, which selects the
upper and lower rows of a matrix, respectively:

Su(N) =
[
I N+1

2
ON+1

2 ,N−1
2

]
∈ R

N+1
2 ×N (27)

Sl(N) =
[
ON−1

2 ,N+1
2

I N−1
2

]
∈ R

N−1
2 ×N (28)

with OA,B ∈ RA×B matrix of all zeros. For short hand
notation, we abbreviate the multiplication of the selection
matrices with the folded ETADF:

˜̄G
e

k = ˜̄Gk ×1 Se ×2 Su(N2)×3 Su(N3) ∈ C
N1−1

2 ×N2+1
2 ×N3+1

2

(29)
˜̄G
o

k = ˜̄Gk ×1 So ×2 Sl(N2)×3 Su(N3) ∈ C
N1+1

2 ×N2−1
2 ×N3+1

2

(30)

and the iDFT row-vectors:

d̃e(ϕ0) = d̃(ϕ0) · ST
e ∈ R1×N1−1

2 (31a)

d̃o(ϕ0) = d̃(ϕ0) · ST
o ∈ R1×N1+1

2 (31b)

d̃u(θ0) = d̃(θ0) · Su(N2)
T ∈ R1×N2+1

2 (31c)

d̃l(θ0) = d̃(θ0) · Sl(N2)
T ∈ R1×N2−1

2 (31d)

d̃u(f0) = d̃(f0) · Su(N3)
T ∈ R1×N3+1

2 (31e)

The antenna radiation pattern for polarisation k is now given
by:

bk(ϕ0, θ0, f0) = Ḡk ×1 d(ϕ0)×2 d(θ0)×3 d(f0)

= ˜̄G
e

k ×1 d̃e(ϕ0)×2 d̃u(θ0)×3 d̃u(f0)

+ ˜̄G
o

k ×1 d̃o(ϕ0)×2 d̃l(θ0)×3 d̃u(f0)

(32)

Due to the skipped redundancy, the number of real-valued
multiplications is O( 12 ·N1N2N3).

V. MODEL ORDER ESTIMATION

For de-noising purpose, the number of significant Fourier
coefficients in each TADF dimension have to be determined.
This topic can be considered as a model order estimation
problem.

Due to the algebraic antenna model (12), unfolding of
antenna dimension q is:

U(q)

{
B(p)

k

}
= E(q) · U(q) {Gk}+N (33)

with N ∼ N (0, σ2
qI) the matrix of circular, normal dis-

tributed noise; U(q) {Gk} the unfolded TADF and E(q) the
DFT matrix. For notational convenience, following abbrevia-
tions are introduced:

Bk,(q) = U(q)

{
B(p)

k

}
∈ CLq×L̄q (34)

Gk,(q) = U(q) {Gk} ∈ CLq×L̄q (35)

whereas L̄q =
∏3

i=1,i6=q Li. Thus, equation (33) becomes:

Bk,(q) = E(q) ·Gk,(q) +N (36)

Model (36) is decomposed into two parts, to account for Pq

significant and Lq − Pq truncated Fourier coefficients:

Bk,(q) =

Pq∑
l=1

E(q)(:, l) ·Gk,(q)(l, :)

+

Lq∑
l=1+Pq

E(q)(:, l) ·Gk,(q)(l, :) +N (37)

whereas E(q)(:, l) denotes the selection of the l-th column
and Gk,(q)(l, :) the selection of the l-th row. Decompo-
sition of model (36) is accomplished by considering the
first Pq Fourier coefficients, which are ordered descendent
according to their magnitude, and their corresponding DFT
matrix vectors. Estimation of the model order is conducted
by statistical comparison of model orders Pq and Pq + 1.
The additional Fourier coefficients are tested, whether they
significantly differ from zero, why the test’s H0 hypothesis is:
Gk,(q)(Pq + 1, :)T = oL̄q

. If the H0 hypothesis is accepted,
additional Fourier coefficients are not significantly different
from zero and therefore negligible.

