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ABSTRACT

In this paper we study the channel estimation problem for
a CP-OFDM based hybrid analog-digital massive MIMO
system. In contrast to a conventional MIMO system, two
additional constraints need to be fulfilled. First, the analog
precoding is achieved using only a phase shift network,
which imposes constant modulus constraints on the elements
of the RF precoding and decoding matrices. Second, there
is just one common equivalent RF precoding or decoding
matrix for all subcarriers. These constraints lead to a chal-
lenging channel estimation task that includes the training
design. To estimate the channel at the receiver, a least squares
(LS) method and a compressed sensing (CS) method with a
single-stage or a two-stage design are introduced. Compared
to the single-stage designs, the two-stage designs have a
lower computational complexity. Sufficient conditions for
a unique channel estimation are derived for both methods.
Simulation results show that the CS method provides more
accurate channel estimates than the LS method under mild
conditions.

Index Terms— mmWave Massive MIMO, hybrid pre-
coding, OFDM, least squares, compressed sensing.

I. INTRODUCTION

Massive MIMO, which uses orders of magnitude more
antennas (e.g., 100 or more), can provide significant MIMO
gains [1]. When combined with millimeter wave (mmWave)
technology, it will not only gain from large chunks of
underutilized spectrum in the mmWave band [2] but will
also benefit from a significantly reduced form factor of the
massive MIMO array [3]. Hence, massive MIMO communi-
cation is a potential technique for future wireless networks
[4]. However, if a large number of RF chains is implemented
to steer the massive number of antenna elements, the in-
volved power consumption and the hardware cost are too
high and therefore are impractical. To exploit the MIMO
multiplexing gain under a reasonable cost, one promis-
ing solution is to deploy hybrid analog-digital precoding
schemes, realized using phase shifters or switches in the RF
domain [5], and digital precoding schemes, implemented in
the digital baseband domain as in conventional MIMO. If
analog precoding is achieved using phase shifters only, the
analog precoding matrix should have only constant modulus

entries [6], [7], [8]. Furthermore, when a wideband multi-
carrier system is considered, equivalently we get the same
phase shifts for all subcarriers [9]. These two constraints
are stringent such that they lead to significant challenges
not only for the precoding of the transmitted data but also
for the required channel estimation tasks [7], [10], [11],
[12]. In [7] an adaptive compressed sensing (CS) based
channel estimation algorithm is proposed to estimate the
channel of a hybrid analog-digital massive MIMO system.
This CS based channel estimation algorithm has been further
extended in [10] by involving multiple measurement vectors
(MMV) to improve the channel estimation accuracy. The CS
based concept is also used in [11], where an adaptive multi-
grid sparse recovery approach is applied instead. Finally,
a multi-user hybrid analog-digital system is considered in
[12] and a minimum mean squared error (MMSE) approach
is developed to estimate the channel. Unfortunately, all the
above papers deal with narrowband systems, or equivalently
a flat fading channel. Their results cannot be directly used in
a multicarrier system, or equivalently a frequency selective
channel due to the fact that there is a common RF precoding
and decoding matrix for all the subcarriers. Hence, this
motivates us to design channel estimation algorithms as well
as training sequences for single user multi-carrier hybrid
massive MIMO systems.

In this paper we develop channel estimation algorithms
for a single user multi-carrier hybrid massive MIMO system.
A cyclic prefix OFDM (CP-OFDM) based multi-carrier
modulation scheme is used and training using pilot tones
is considered. To estimate the channel at the receiver side
we study two different approaches, i.e., a least squares (LS)
approach and a CS approach. The former one is a linear
method while the latter one is realized using the orthogonal
matching pursuit (OMP) algorithm, which is a non-linear
method. We provide the sufficient condition for a unique
channel recovery using the LS technique. Moreover, to
reduce the computational complexity, an orthogonal training
design via a two-stage channel estimation is proposed and
an analytical expression is given for the achieved MSE of
the LS channel estimates. The CS approach exploits the
sparsity of the channel in the angular-delay domain. A
single-stage design based on the OMP algorithm is proposed
and a sufficient condition for unique channel estimate is
derived. By consuming relatively more training resources
compared to the single-stage design, a reduced complexity
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Fig. 1. A hybrid point-to-point massive MIMO-OFDM system withMT transmit antennas andMR receive antennas. There
areNT ≪ MT transmit RF chains andNR ≪ MR receive RF chains. MatricesF [m] andW [m] denote the analog precoding
and decoding matrices, which are implemented on the phase shift networks.

channel estimation method is developed via a two-stage
OMP based sparse recovery. Simulation results show that the
proposed CS approaches outperform the LS approaches and
they require a smaller number of training symbols especially
when the spatial frequencies of the estimated channel lie on
uniform grids.

