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ABSTRACT entries [6], [7], [8]. Furthermore, when a wideband multi-
_ o carrier system is considered, equivalently we get the same
In this paper we study the channel estimation problem fopnase shifts for all subcarriers [9]. These two constraints
a CP-OFDM based hybrid analog-digital massive MIMOgre stringent such that they lead to significant challenges
system. In contrast to a conventional MIMO system, tWonot only for the precoding of the transmitted data but also
additional constraints need to be fulfilled. First, the agal o the required channel estimation tasks [7], [10], [11],
precoding is achieved using only a phase shift network 12]. In [7] an adaptive compressed sensing (CS) based
which imposes constant modulus_ constraints on the elementfannel estimation algorithm is proposed to estimate the
of the RF precoding and decoding matrices. Second, thefgannel of a hybrid analog-digital massive MIMO system.
is just one common equivalent RF precoding or decodinghis CS based channel estimation algorithm has been further
matr_lX for all Subcar.rlers_. These Constra”ﬂ:S lead to a'.ChaleXtended in [10] by invo|ving mu|t|p|e measurement vectors
Ienglng chanr)el estimation task that mclydes the trainingnmmy) to improve the channel estimation accuracy. The CS
design. To estimate the channel at the'recelver, a Ieastemyabased concept is also used in [11], where an adaptive multi-
(LS) method and a compressed sensing (CS) method with@iq sparse recovery approach is applied instead. Finally,
single-stage or a two-stage design are introduced. Comlparg muylti-user hybrid analog-digital system is considered in
to the single-stage designs, the two-stage designs have[£p] and a minimum mean squared error (MMSE) approach
lower computational complexity. Sufficient conditions for js developed to estimate the channel. Unfortunately, @l th
a unique channel estimation are derived for both. methodghove papers deal with narrowband systems, or equivalently
Simulation results show that the CS method provides morg fat fading channel. Their results cannot be directly used i
accurate channel estimates than the LS method under mild . iticarrier system, or equivalently a frequency selecti
conditions. channel due to the fact that there is a common RF precoding
and decoding matrix for all the subcarriers. Hence, this
Index Terms— mmWave Massive MIMO, hybrid pre- motivates us to design channel estimation algorithms ak wel
coding, OFDM, least squares, compressed sensing. as training sequences for single user multi-carrier hybrid
massive MIMO systems.

I. INTRODUCTION . . . .
In this paper we develop channel estimation algorithms

Massive MIMO, which uses orders of magnitude morefor a single user multi-carrier hybrid massive MIMO system.
antennas (e.g., 100 or more), can provide significant MIMQA cyclic prefix OFDM (CP-OFDM) based multi-carrier
gains [1]. When combined with millimeter wave (mmWave) modulation scheme is used and training using pilot tones
technology, it will not only gain from large chunks of is considered. To estimate the channel at the receiver side
underutilized spectrum in the mmWave band [2] but willwe study two different approaches, i.e., a least squarep (LS
also benefit from a significantly reduced form factor of theapproach and a CS approach. The former one is a linear
massive MIMO array [3]. Hence, massive MIMO communi- method while the latter one is realized using the orthogonal
cation is a potential technique for future wireless network matching pursuit (OMP) algorithm, which is a non-linear
[4]. However, if a large number of RF chains is implementedmethod. We provide the sufficient condition for a unique
to steer the massive number of antenna elements, the iohannel recovery using the LS technique. Moreover, to
volved power consumption and the hardware cost are tomeduce the computational complexity, an orthogonal tregni
high and therefore are impractical. To exploit the MIMO design via a two-stage channel estimation is proposed and
multiplexing gain under a reasonable cost, one promisan analytical expression is given for the achieved MSE of
ing solution is to deploy hybrid analog-digital precodingthe LS channel estimates. The CS approach exploits the
schemes, realized using phase shifters or switches in the Riparsity of the channel in the angular-delay domain. A
domain [5], and digital precoding schemes, implemented irsingle-stage design based on the OMP algorithm is proposed
the digital baseband domain as in conventional MIMO. Ifand a sufficient condition for unique channel estimate is
analog precoding is achieved using phase shifters only, thderived. By consuming relatively more training resources
analog precoding matrix should have only constant modulusompared to the single-stage design, a reduced complexity
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Fig. 1. A hybrid point-to-point massive MIMO-OFDM system with transmit antennas antf/r receive antennas. There
are Nt < My transmit RF chains andy < MRy receive RF chains. Matrica8[m] and W [m] denote the analog precoding
and decoding matrices, which are implemented on the phakenstworks.