A suitable statistical test is the F-test [17, p. 37]. The test
statistic Fstat(Pq) for model order Pq is:

Fstat(Pq) =
L(Pq)− L(Pq + 1)

L(Pq + 1)
· (Lq − Pq − 1) (38)

The Fisher statistic is tested against the 1−α percentile point
F1−α of the Fisher distribution, in order to verify the H0

hypothesis:

Fstat(Pq) < F1−α(2 · L̄q, 2 · L̄q · (Lq − Pq − 1)) (39)

with L(Pq) the sum of squared residuals according to model
order Pq:

L(Pq) =
∥∥∥Bk,(q) −E

(Pq)

(q) E
(Pq)

†

(q) Bk,(q)

∥∥∥2
F

(40)

E
(Pq)

(q) = E(q)(:, 1 : Pq)

Model orders from Pq = 1...Lq − 1 are successively tested,
until H0 hypothesis cannot be rejected based on a significance
level α.

VI. SIMULATION

The ETADF approach is validated on simulation data of a
conical horn antenna (see Figure 5). Simulations were carried
out with finite element tool ANSYS HFSS. The numerically
calculated antenna pattern was sampled with 1◦ in azimuth and
elevation, and 10MHz in frequency. The frequency ranged
from 71GHz to 78GHz. Both polarisations were captured,
whereas only kϑ, the co-polarisation in main-beam direction,
will be utilised for the investigations.

The tensor toolbox [18] was utilised for MatLab implemen-
tation of the ETADF approach.

In the following, analysis of the antenna pattern reconstruc-
tion error for different ETADF sizes is presented. As stated, the



Figure 5. ANSYS HFSS model of the conical horn antenna
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Figure 6. Reconstruction error ε for different compression sizes in azimuth
(N1) and elevation (N2), fixed compression size N3 = 100 in frequency

ETADF is calculated from the TADF by truncation of Fourier
coefficients. The reconstruction error is defined as follows:

ε =

∥∥Bsim
k −Brec

k

∥∥2
F∥∥Bsim

k

∥∥2
F

(41)

with Bsim
k and Brec

k being the simulated and reconstructed
antenna pattern, respectively.

The reconstruction error for varying compression sizes in
azimuth and elevation, and fixed compression N3 = 100 in
frequency, is depicted in Figure 6. As visible, a compression
size of approx. N1 = N2 = 160 results in a truncation error
of less than −40 dB, which is quite sufficient for practical
considerations. Hence, the amount of data in azimuth and
elevation is reducible by more than half.

Furthermore, the reconstruction error for varying compres-
sion sizes in frequency and joint azimuth-elevation is pictured
in Figure 7. A compression size of approx. N3 = 40 and
N1 = N2 = 160 is sufficient for an error less than −40 dB,
why the amount of data in frequency is reducible by approx.
20 times.

Utilising the proposed model order estimation scheme and
assuming a significance level α = 0.01, the compression sizes
are estimated as N1 = 164, N2 = 180 and N3 = 72.
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Figure 7. Reconstruction error ε for different compression sizes in joint
azimuth-elevation (N1 = N2) and frequency (N3)
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Figure 8. Simulated and reconstructed antenna azimuth cut at elevation 0◦

and frequency 75GHz

Taking the aforementioned compression values N1 = 160,
N2 = 160 and N3 = 40, we compare simulated and recon-
structed antenna pattern cuts. Antenna pattern cuts in azimuth,
elevation and frequency are depicted in Figure 8, Figure 9
and Figure 10, respectively. A quite good agreement between
simulated and reconstructed antenna pattern is obvious.

VII. CONCLUSION

A novel algebraic antenna model ETADF for full 3D
interpolation of antenna pattern was presented. Basically, the
ETADF extends the known EADF approach to the frequency
domain, why the ETADF is a multi-dimensional Fourier
transform in azimuth, elevation and frequency. Analytical
comparison to other algebraic antenna models was presented.
It turned out, that the ETADF requires more coefficients
to properly represent the antenna pattern. Nevertheless, this
approach is computationally less cumbersome for interpolation
purposes. Also, a method to estimate an appropriate model or-
der to sufficiently represent the antenna pattern was presented.
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Figure 9. Simulated and reconstructed antenna azimuth cut at azimuth 0◦ and
frequency 75GHz
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Figure 10. Simulated and reconstructed antenna frequency response at azimuth
0◦ and elevation 0◦

Furthermore, numerically efficient interpolation was derived,
which reduces the number of real-valued multiplications ap-
prox. by factor 8.

Based on simulation data of a conical horn antenna, the
ETADF was verified. The number of Fourier coefficients to
sufficiently describe the antenna pattern was reduced by more
than half in azimuth and elevation, and 20 times in frequency.
Hence, the amount of data to store is significantly reduced and
interpolation becomes computationally efficient.
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