Notation: Upper-case and lower-case bold-faced letters
denote matrices and vectors, respectively. The expectation,
trace of a matrix, transpose, conjugate, Hermitian trans-
pose, and Moore-Penrose pseudo inverse are denoted by
E{·}, Tr{·}, {·}T, {·}∗, {·}H, and {·}+, respectively. The
Euclidean norm of a vector and the absolute value are
denoted by‖ · ‖ and | · |, respectively. The Frobenius norm
is denoted by‖ · ‖F. The (c, d)-th element of a matrix is
denoted by(·)c,d. The Kronecker product is⊗. The vec{·}
operator stacks the columns of a matrix into a vector. The
unvecM×N{·} operator stands for the inverse function of
vec{·}. The smallest integer that is greater than or equal to
x is denoted by⌈x⌉. The largest integer that is smaller than
or equal tox is denoted by⌊x⌋. The modulo operation is
denoted bymod(·). The p-th column of an identity matrix
is denoted byep. The operator∠(·) computes the phase
of a complex number. The uniform distribution within the
interval [a1, a2) is defined asU(a1, a2).

II. SYSTEM DESCRIPTION

II-A. System Model

We study a point-to-point massive MIMO system where
a multi-antenna base station (BS) transmits data to a multi-
antenna user equipment (UE) as depicted in Fig. 1. The BS
hasMT transmit antennas andNT RF chains. The UE has
MR receive antennas andNR RF chains. The number of RF
chains is assumed to be much smaller than the number of
antenna elements, i.e.,MT ≫ NT andMR ≫ NR. A CP-
OFDM based multi-carrier modulation scheme is applied to
combat the multipath effect. The corresponding FFT size is
Nfft. Let sn[m] ∈ C

NT represent the transmitted pilot vector
on then-th subcarrier in them-th OFDM symbol over all
available RF chains (n ∈ {k1, · · · , kNf

} ⊂ {1, · · · , Nfft},
p ∈ {1, · · · , Nf}, m ∈ {1, · · · , Nt}). Thereby, the training
procedure consists ofNt OFDM symbols each withNf

pilot tones. The pilot tones and the data tones are inter-
leaved on all the subcarriers and then passed through the
IFFT filter. Furthermore, we assume that the pilot tones
are assigned equally spaced and equally powered. A CP of

lengthNCP symbols is added, followed by an RF precoder
F [m] ∈ C

MT×NT using analog circuitry. We assume that
the RF precoder is implemented using analog phase shifters.
Hence, constant modulus constraints should be fulfilled for
each element ofF [m] ∈ C

MT×NT , i.e., |(F [m])a,b| = 1
for all a ∈ {1, · · · ,MT} and b ∈ {1, · · · , NT}. Finally,
the total power of the pilot tones in one OFDM symbol is

limited such that
Nf∑

p=1

‖F [m]skp
[m]‖2 ≤ PT for all m.

We consider a frequency selective quasi-static block
fading channel. Assume thatNCP has the same length as the
maximum excess delay of the channel such that the inter-
symbol interference is avoided. After passing through the
channel, first, an RF decoderWH[m] ∈ C

NR×MR is used
at the UE. The RF decoder is also implemented using phase
shifters and therefore all the elements ofWH[m] have unit
magnitude, i.e.,|(W [m])c,d| = 1 for all c ∈ {1, · · · ,MR}
andd ∈ {1, · · · , NR}. Afterwards, the CP is removed from
the received signal and by using the FFT filter the time
domain signal is transformed into the frequency domain.
Let Hn ∈ C

MR×MT denote the discrete channel transfer
function (CTF) onn-th subcarrier of the UE. The received
training signal on then-th subcarrier in them-th OFDM
symbol is given by [9]

yn[m] = WH[m]HnF [m]sn[m] +WH[m]zn[m], (1)

where zn[m] represents zero mean circularly symmetric
complex Gaussian (ZMCSCG) noise with covariance matrix
E{zn[m]zH

n [m]} = σ2
nIMR

for all n and m. Note that
equation (1) implies that the channel remains unchanged
during the training procedure. In our design the data symbols
are not used for channel estimation.

Our goal is to designW [m], F [m], andsn[m], ∀n,m,
such that the channel can be accurately estimated at the
receiver.