channel estimation method is developed via a two-stagkength Ncp symbols is added, followed by an RF precoder
OMP based sparse recovery. Simulation results show that thé[m] € CMr*Nr ysing analog circuitry. We assume that
proposed CS approaches outperform the LS approaches atie RF precoder is implemented using analog phase shifters.
they require a smaller number of training symbols espgciall Hence, constant modulus constraints should be fulfilled for
when the spatial frequencies of the estimated channel lie ogach element o [m] € CMr*Nt je. |(F[m]).s| = 1
uniform grids. foral a € {1,---,Mr} andb € {1,---,Nr}. Finally,

Notation: Upper-case and lower-case bold-faced Iettertshe total power of .the pilot tones in one OFDM symbol is

N
denote matrices and vectors, respectively. The expeotatiojimited such thatz | F[m]sy, [m]||> < Pr for all m.
trace of a matrix, transpose, conjugate, Hermitian trans- = r

pose, and Moore-Penrose pseudo inverse are denoted by

E{}, Te{-}, {-}7, {3, {}¥, and {-}*, respectively. The We consider a frequency selective quasi-static block
Euclidean norm of a vector and the absolute value aréading channel. Assume thafcp has the same length as the
denoted byi| - || and| - |, respectively. The Frobenius norm maximum excess delay of the channel such that the inter-
is denoted by| - ||r. The (c,d)-th element of a matrix is symbol interference is avoided. After passing through the
denoted by(-)..4. The Kronecker product is). Thevec{-} ~ channel, first, an RF decod® "'[m] ¢ Cr* M= s used
operator stacks the columns of a matrix into a vector. Th&t the UE. The RF decoder is also implemented using phase
unvecyr n{-} operator stands for the inverse function of shifter_s and _therefore all the elementsWf[m| have unit
vec{-}. The smallest integer that is greater than or equal tgnagnitude, i.e.|(W[m]).q| = 1 for all ¢ € {1,---, Mg}

z is denoted by[z]. The largest integer that is smaller thanandd € {1,--- , Nr}. Afterwards, the CP is removed from

or equal toz is denoted by|x|. The modulo operation is the received signal and by using the FFT filter the time
denoted bymod(-). The p-th column of an identity matrix domain signal is transformed into the frequency domain.
is denoted bye,. The operator/(-) computes the phase Let H, € CM=*¥r denote the discrete channel transfer

of a complex number. The uniform distribution within the function (CTF) onn-th subcarrier of the UE. The received
interval [a;, as) is defined ag{(a;, as). training signal on then-th subcarrier in then-th OFDM

symbol is given by [9]

[I-A. System Model . .
where z,[m] represents zero mean circularly symmetric

We study a point-to-point massive MIMO system wherecomplex Gaussian (ZMCSCG) noise with covariance matrix

a multi-antenna base station (BS) transmits data to a multE{z,,[m]z1[m]} = o2I,,, for all n and m. Note that

antenna user equipment (UE) as depicted in Fig. 1. The B8quation (1) implies that the channel remains unchanged

has Mt transmit antennas anft RF chains. The UE has during the training procedure. In our design the data symbol

Mg receive antennas andg RF chains. The number of RF are not used for channel estimation.

chains is assumed to be much smaller than the number of . .

antenna elements, i.e}/t > Nr and Mg > Ny. A CP- Our goal is to desigiW [m], F[m], and s [m], Vn,m,

OFDM based multi-carrier modulation scheme is applied t¢Uch that the channel can be accurately estimated at the

combat the multipath effect. The corresponding FFT size i§€CEIVer.

