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Abstract—We study the influence of source-relay cooperation
on the outage-constrained capacity bounds of the Gaussian relay
channel. As was observed, coherent source-relay transmission
does not lead to improvement for the decode and forward (DF)
achievable rate in the presence of Rayleigh fading. We show that
this is in sharp contrast to the case with known channel means.
Then, transmission gains highly from coherent source-relay to
destination transmission.

I. INTRODUCTION

The general concept of relaying was introduced by van
der Meulen in [1]. Until now, the general expression for the
capacity of the relay channel is not known. An important
contribution on the information-theoretic investigation of the
relay channel was given by Cover and El Gamal in [2]. They
provided upper and lower bounds for the capacity. Among
others, the decode-and-forward (DF) strategy and the cut-set-
bound (CSB) were defined to bound the capacity from below
and above, respectively.

In our study, we consider a full-duplex system and assume
that only the receiving nodes have full channel state informa-
tion (CSI) while the transmitting nodes have only access to the
channels’ statistics. The approach for evaluating the systems’
performance under such conditions varies upon the assumed
fading model. In this work, we assume slow fading of the
channel and, therefore, we investigate the outage capacity of
the relay channel [3].

Bounds on the outage probability of the relay channel have
been studied by Kramer et al. in [4] for a full-duplex setup
and phase fading with a given rate. Høst-Madsen and Zhang
extended the results to a half-duplex setup in [5]. Other works,
e.g., [6], [7], focused their study on low-SNR regions.

Similar to [8], we consider the reverse problem, namely
deriving rate bounds for a restricted outage probability. This
work extends the results from the aforementioned paper and
provides a detailed discussion about the question when source-
relay cooperation is advantageous and supports communica-
tion.

While the work in [8] concentrated on the Rayleigh chan-
nel model, in this paper, we assume a line of sight (LOS)
component for the channel distribution, i.e., a Rician fading
model.

The analysis of the Gaussian relay channel in [8] assured,
that the DF strategy does not benefit from cooperation between
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Fig. 1. Setup with multi-antenna relay

the relay and the source if Rayleigh channels between the
terminals are assumed. In particular, coherent source-relay
transmission does not result in increased DF rate for a small
outage requirement. The aim of our study is to show that
the situation is different for known channel mean and sin-
gle/multiple antennas at the relay terminal. For a wide class
of such channels, cooperation leads to gains in the outage-
constrained DF rates.

In the remainder of the paper, we introduce the model of
the system, motivate the research and present our contribution
together with the simulative results.

II. SYSTEM MODEL

We assume a three-node Gaussian relay system as shown in
Fig. 1. The investigations are for a setup with single-antenna
source and destination and with NR ≥ 1 antennas at the relay.

The signals received at the relay and destination read as

yR = hSRxS + nR,

yD = hSDxS + hH
RDxR + nD. (1)

The noise components are independent of each other as well as
of the transmitter signals with nR ∼ NC(0, I), nD ∼ NC(0, 1).
Without loss of generality and optimality, we assume zero-
mean channel inputs xS and xR constrained with the available
power budget E[|xS|2] ≤ PS and E[‖xR‖22] ≤ PR.

In our work, we provide results for a channel model with
known mean. For example, we assume one direct path and
multiple scattered paths. Omitting the subscripts referring to
the links, the formal description reads as

h = h̄ + ĥ, ĥ ∼ NC(0, σ2
ĥ
I). (2)



The Rician K factor is defined as the ratio of the power of
the direct path and the power of the scatterers K = |[h̄]i|2

σ2
ĥ

∀i,
where [h̄]i stands for the i−th entry of the direct path channel
vector h̄. Additionally we assume that σ2

h = E
[
|[h]i|2

]
constant for each i.

We see the extension of the analysis in [8] to the channels
in (2) as an important input to the discussion on practical
applications of relaying systems. For example, in mmWave
systems, which are considered to be included in the 5G
standards, it is agreed that a strong LOS path is required for
maintaining connectivity between the terminals.

III. PROBLEM STATEMENT

Capacity bounds for the relay channel with perfect CSI were
given by Cover and El Gamal in [2]. Gaussian full-power
signaling maximizes the DF achievable rate as well as the
CSB expression for the Gaussian relay channel. Thus, the DF
rate and CSB expression can be written as (cf. [8])

CCSB(h) = max
β

min
{
C

(1)
CSB(β,h), C

(2)
CSB(β,h)

}
, (3)

RDF(h) = max
β

min
{
R

(1)
DF (β,h), R

(2)
DF (β,h)

}
(4)

where

C
(1)
CSB(β,h) = log2

(
1 + (1− g(β))

(
‖hSR‖22 + |hSD|2

)
PS
)
,

(5)

R
(1)
DF (β,h) = log2

(
1 + (1− g(β)) ‖hSR‖22PS

)
, (6)

C
(2)
CSB(β,h) = R

(2)
DF (β,h) =

= log2

(
1 + [h∗SD,h

H
RD]C[hSD,h

T
RD]T

)
, (7)

where the matrix

C =

[
PS β

√
PSPR

rH
SR

‖rSR‖2
β
√
PSPR

rSR
‖rSR‖2 RR

]
(8)

is the joint covariance matrix of the source and the relay,
β ∈ [0, 1], RR = E[xRx