II-B. Channel Model

In our paper we consider an analytical channel model
consisting of a finite number of scatterers, i.e.,L scatter-
ers. Each scatterer contributes to a single propagation path
between the BS and the UE, which accounts for one time
delayτℓ and one pair of spatial frequencies(µT,ℓ, µR,ℓ) for
ℓ ∈ {0, · · · , L−1}. The frequency domain representation of



the channel is given by [13]

H(f) =

L−1∑

ℓ=0

αℓa(µR,ℓ)a
H(µT,ℓ)

︸ ︷︷ ︸

Hℓ∈CMR×MT

e−j2πτℓf , (2)

whereαℓ is the random complex gain of theℓ-th path, with
zero mean andE{|αℓ|

2} = 1/L, ∀ℓ. The vectorsa(µT,ℓ)
and a(µR,ℓ) are the array steering vectors of the BS and
the UE, respectively. Note that the developed algorithms in
this paper do not depend on whether a one-dimension (1-D)
or two-dimension (2-D) array geometry is used. The defined
array steering vectors here are just illustrative examples. Fur-
thermore, for notational simplicity we assume thatτℓ = ℓTs,
whereTs = 1/(Nfft · ∆f) represents the sampling period
and ∆f denotes the subcarrier spacing. Then the sampled
CTF on then-th subcarrier is modeled as [14]

Hn =

L−1∑

ℓ=0

αℓa(µR,ℓ)a
H(µT,ℓ)

︸ ︷︷ ︸

Hℓ∈CMR×MT

e
−j2π ℓ·n

Nfft , (3)

III. LEAST SQUARES APPROACH

In this section we study the LS based training design,
which is a commonly used channel estimation scheme, e.g.,
[15]. More specifically, a general LS solution via a single-
stage design is proposed in Section III-A while a reduced
complexity LS method via a two-stage orthogonal design is
introduced in Section III-B.

III-A. LS estimation via a single-stage design

By inserting (3) into (1) we obtain

yn[m] = WH[m]

L−1∑

ℓ=0

Hℓe
−j2π ℓn

Nfft F [m]sn[m]

+WH[m]zn[m]

= WH[m]Hu(wn ⊗ (F [m]sn[m]))

+WH[m]zn[m], (4)

where we have

Hu = [H0 · · · HL−1] ∈ C
MR×LMT ,

and
wn =

[

1 · · · e
−j2π

(L−1)n
Nfft

]T

∈ C
L.

By stackingyn[m] next to each other along the frequency
domain (then-dimension) we obtain a matrixY [m] =[
yk1

[m] · · · ykNf
[m]

]
∈ C

NR×Nf , which is expressed
as

Y [m] = WH[m]HuC[m] +WH[m]Z[m], (5)

whereZ[m] =
[
zk1

[m] · · · zkNf
[m]

]
∈ C

MR×Nf and
C[m] ∈ C

LMT×Nf is computed by

C[m] =






wT
k1

⊗ (F [m]sk1
[m])T

...
wT

kNf
⊗ (F [m]skNf

[m])T






T

.

Let y[m] = vec{Y [m]}, wherehu = vec{Hu} andz[m] =
vec{WH[m]Z[m]}. Then the vectorized version of (5) is
expressed as

y[m] = (CT[m]⊗WH[m])hu + z[m] (6)

To utilize the training resource along the time domain (the
m-dimension), we stacky[m] on top of each other as

ys = P1hu + zs ∈ C
NRNfNt , (7)

where ys =
[
yT[1] · · · yT[Nt]

]T
, zs =

[
zT[1] · · · zT[Nt]

]T
, and

P1 =






CT[1]⊗WH[1]
...

CT[Nt]⊗WH[Nt]




 ∈ C

NtNfNR×LMTMR .

Conventionally, the LS estimate ofhu from (7) is com-
puted by

ĥu = P+
1 ys. (8)

This requires thatP1 has full column rank, i.e.,rank(P1) =
LMTMR ≤ NtNfNR. This condition also implies that the
required total number of time-frequency resources is

NtNf ≥
LMTMR

NR
. (9)

The LS problem can be solved using the Cholesky decom-
position, which yields a computational complexity of order
O((LMTMR)

3/6) [16].

III-B. A two-stage orthogonal design

In the following we propose an orthogonal training
design such that only matrix multiplications instead of the
matrix pseudoinverse (8) are required during the channel
estimation process. Thereby, the involved computational
complexity is reduced.