Ni. Let s, [m] € CNT represent the transmitted pilot vector

on then-th subcarrier in then-th OFDM symbol over all g Channel Model
available RF chainsn( € {k1, - ,kn,} C {1, -+, Na}, '
pe€{l,--- N}, m € {1,---,Ny}). Thereby, the training In our paper we consider an analytical channel model

procedure consists ofV; OFDM symbols each withV;  consisting of a finite number of scatterers, i.e.scatter-
pilot tones. The pilot tones and the data tones are intelers. Each scatterer contributes to a single propagatidm pat
leaved on all the subcarriers and then passed through thetween the BS and the UE, which accounts for one time
IFFT filter. Furthermore, we assume that the pilot toneslelayr, and one pair of spatial frequenciésr ¢, ur.¢) for
are assigned equally spaced and equally powered. A CP éfc {0,--- , L—1}. The frequency domain representation of



the channel is given by [13] Let y[m] = vec{Y [m]}, whereh,, = vec{H,} andz[m] =
1 vec{WH[m]Z|m|}. Then the vectorized version of (5) is
H(f) =Y acalure)a” (pre) e, (2) ©xpressed as
=0 T oy y[m] = (C"[m] @ WH[m])h,, + 2[m] (6)

whereay is the random complex gain of tieth path, with ~ TO utilize the training resource along the time domain (the
zero mean andi{|a,|2} = 1/L, V/. The vectorsa(ur ) m-dimension), we staclg[m] on top of each other as

and a(ugr,) are the array steering vectors of the BS and — Ph . € CNrNeN; 7
the UE, respectively. Note that the developed algorithms in Ys 1 s ’ 0
this paper do not depend on whether a one-dimension (1-Byhere = LyT[l] yT[NtHT, Zq =
or two-dimension (2-D) array geometry is used. The definequm . 2N, H and
array steering vectors here are just illustrative examples ol
thermore, for notational simplicity we assume that= (T, CT[1] @ WH[1]
whereT, = 1/(Ng - Af) represents the sampling period _ : € CNeNtNrx LMy My
and Af denotes the subcarrier spacing. Then the sampled ! " g '
CTF on then-th subcarrier is modeled as [14] C™[Ny] @ WH[N]
-1
—joxLn Conventionally, the LS estimate &f, from (7) is com-
H, =3 owa(pr)a (e e e @) ey ’ 1 v
(=0 FI,cCMp x My h, = p;ryS. (8)
lll. LEAST SQUARES APPROACH This requires thaP?; has full column rank, i.ezank(P;) =

LMrtMg < N¢N¢Ng. This condition also implies that the
In this section we study the LS based training designrequired total number of time-frequency resources is
which is a commonly used channel estimation scheme, e.g., LMo M.
[15]. More specifically, a general LS solution via a single- N Ng > 2R (9)
stage design is proposed in Section IlI-A while a reduced Nr
complexity LS method via a two-stage orthogonal design iSThe LS problem can be solved using the Cholesky decom-
introduced in Section IlI-B. position, which yields a computational complexity of order
O((LMr Mg)?/6) [16].
[lI-A. LS estimation via a single-stage design

By inserting (3) into (1) we obtain I1I-B. A two-stage orthogonal design

L1 In the following we propose an orthogonal training
o . . e .

Im] = WH Hoe 2755 | . deS|gn such th_at only matrix muItlp_Ilcatlons_ instead of the
Ynlm] [m] Z e e Flm]sn[m] matrix pseudoinverse (8) are required during the channel
estimation process. Thereby, the involved computational
complexity is reduced.

£=0
+ WHm]z,[m]

H
= W [m|H(w, @ (F[m]sy[m])) Let us divide N; time slots into N, r frames, where
+ WH[m]z,[m], (4)  each frame consists oV, 1 OFDM symbols, i.e.,N; =
N - Ny r. The RF decoding matrix stays constant during
each frame while the RF precoding matrices and the training
H,=[Hy -+ Hjp_]eCMuxLMr symbols used in different frames are the same. That is, we
have

T
w,, = |:1 . e—jQﬂ(L'N;ﬁlt)"} c (CL. F[m] = E 1= mod(m — 1, Nt,T) +1
Splm] = sn:, i=mod(m—1,Ny1)+1 (10)
Wim]=W;, j=|m~-1/Nyr|+1,

where we have

and

By stackingy,[m] next to each other along the frequency
domain (then-dimension) we obtain a matriY [m| =