Let us divideNt time slots intoNt,R frames, where
each frame consists ofNt,T OFDM symbols, i.e.,Nt =
Nt,T ·Nt,R. The RF decoding matrix stays constant during
each frame while the RF precoding matrices and the training
symbols used in different frames are the same. That is, we
have

F [m] = Fi, i = mod(m− 1, Nt,T) + 1

sn[m] = sn,i, i = mod(m− 1, Nt,T) + 1 (10)
W [m] = Wj , j = ⌊m− 1/Nt,T⌋+ 1,

wherei ∈ {1, · · ·Nt,T} and j ∈ {1, · · · , Nt,R}.

Our methodology is to first estimate the matrix product
Hu,j = WH

j Hu during each frame, whereWH
j is the

analog decoding matrix used during thej-th frame, and
then to estimateHu by using the combinedWjHu over
all frames.

In the first stage, the LS estimate ofHu,j is computed
by

Ĥu,j = [Y [(j − 1)Nt,T + 1] · · · Y [jNt,T]]C
+
T , (11)



where CT = [C[1] · · · C[Nt,T]] ∈ C
LMT×NfNt,T

should have a full row rank, i.e.,

LMT ≤ NfNt,T. (12)

An orthogonal design ofCT requires that

CTC
H
T =

Nt,T∑

m=1

C[m]CH[m] (13)

=

Nt,T∑

i=1

Nf∑

p=1

(wkp
⊗ fkp,i)(wkp

⊗ fkp,i)
H = βILMT

,

wherefkp,i = Fiskp,i andβ > 0. When (13) holds, the com-
putational complexity of (11) is dominated by one matrix
multiplication of orderO(NRNfNt,TLMT). Let log2(Nf)
and log2(L) be integer values andlog2(Nf) ≥ log2(L).
Inspired by [15], one design offkp

[m], which satisfies
(13) but does not take into account the constant modulus
constraint ofFi, is given by

(fkp,i)a =

√

PT

MTNf
e

−j2π(i−1+(p−1)Nt,T)L(a−1)

Nf ·Nt,T , (14)

wherea ∈ {1, · · · ,MT} and the scaling factor comes from
the power limitation of the transmitted training signal. This
results in aβ = PT ·Nt,T/MT. With the constant modulus
constraint and based on (14), we propose the design ofFi

andskp,i only for two cases, i.e.,Nf = L andNT ≥ Nf >
L. The proposed designs of the analog precoding matrixFi

are given by

(Fi)a,b =







e
−j2π(i−1)L(a−1)

Nf ·Nt,T , Nf = L

e
−j2π(i−1+(p−1)Nt,T)L(a−1)

Nf ·Nt,T , NT ≥ Nf > L,
(15)

and the proposed corresponding designs of the pilot vectors
skp,i are

skp,i =







√
PT

MTNfN2
T
1NT

, Nf = L
√

PT

MTNf
ep, NT ≥ Nf > L.

(16)

In the second stage, the LS estimate ofHu is obtained
as

Ĥu = W+
R

[

ĤT
u,1 · · · ĤT

u,Nt,R

]T

(17)

where WR =
[
W ∗

1 · · · W ∗
Nt,R

]T
∈ C

NRNt,R×MR

should have a full column rank, i.e.,

NRNt,R ≥ MR. (18)

An orthogonal training design requires thatWR has orthog-
onal columns, i.e.,WH

R WR = αIMR
. One option is to

select the firstMR columns of aNRNt,R-by-NRNt,R DFT
matrix. This results in anα = NRNt,R. With an orthogonal
design of WR the computational complexity of (17) is
dominated byO(MRNRNt,RLMT). The overall computa-
tional complexity via this two-stage orthogonal design is
O(NRNfNtLMT+MRNRNt,RLMT), which is much lower
compared to the single-stage LS design.

Example: Assume that (12) and (18) are satisfied with
equality, which implies thatNt,T = LMT/Nf , Nt,R =
MR/NR, and (9) is also satisfied with equality. The over-
all computational complexity is thenO(LMTMR(LMT +
MR)). Let us define

Zj = [Z[(j − 1)Nt,T + 1] · · · Z[jNt,T]] ∈ C
MR×NfNt,T

ZA =
[
ZT

1 · · · ZT
Nt,R

]T
∈ C

Nt,RMR×NfNt,T

Qj = WjW
H
j ∈ C

MR×MR

QA =
[
Q1 · · · QNt,R

]
∈ C

MR×Nt,RMR ,

and setNf = max(L,NT). Then the achieved MSE via the
proposed two-stage orthogonal design is computed as

E{‖Ĥu −Hu‖
2
F} = E







∥
∥
∥
∥
∥
∥
∥

W+
R






WH
1 Z1

...
WH

t,RZt,R




C+

T

∥
∥
∥
∥
∥
∥
∥

2

F







=
1

α2β2
Tr{QAE{ZAC

H
TCTZ

H
A}Q

H
A}

=
1

α2β
Tr{QAE{ZAZ

H
A}Q

H
A} =

NfNt,Tσ
2
n

α2β
Tr{QAQ

H
A}

=
NfNt,Tσ

2
n

α2β

Nt,R∑

j=1

Tr{WjW
H
j WjW

H
j }

=
MRNfNt,Tσ

2
n

α2β

Nt,R∑

j=1

Tr{WjW
H
j } =

M2
RNfNt,Tσ

2
n

αβ

=
MRMTNfσ

2
n

PT
=

max(L,NT)MRMTσ
2
n

PT
, (19)

where the factsCH
TCT = βINfNt,T

andWH
j Wj = MRINR

are used during the derivation. Note that the LS approach
does not depend on the structure ofHℓ.

IV. COMPRESSED SENSING APPROACH

In contrast to the LS approach, the CS approach exploits
the sparsity in the angular-delay domain. To reduce the
mutual coherence of the array manifold of the ULA, we
assume that the spatial frequenciesµR,ℓ and µT,ℓ lie on
uniform grids of dimensionsGR ≥ MR and GT ≥ MT,
respectively. Thereby, we haveµR,ℓ = (̄i − 1)∆R with
∆R = 2π/GR (̄i ∈ {1, · · · , GR}) and µT,ℓ = (j̄ − 1)∆T

with ∆T = 2π/GT (j̄ ∈ {1, · · · , GT}), respectively. This
is a common assumption in the literature, e.g., [7], [10],
[11], [12], [17]. Under this assumption, the array mani-
fold AR = [a(µR,1) · · · a(µR,GR

)] ∈ C
MR×GR and

AT = [a(µT,1) · · · a(µT,GT
)] ∈ C

MT×GT are known
matrices. The discrete CTF in (3) can be rewritten as

Hn =
L−1∑

ℓ=0

ARHν,ℓA
H
Te

−j2π ℓ·n
Nfft , (20)

whereHν,ℓ ∈ C
GR×GT contains just one non-zero element

αℓ. In other words,Hν,ℓ is sparse. Equation (20) is now
a linear function ofHν,ℓ. The rest of this section is also
split into two parts, where a general CS based channel



estimation method via a single-stage design is developed in
Section IV-A and its reduced-complexity version is proposed
in Section IV-B.

IV-A. A single-stage CS approach

By inserting (20) into (1) and applying some algebraic
manipulations we obtain

yn[m] = WH[m]ARHν(wn ⊗AH
T)F [m]sn[m]

+WH[m]zn[m], (21)

where

Hν = [Hν,0 · · · Hν,L−1] ∈ C
GR×LGT .

Similarly as in equation (6) of Section III, to fully exploit
the time-frequency resources, we can first stackyn[m] on
top of each other along the frequency domain, which yields

y[m] =
(
BT[m]⊗ (WH[m]AR)

)
hν + z[m], (22)

wherehν = vec{Hν} ∈ C
LGRGT is a sparse vector con-

taining L ≪ LGRGT non-zero elements. Thep-th column
of B[m] ∈ C

LGT×Nf is given by(wkp
⊗AH

T)F [m]skp
[m]

for p ∈ {1, · · · , Nf}. Then we can stacky[m] along the
time domain on top of each other as in (7) and obtain

ys = P2hν + zs ∈ C
NRNfNt , (23)

where

P2 =






BT[1]⊗ (WH[1]AR)
...

BT[Nt]⊗ (WH[Nt]AR)




 ∈ C

NtNfNR×LGTGR .