Yk, [m] -+ Yy [m]] € CVr*Ne which is expressed wherei € {1,--- Ny} andj € {1,---, Ny r}.
as . , , .
_ w/H H Our methodology is to first estimate the matrix product
Y [m] = WHm|H,C[m] + WH[m|Z[m)], (5) H,, = WHH, during each frame, wher&¥™ is the
where Z[m| = ,\szl [m] -+ 2y [m]] € CMwxNe and  analog decoding matrix used during theth frame, and
C[m] € CEMr>Ni is computed by then to estimateH,, by using the combined¥V; H,, over
- o all frames.
F
Wiy @ ( [T_n]skl ) In the first stage, the LS estimate #f,, ; is computed
Clm] = : . by

wi ® (F[m]s,, [m])* H,;=[Y[j-DNr+1 - Y[jNer]]Cf, (12)



where Ct = [C][1] C[N;r]] € CLMrxNeNer
should have a full row rank, i.e.,
LMt < N¢Nyr. (12)
An orthogonal design o't requires that
Ny, 1
CrCY =Y C[m]C"[m] (13)
m=1

Nz_f

wherefy, i = Fisy, ; and3 > 0. When (13) holds, the com-
putational complexity of (11) is dominated by one matrix
multiplication of orderO(NgN¢ Ny, rLMr). Let log,(Nt)
and log,(L) be integer values antbg,(N;t) > log,(L).
Inspired by [15], one design offy, [m], which satisfies

Ny
Z Wi, @ Fyi) (Wi, @ Fr,i)" = BlLas,

(13) but does not take into account the constant modulus

constraint ofF;, is given by

PT —j2n(i—14(p—1)Ny p)L(a—1)

Ne-N,
(fk;“i)a MTNfe £ Ne, T s (14)
wherea € {1,--- , Mt} and the scaling factor comes from

the power limitation of the transmitted training signal.i§h
results in a5 = Pr - Ny v/Mr. With the constant modulus
constraint and based on (14), we propose the desigh; of
and sy, ; only for two cases, i.eNy = L and Ny > Ny >
L. The proposed designs of the analog precoding mafyix
are given by

—j2n(i—1)L(a—1)

e Ng-Ng, T , Ne=1L
(Ei)a,b = —j27(i—1+(p—1)Ny 7)L(a—1)
€ My New ) NT > Nf > L7
(15)

Example: Assume that (12) and (18) are satisfied with
equality, which implies thatV; v = LMy /N, Nyr =
Mg /Ng, and (9) is also satisfied with equality. The over-
all computational complexity is the® (LMt Mg (LMt +
Mpy)). Let us define

Zj = [Z[(j - ]-)Nt,T + 1] (CMRXNth,T

Z[jNyr]] €

Zy =2} ZE 17 e CNunMaxNeNi

Q; = W,Wjl e CMrxMr

Qs = [Q: Qn, ] € CMrRXNerMr

and setN; = max(L, Nt). Then the achieved MSE via the

proposed two-stage orthogonal design is computed as

wiz, 2

E{||H, — H.|[i} =E{ | Wy Cr

H
Wt,RZt,R F

Tr{QAE{Z,CYCrZJ}Q}}
Nth TU

1
fr— aT/BQ

1
_ @TF{QAE{ZAZE}QE} =

Nth,TO'EI H H
= a5 > T {wWiw, Wy
j=1

9 Ner

Mg N¢ N,

M Z Te{W; Wi} =
o MRMTNfO'n _ HlaX(L,]\7'1‘)]\4R]\4'1“O'I2,1
B Pr B Pr ’

where the fact€C ' Cr = SIn,n, . andW'W; = Mgy,

are used during the derivation. Note that the LS approach

———Tr{QAQL}

Nt r

MIQ{Nth7T0'121
af

(19)

and the proposed corresponding designs of the pilot vectotoes not depend on the structure K.

Sk, are

P —
i \ Nz Ive, Ne=1L
kepyi = P
Jitk-ep Nt >Np> L.