The formulation (23) fulfills a sparse recovery problem and
thus any sparse approximation algorithm in [18] can be
applied. In this paper we apply the OMP algorithm. To
ensure thathu can be uniquely and stably determined, the
matrix P2 should be constructed such that the restricted
isometry property (RIP) is satisfied. In practice there are no
algorithms which could check the RIP for a given matrix in
polynomial time. But there are certain probabilistic construc-
tions of matrices satisfying the RIP with high probability,
i.e., constructingP2 with randomly distributed elements,
e.g., Gaussian or sub-Gaussian distributions, or constructing
P2 to possess randomly selected rows of a DFT matrix
[14]. The latter one is difficult to achieve becauseP2 has a
complicated structure and the analog precoding and decoding
matrix must consist of constant modulus entries. The former
one is our choice in this paper. According to [19], whenP2

is sufficiently random, an asymptotic reliable recovery ofhν

with a sparsity order ofL can be achieved if

NtNfNR ≥ 2L log(LGTGR) (24)

as L → +∞. Numerically we find that this condition is
approximately true when the phases of the elements ofF [m]
andW [m] are uniformly distributed over the interval[0, 2π).
As the pilot vectorsskp,i have almost no influence on the

performance, they are identical over all the OFDM symbols.
We propose

skp,i =







√
PT

MTNT
ep, Nf ≤ NT

√
PT

MTNTNf
dp, Otherwise,

(25)

wheredp =
[

1 · · · e
−j2π

(NT−1)(p−1)

Nf

]T

. The computa-
tional complexity of the OMP algorithm is dominated by
O(NtNfNRL

2GTGR). Note that in the numerical experi-
ments we use a uniform linear array.

IV-B. A reduced complexity two-stage CS approach

Now we introduce a two-stage sparse recovery algorithm.
It requires relatively more training symbols compared to
the single-stage method discussed above. But it has a more
tractable training design, which might be useful for theoret-
ical analysis, and has a reduced computational complexity.
The same training procedure as described in Section III-B is
used, i.e., the training process is split intoNt,R frames each
with Nt,T OFDM symbols. Again, it is assumed that the
analog decoding matrices are reused within each frame and
the analog precoding matrices as well as the training symbols
are reused in different frames. Mathematically, equation (10)
holds.

In the first stage, i.e., in each frame, we estimate the
matrix productHR,j = WH

j ARHν ∈ C
NR×LGT using the

CS approximation algorithm. This is motivated by the fact
that matrixHR,j contains at mostL ≪ LGT columns with
non-zero elements. Then, by stackingyn[m] next to each
other we obtain the following equation

Ȳj = P3 ·H
T
R,j + Z̄j , (26)

whereZ̄j =
[
WH

j Z[(j − 1)Nt,T + 1] · · · WH
j Z[jNt,T]

]T
,

Ȳj = [Y [(j − 1)Nt,T + 1] · · · Y [jNt,T]]
T

∈
C

NfNt,T×NR , and

P3 = [B[1] · · · B[Nt,T]]
T
∈ C

NfNt,T×LGT .

Since each column ofHT
R,j has at mostL ≪ LGT non-

zero elements, (26) is a sparse recovery problem and more
precisely, a MMV problem [20]. Nevertheless, to solve (26),
we apply the OMP algorithm column wise, i.e., considering
only a single measurement vector. Thereby, the matrixHT

R,j
is estimated column by column. Within this stage, the
involved computational complexity isO(NfNt,TNRL

2GT).
The asymptotic recovery condition for OMP requires that

NfNt,T ≥ 2L log(LGT). (27)

In the second stage, we recoverHν using the estimated
ĤR,j . Without loss of generality,̂HR,j can be rewritten as

ĤR,j = WH
j ARHν +∆j , (28)

where∆j represents the estimation error. We stackĤR,j

on top of each other and obtain

Ĥcum = P4Hν +∆cum ∈ C
Nt,RNR×LGT (29)



Table I. A comparison of the required training resource and the computational complexity under ideal conditions

Algorithm Training Procedure Minimum required training resource (Nf · Nt,T · Nt,R) Computational complexity

LS
Single-stage LMTMR/NR O((LMTMR)3/6)

Two-stage LMTMR/NR O(LMTMR(LMT + MR))

CS
Single-stage ⌈2L log(LGTGR)/NR⌉ O(2L3GTGR log(LGTGR))

Two-stage ⌈4L log(LGT) log(GR)/NR⌉ O(2L3NRGT log(LGT) + 2LGTGR log(GR))

Table II . An overview of the proposed training design

Algorithm skp [m] a
F [m] W [m]

Orthogonal LS design (16) (15) W
H
j is thej-th sub-matrix containing consecutiveNR rows of a DFT matrix

Single-stage CS (25) ∠((F [m])a,b) ∼ U(0, 2π) ∠((W [m])c,d) ∼ U(0, 2π)

Two-stage CS (25) ∠((Fi)a,b) ∼ U(0, 2π) ∠((Wj)c,d) ∼ U(0, 2π)

aEqual-powered and equal-spaced pilot tones are used.

where Ĥcum =
[

ĤT
R,1 · · · ĤT

R,Nt,R

]T

, P4 =

WcsAR ∈ C
Nt,RNR×GR , Wcs =

[
W ∗

1 · · · W ∗
Nt,R

]T
∈

C
Nt,RNR×MR , and ∆cum =

[
∆

T
1 · · · ∆

T
Nt,R

]T
. Re-

coveringHν from (29) is again a MMV sparse recovery
problem. But the sparsity profile on each column ofHν

is not the same. A single measurement vector based sparse
recovery method is used. We split equation (29) intoL sub-
equations and each sub-equation is given by

Ĥcum,ℓ = P4Hν,ℓ +∆cum,ℓ ∈ C
Nt,RNR×GT , (30)

where Ĥcum,ℓ and ∆cum,ℓ denote theℓ-th sub-matrix of
Ĥcum and ∆cum consisting ofGT columns, respectively.
To estimateHν,ℓ, the vectorized representation of (30) is
used and yields

ĥcum,ℓ = P5hν,ℓ + δcum,ℓ ∈ C
Nt,RNRGT , (31)

where P5 = IGT
⊗ P4 ∈ C

Nt,RNRGT×GRGT , ĥcum,ℓ =
vec{Ĥcum,ℓ}, hν,ℓ = vec{Hν,ℓ}, and δcum,ℓ =
vec{∆cum,ℓ}. Now hν,ℓ can be recovered by using the
OMP algorithm. Nevertheless, recalling thatHν,ℓ contains
only one non-zero element, the OMP algorithm can be
modified so that a more computationally efficient algorithm
is obtained. The proposed modified OMP algorithm for
solving (30) contains two steps, first, thep-th column ofP4,
which is most correlated with theq-th column ofĤcum,ℓ is
computed by(p, q) = argmaxj̄ maxī |p

H
4,̄i

· ĥcum,ℓ,j̄ |, where

p4,̄i and ĥcum,ℓ,j̄ denote thēi-th and thej̄-th column of
P4 and Ĥcum,ℓ, respectively. Second, the LS solution of
the corresponding non-zero element is given bybℓ = pH

4,p ·

ĥcum,ℓ,q/‖p4,p‖
2. In this stage the computational complex-

ity is dominated byO(Nt,RNRLGTGR). The asymptotic

recovery condition for OMP requires that

NRNt,R ≥ 2 log(GR). (32)

Note that a similarly training scheme as in the single-stage
approach will be used for constructingWj , Fi, andskp,i,
∀n,m.

Summarizing, let us assume that the asymptotic recovery
conditions (24), (27), and (32) for the OMP algorithms are
tight, and sufficient conditions (9), (12), and (18) for the
LS algorithms are satisfied with equality. A comparison
between the LS approach and the CS approach with a single-
stage or a two-stage estimation procedure in terms of the
total number of required time-frequency resources and the
involved computational complexity is summarized in Table I.
The proposed training design is specified in Table II. It is can
be seen that in general the CS approach requires less training
and has a lower computational complexity. However, the CS
approach is sensitive to the sparsity profile ofHν,ℓ.

V. SIMULATION RESULTS

The proposed algorithms are evaluated using Monte-
Carlo simulations. The maximum allowable powerPT is
set to unity. The SNR for channel estimation is defined as
SNRpilot = 1/(Nfftσ

2
n) while the SNR for data transmission

is defined asSNRsig = Psig/(Ndataσ
2
n), where Ndata

denotes the number of active data subcarriers. The maximum
power used for data transmissionPsig is also set to unity. We
setNfft = 128 andL = 8. As in [6], a uniform linear array
(ULA) geometry is used at both ends. The inter-element
spacing of the ULA is equal to half of the wavelength. The
array steering vector at both ends (BS and UE) consisting
of M elements is then defined as

a(µ) =
[

1 e−jµ · · · e−j(M−1)µ
]T

, (33)
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Fig. 2. A reliability test of the asymptotic recovery con-
ditions (24), (27), and (32) for the OMP algorithm for
MT = 64, MR = 32, NT = 8, andNR = 4.

where µ denotes the spatial frequency. Moreover, we set
GT = MT andGR = MR. We setNf = max(NT, L) for all
the proposed algorithms, which accounts for a pilot overhead
of max(NT,L)

Nfft
% per OFDM symbol. The LS method via the

orthogonal design, the single-stage sparse recovery method,
and the two-stage sparse recovery method are denoted as
”LS”, ”Single-Stage CS”, and ”Two-Stage CS”, respectively.
The simulation results are obtained by averaging over 100
channel realizations.