In the second stage, the LS estimateFdf, is obtained

(16)

as
-~ -~ T
A, =wi AL, - "y, (17)
where Wy = [Wl* WJ)’\}LR} € CNrNyrXxXMr
should have a full column rank, i.e.,
NrNtr > Mg. (18)

An orthogonal training design requires tHafg has orthog-
onal columns, i.e.,Wﬁ{WR = aly,,. One option is to
select the first\/g columns of aNg Ny g-by-Ng Ny g DFT
matrix. This results in amx = Ng Ny r. With an orthogonal
design of Wgr the computational complexity of (17) is
dominated byO(Mg NNy rLMr). The overall computa-

V. COMPRESSED SENSING APPROACH

In contrast to the LS approach, the CS approach exploits
the sparsity in the angular-delay domain. To reduce the
mutual coherence of the array manifold of the ULA, we
assume that the spatial frequencieg, and ur, lie on
uniform grids of dimensiongrg > Mg and Gt > Mr,
respectively. Thereby, we haver, = (i — 1)Ar with
Ar = 2r/Ggr (i € {1,---,Gr}) and u, = (j — 1)Ar
with At = 27/Gr (5 € {1,---,Gr}), respectively. This
is a common assumption in the literature, e.g., [7], [10],
[11], [12], [17]. Under this assumption, the array mani-
fold Agr = [a(pr,1) a(pr.cy)] € CMrxCr and

Ar = [a(pr1) a(pr,g,)) € CMr*GT are known
matrices. The discrete CTF in (3) can be rewritten as
L-1 .
H, =) ApH, Ale > i, (20)
=0

where H, , € C“»*CT contains just one non-zero element

tional complexity via this two-stage orthogonal design is«a,. In other words,H,, , is sparse. Equation (20) is now

O(Ngr NNy LM+ Mg Ng N, g LM~), which is much lower
compared to the single-stage LS design.

a linear function ofH, ,. The rest of this section is also
split into two parts, where a general CS based channel



estimation method via a single-stage design is developed iperformance, they are identical over all the OFDM symbols.

Section IV-A and its reduced-complexity version is prombse We propose
in Section IV-B. -
\/ Wirnser Ve < Nt (25)

. Sky,i =
IV-A. A single-stage CS approach T dp,  Otherwise,
By inserting (20) into (1) and applying some algebraic N1 T
manipulations we obtain whered, = {1 —I2m Ny . The computa-
- - tional complexity of the OMP algorithm is dominated by
Yn[m] = W m|Ar H, (w, ® A7) F[m]s,[m] O(NyNtNg L2G1Gg). Note that in the numerical experi-
+ WHm]z, [m], (21) ments we use a uniform linear array.
where IV-B. A reduced complexity two-stage CS approach
H,=[H,, --- H,; ] eCCOr*xLGr, Now we introduce a two-stage sparse recovery algorithm.

e ) ) i It requires relatively more training symbols compared to
Similarly as in equation (6) of Section I, to fully exploit the single-stage method discussed above. But it has a more
the time-frequency resources, we can first stgckm] on tractable training design, which might be useful for theore
top of each other along the frequency domain, which yieldsca| analysis, and has a reduced computational complexity.

T H The same training procedure as described in Section IlI-B is
ylm] = (B [ml® (W [m]AR)) hy + 2[ml, (22) used, i.e., the training process is split iMp r frames each
whereh, = vec{H,} € CLGxGr s a sparse vector con- with Vi OFDM sym'bols. Again, it is .as_sumed that the
taining L. < LGrGr non-zero elements. Theth column analog decoding matrices are reused within each frame and
of B[m] € CLGT*N is given by (wy, ® A%)F[m]skp [m] the analog prec_odlng matrices as well as .the training sysnbol
for p € {1,---,N;}. Then we can staclg[m] along the are reused in different frames. Mathematically, equatid) (
time domain on top of each other as in (7) and obtain ~ holds.