In Fig. 2 a reliability test of the asymptotic recovery
conditions (24), (27), and (32) has been performed for the
proposed single-stage and two-stage CS approaches. The
normalized MSE (NMSE) is defined asNMSE = E{‖Hu−
Hu,est‖

2
F/‖Hu‖

2
F}. For the single-stage method we increase

the number of measurements by addingNt,offset to the lower
bound of Nt,low = ⌈2 log(LGTGR)/NR⌉. For the two-
stage methodNt,T is fixed as⌈2 log(LGT)⌉ and the total
number of measurements is increased by addingNt,R,offset

to the lower bound ofNt,R,low = ⌈2 log(GR)/NR⌉. Nu-
merical results show that this bound is not tight for our
problem. When the two approaches use the same number
of OFDM training symbols, the single-stage method is
slightly better than the two-stage method. To preserve a
stable performance, in the following simulations we will
set Nt,offset = Nt,R,offset = 4. Note that even with this
increased number of training symbols the CS approaches still
require much less OFDM training symbols compared to the
LS method. For example, with the same number of antennas
and RF chains the LS method requires at leastNt = 512.

The performance of different channel estimation algo-
rithms with varying numbers of RF chains is compared in
Fig. 3. In general the CS based algorithms outperforms the
LS based algorithm. The LS algorithm provides almost the
same results under different settings. This coincides with
our analytic result (19) since for all settingsNf = 8. The
performance of the CS based algorithms is insensitive to the
change ofNT but gets slightly better whenNR increases.

To compare the achievable sum rate of the system
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Fig. 3. Achievable NMSE vs.SNRpilot for different number
of RF chains withMT = 64 andMR = 32.
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Fig. 4. Achievable sum rate vs.SNRsig for MT = 64, MR =
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with estimated channel state information (CSI), we ap-
ply a modified truncated higher-order SVD (M-HOSVD)
based suboptimal solution together with the waterfilling
power allocation scheme. The difference between the M-
HOSVD algorithm and the original HOSVD algorithm in
[21] lies on the design of the digital precoder and decoder
per subcarrier. LetFRF and WH

RF denote the obtained
RF precoder and decoder using the HOSVD algorithm.
Define the economic SVD ofFRF = UT,sΣT,sV

H
T,s and

WH
RF = UR,sΣR,sV

H
R,s. Define the rank-Nss truncated SVD

of Σ
−1
R,sU

H
R,sHnVT,sΣ

−1
T,s ≈ UtrunΣtrunV

H
trun. Then the

digital baseband precoder and decoder for then-th data
subcarrier are calculated asFBB,n = VT,sΣ

−1
T,sVtrun ∈

C
NT×Nss and WH

BB,n = UH
trunΣ

−1
R,sU

H
R,s ∈ C

Nss×NR ,
respectively. Moreover, the digital upper bound in [21] using
the perfect CSI and the waterfilling power allocation scheme
is also plotted as a benchmark. Since our focus is on the



effects of imperfect CSI rather than the overall system
spectral efficiency, the demonstrated sum rate comparison in
Fig. 4 accounts only for the data transmission phase. During
the data transmission phase, the analog as well as digital
precoding and decoding schemes are modified according
the M-HOSVD algorithm and the estimated channel. In
other words, the proposed analog training matrices will be
replaced. Moreover, to reduce the computational complexity
we useNss = 4 spatial streams [21]. Fig. 4 shows that
the achievable sum rate is only slightly affected when the
estimated CSI is used. There is almost no difference when
different channel estimation schemes are used and the SNR
is not too small (e.g.,≥ −10 dB).

VI. CONCLUSION

In this paper we have developed pilot based channel
estimation methods for estimating the CIR for a multi-
carrier single-user massive MIMO system. Two different
estimation methods are used, i.e., the LS method and the
CS method. For both methods sufficient conditions for a
unique channel estimate are derived. Reduced-complexity
versions of both methods are developed based on a two-
stage channel estimation procedure. Simulation results show
that the CS based methods require a reduced number of
training symbols and provide a better performance compared
to the LS method. Moreover, the channel estimation error
only slightly affects the achievable system sum rate when
a HOSVD based hybrid precoding and decoding scheme is
used. This conclusion is obtained assuming that the spatial
frequencies of the MIMO channel lie on uniform grids.
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