In the first stage, i.e., in each frame, we estimate the

_ Ng Nt Ny
Ys = Prhy + 2z, € ORI, (23)  matrix productHy ; = WHAR H, € CVo*LCT ysing the
where CS approximation algorithm. This is motivated by the fact
that matrix Hg ; contains at mosL < LGt columns with
BT[1] ® (WH[1]AR) non-zero elements. Then, by stackipg[m| next to each
Py = . c CNeNeNe X LG1Gr other we obtain the following equation
BT[N,] ® (WH[N,]AR) Y, =P - Hy ,; + Z;, (26)
The formulation (23) fulfills a sparse recovery problem antherer — [WJHZ[(]' —DNyp+1] - WJ-HZ[th,THT,
thus any sparse approximation algorithm in [18] can bei—,_ _ i - 1)NtT+' ] - Y[iN THT c

applied. In this paper we apply the OMP algorithm. To(C%Vth,TxNR
ensure that,, can be uniquely and stably determined, the

matrix P, should be constructed such that the restricted P;=[B[l] - B[Nt,THT c CNeNe oXLGr

isometry property (RIP) is satisfied. In practice there ave n __ T

algorithms which could check the RIP for a given matrix in Since each column oHy ; has at most. < LGt non-
polynomial time. But there are certain probabilistic const ~ 2€r0_élements, (26) is a sparse recovery problem and more
tions of matrices satisfying the RIP with high probability, Precisely, a MMV problem [20]. Nevertheless, to solve (26),
i.e., constructingP, with randomly distributed elements, We apply the OMP algorithm column wise, i.e., considering
e.g., Gaussian or sub-Gaussian distributions, or cortstguc ©ONlY @ single measurement vector. Thereby, the maifjx;

P, to possess randomly selected rows of a DFT matrixS estimated colu_mn by colurr_m._ Within this sgage, the
[14]. The latter one is difficult to achieve becauBg has a  Involved computational complexity I©(N¢ N, 1 Nr L=Grr).
complicated structure and the analog precoding and degodin’ "€ asymptotic recovery condition for OMP requires that
matr!x must co.nsis.t of constant modulu.s entries. The former NiNe.r > 2Llog(LGr). (27)

one is our choice in this paper. According to [19], whEn ’
is sufficiently random, an asymptotic reliable recoverywpf
with a sparsity order of. can be achieved if

, and

_ In the second stage, we recovl, using the estimated
Hy,_ ;. Without loss of generalityHy ; can be rewritten as

N¢N;¢Ng > 2L1log(LG1GRr) (24) Hy ;= WHARH, + A, (28)

as L — +oo. Numerically we find that this condition is
approximately true when the phases of the elemenfs|of]
andW [m] are uniformly distributed over the intervial, 27).

As the pilot vectorss;, ; have almost no influence on the He.yw = PLH, + Agyy, € CNerNexLGr (29)

where A; represents the estimation error. We stddl
on top of each other and obtain



Table I. A comparison of the required training resource and the edatipnal complexity under ideal conditions

Algorithm  Training Procedure ~ Minimum required training resourdg ( Ny, T - Ny,r)  Computational complexity
s Single-stage LMt Mg /Nr O((LMrMg)3/6)
Two-stage L]\'{TZ\/IR/NR O(LMTJ\IR(LZ\/IT + MR))
cs Single-stage [2L1og(LGTGRr)/Nr] O(2L2GrGrlog(LGTGR))
Two-stage [4L log(LGT)log(Gr)/Nr] O(2L3 Nr G log(LGT) 4+ 2LGTGR log(GRr))
Table 1. An overview of the proposed training design
Algorithm Sk [m] & F[m] W m]
Orthogonal LS design  (16) (15) W].H is the j-th sub-matrix containing consecutiv€g rows of a DFT matrix

Single-stage CS (25) Z((F[m])a,p) ~ U(0,27)

Z((W[m])e,a) ~ U(0,2m)

Two-stage CS (25) Z((Fi)a,p) ~ U(0,27)

Z((Wj)e,a) ~ U(0,27)

agqual-powered and equal-spaced pilot tones are used.

T
~ . T T _
where H.pn = [HR,l HR,NLR} , Pro=
T
WeAg € CNerNexGr W, — [Wy Wz*vt,.F] €
(CNt’RNRXA/IRu and ACum = AFl[‘ A% - Re-

covering H, from (29) is again a MMV spatr’ge recovery
problem. But the sparsity profile on each column Hf,

recovery condition for OMP requires that

NrNir > 2log(Gr). (32)

Note that a similarly training scheme as in the single-stage
approach will be used for constructing’;, F;, and s, ;,
Vn,m.

is not the same. A single measurement vector based sparse

recovery method is used. We split equation (29) ihtsub-
equations and each sub-equation is given by

ﬁcum,é = P4HV,€ + Acum,é € CNLRNRXGT; (30)

where I;l—cum}g and A.um ¢ denote thel-th sub-matrix of
H,.,, and A.,, consisting ofGt columns, respectively.
To estimateH, ¢, the vectorized representation of (30) is
used and yields

i'fcum,f = P5hu,£ + 5Cum,€ S (CNt’RNRGTv (31)
where P5 = IGT & P4 S CNt’RNRGTXGRGTv iLcum,@ =
VeC{chmyg}, hl,,( VeC{Hl,,[}, and (Scum,[
vec{Acum,¢}. Now h,, can be recovered by using the
OMP algorithm. Nevertheless, recalling thak, , contains

Summarizing, let us assume that the asymptotic recovery
conditions (24), (27), and (32) for the OMP algorithms are
tight, and sufficient conditions (9), (12), and (18) for the
LS algorithms are satisfied with equality. A comparison
between the LS approach and the CS approach with a single-
stage or a two-stage estimation procedure in terms of the
total number of required time-frequency resources and the
involved computational complexity is summarized in Table |
The proposed training design is specified in Table Il. It is ca
be seen that in general the CS approach requires less trainin
and has a lower computational complexity. However, the CS
approach is sensitive to the sparsity profilefdf, ;.

V. SIMULATION RESULTS

The proposed algorithms are evaluated using Monte-
Carlo simulations. The maximum allowable powE% is

only one non-zero element, the OMP algorithm can beset to unity. The SNR for channel estimation is defined as
modified so that a more computationally efficient algorithmSNRiio. = 1/(Nmo7) while the SNR for data transmission
is obtained. The proposed modified OMP algorithm foris defined asSNR; = Piig/(Ndatacy), Where Nyaga

solving (30) contains two steps, first, theh column of P,
which is most correlated with thgth column of H.y ¢ is

computed by(p, ¢) = arg max; max; [pY - Acum, 7|, where

p,; and i}cuml,j denote thei-th and thej-th column of
P, and H.,n ¢, respectively. Second, the LS solution of
the corresponding non-zero element is givenbby= pi{p .
ﬁcum7g,q/||p4’p||2. In this stage the computational complex-
ity is dominated byO(N, g Nk LG1Gr). The asymptotic

denotes the number of active data subcarriers. The maximum
power used for data transmissiél, is also set to unity. We

set Ngy = 128 and L = 8. As in [6], a uniform linear array
(ULA) geometry is used at both ends. The inter-element
spacing of the ULA is equal to half of the wavelength. The
array steering vector at both ends (BS and UE) consisting
of M elements is then defined as

a(p)=[1 en e—j(M—l)uf 7 (33)
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Fig. 2. A reliability test of the asymptotic recovery con- pilot
ditions (24), (27), and (32) for the OMP algorithm for
Mt =64, Mg = 32, Ny =8, and Ny = 4. Fig. 3. Achievable NMSE VsSNR,;i,+ for different number

of RF chains withM+ = 64 and Mg = 32.

where 1 denotes the spatial frequency. Moreover, we sel s
G = My andGg = Mg. We setN; = max(Nr, L) for all 10
the proposed algorithms, which accounts for a pilot ovethea
of %ﬁf’”% per OFDM symbol. The LS method via the
orthogonal design, the single-stage sparse recovery ghetho
and the two-stage sparse recovery method are denoted
"LS”, "Single-Stage CS”, and "Two-Stage CS”, respectively
The simulation results are obtained by averaging over 10t
channel realizations.

[
o
N

101_
In Fig. 2 a reliability test of the asymptotic recovery

conditions (24), (27), and (32) has been performed for the
proposed single-stage and two-stage CS approaches. T
normalized MSE (NMSE) is defined &8MSE = E{|| H, —

—>—Upper bound Perfect CSI
~/A—M-HOSVD Perfect CSI

—#—M-HOSVD Two-Stage CS
—©—M-HOSVD Single-Stage CS| |

Achievable sum rate [bits/s/Hz]

H, ||%/||H,||%}. For the single-stage method we increase . . —B-MHOSVD LS :
the number of measurements by addiMig, . to the lower 20 10 o 10 20 20
bound of Ny 0w = [2log(LGTGRr)/Nr]. For the two- SNR_ =SNR _[dB]

sig pilo

stage methodV, 1 is fixed as[2log(LGr)| and the total
number of measurements is increased by addVpg ofset . . 4 B B
to the lower bound ofN; g 10w = [2log(Gr)/Nr]. Nu- ?29]3 Afhée\ﬁblgiur?vrate XsféRgﬁ;%ME N 64, Mg =
merical results show that this bound is not tight for our”< **T = = 7R = % “idata = =5, s = %

problem. When the two approaches use the same number

of OFDM training symbols, the single-stage method is

slightly better than the two-stage method. To preserve glllthaer?;[g?jﬁitgg t(tflrjﬁggteelds;?tielrr-]g)rglzftg\?[)(c(zal.)ﬁows?vgg)_
stable performance, in the following simulations we will i3 % "0 R N e e with the waterfilling
set Ny otset = NiR.oftset = 4. Note that even with this

; L llocation scheme. The difference between the M-
increased number of training symbols the CS approachés st ower a . - ; .
require much less OFDM training symbols compared to th OSVD algorithm and the original HOSVD algorithm in

: 1] lies on the design of the digital precoder and decoder
LS method. For example, with the same number of antenn péer subcarrier. LetFrr and WiL. denote the obtained

and RF chains the LS method requires at ledist= 512. RF precoder and decoder using the HOSVD algorithm.
The performance of different channel estimation algo-Define the economic SVD ofgr = UTysETVSV}i,Is and

rithms with varying numbers of RF chains is compared inWFIg =Ug, 3R s Vi, Define the rankN,, truncated SVD
Fig. 3. In general the CS based algorithms outperforms thg¢ >l Ul HnVTsi}l ~ UpinSean VE . Then the

trun-

LS based algorithm. T.he LS algorithm prqvides allmost th(ﬂigital’baséband precoder and decoder for thth data
same results under different settings. This coincides Wit ,pcarrier are calculated Bop, = Vi S Vi €

our analytic result (19) since for all settingé; = 8. The gNTsts and Wy, = U} :

-1 H Ngs X N
performance of the CS based algorithms is insensitive to threspectively Moreover. the dﬁ?ﬁﬁﬁﬁ:ﬁ%ojndcin [21}1:(“1’&
change of N but gets slightly better whey increases. the perfect CSI and the waterfilling power allocation scheme

To compare the achievable sum rate of the systens also plotted as a benchmark. Since our focus is on the



effects of imperfect CSI rather than the overall system
spectral efficiency, the demonstrated sum rate comparnson i
Fig. 4 accounts only for the data transmission phase. During?] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath,
the data transmission phase, the analog as well as digital
precoding and decoding schemes are modified according

the

other words, the proposed analog training matrices will be

M-HOSVD algorithm and the estimated channel. In

replaced. Moreover, to reduce the computational complexit
we use Ny, = 4 spatial streams [21]. Fig. 4 shows that
the achievable sum rate is only slightly affected when the[9] T. E. Bogale, L. B. Le, A. Haghighat, and L. Vanden-
estimated CSl is used. There is almost no difference when
different channel estimation schemes are used and the SNR
is not too small (e.g.> —10 dB).

VI. CONCLUSION

estimation methods for estimating the CIR for a multi-
carrier single-user massive MIMO system. Two different
estimation methods are used, i.e., the LS method and the

CS method. For both methods sufficient conditions for a

unique channel estimate are derived. Reduced-complexity

versions of both methods are developed based on a tw@t2]
stage channel estimation procedure. Simulation resutte sh
that the CS based methods require a reduced number of
training symbols and provide a better performance compared
to the LS method. Moreover, the channel estimation erro
only slightly affects the achievable system sum rate whe
a HOSVD based hybrid precoding and decoding scheme is
used. This conclusion is obtained assuming that the spatial
frequencies of the MIMO channel lie on uniform grids.
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