H
R ] is the covariance matrix of the

relay, rSR = E[xRx
∗
S], and g(β) = β2 PRr

H
SRR

†
RrSR

‖rSR‖22
∈ [0, 1]. The

formula for g(β) stems from the expression for the conditional
covariance cov(xS|xR) = PS − rH

SRR
†
RrSR where (·)† denotes

the Moore-Penrose pseudoinverse [9].
Both, the CSB expression in (3) and the DF rate in (4), can

be seen as the minimum rate of two links. In the first link, the
source is transmitting and either the relay and destination are
jointly receiving (for the CSB) or only the relay is receiving
(for the DF). In the second link (for both CSB and DF), the
source and relay are jointly transmitting and the destination
terminal serves as the receiver. In our work, we place emphasis
on the analysis of the joint source-relay transmission. The
degree of cooperation is modeled by β and the specifics of
the cooperation is included in rSR.

As pointed out in the introduction, we focus on setups
with imperfect channel knowledge and the outage capacity as

performance measure. Therefore, we define the DF rate bound
and CSB on the ε-outage capacity as

R
(out)
DF = max

ρ,β
{ρ ∈ R : pDF(ρ, β) ≥ 1− ε} , (9)

C
(out)
CSB = max

ρ,β
{ρ ∈ R : pCSB(ρ, β) ≥ 1− ε} (10)

where the probabilities inside (9) and (10) are defined as

pDF(ρ, β) = Pr

[
min
i=1,2

{
R(i)

DF(β,h)
}
≥ ρ
]
, (11)

pCSB(ρ, β) = Pr

[
min
i=1,2

{
C (i)

CSB(β,h)
}
≥ ρ
]
. (12)

Both, (9) and (10), are chance-constrained optimization
problems with unknown convexity properties. In [8], these
problems are studied for a single-antenna at the relay terminal
and Rayleigh fading channels. As mentioned, we consider the
Rician fading channel model and extend the study to multi-
antenna setups.

IV. SINGLE-ANTENNA RELAY

We investigate the impact of source-relay cooperation on
the outage-constrained DF rate (4) first for the single relay
antenna setup. To this end, we rewrite (7) as

R
(2)
DF (β,h) = log2

(
1 + |hSD|2PS + hRDPR + 2Re(h∗SDhRDrSR)

)
.

(13)

For perfect CSI, the rSR that maximizes (4) is available in
closed form and reads as

rSR =
√
PSPR

h∗SDhRD

|hSD||hRD|
β (14)

where the optimal β leads to equal R(1)
DF (β,h) and R(2)

DF (β,h),
if possible. Thus, the non-coherent transmission maximizes the
first rate expression since R(1)

DF (β,h) only depends on β2 and
(genie-aided) coherent transmission maximizes the second rate
expression. The situation becomes less obvious, when only the
channel statistics are available. Then, if we heuristically model
the cross-covariance as

rSR =
√
PSPR

h̄∗SDh̄RD

|h̄SD||h̄RD|
β, (15)

the expression Re(h∗SDhRDrSR) can be less than zero for certain
channel realizations. We note that the probability of this event
increases with decreasing Rician K-factor. The limit case, i.e.,
with K equal to zero results in Rayleigh fading channels. For
this channel, we know from [8] that non-coherent transmission
is optimal. On the other hand, for K equal to infinity, we know
that the channel is perfectly known and, thus, the transmission
always profits from cooperation. We expect that we will benefit
in various degrees from the source-relay cooperation for Rician
K-factors in between. We provide the results of the Monte-
Carlo simulations and discussion upon in Section IX.



V. MULTI-ANTENNA RELAY

Next, we consider the multi-antenna relay setup. The
source-relay cooperation is then modeled with the vector
rSR and the relay transmit strategy is defined by the relay
covariance matrix RR. For perfect CSI, the rSR and RR that
maximize (7) are given in closed form by

rSR =
√
PSPR

h∗SDhRD

|hSD|‖hRD‖2
β, (16)

RR =
hRDh

H
RD

‖hRD‖22
PR (17)

where the optimal β leads to equal R(1)
DF (β,h) and R(2)

DF (β,h),
if possible.

If only the channel statistics are available, we follow the
strategy from Section IV and model rSR heuristically as

rSR =
√
PSPR

h̄∗SDh̄RD

|h̄SD|‖h̄RD‖2
β. (18)

We investigate the system performance for two relay transmit
strategies. In the first one, we match RR to the channel mean
h̄RD, i.e.,

RR =
h̄RDh̄

H
RD

‖h̄RD‖22
PR. (19)

In the second one, we set the covariance matrix to a scaled
identity matrix

RR =
PR

NR
I. (20)

In this case, we additionally scale rSR by 1/
√
NR, in order to

assure that C remains positive-semidefinite:

rSR =

√
PSPR

NR

h̄∗SDh̄RD

|h̄SD|‖h̄RD‖2
β. (21)

In Section IX, we provide Monte-Carlo simulations and dis-
cussion on the different transmission and cooperation designs.

VI. DECODE-AND-FORWARD OUTAGE RATE
APPROXIMATION

In this section, we provide an approximation to the ε-
outage-constrained DF rate. We reformulate the optimization
problem in (9) in order to obtain a tractable problem.

First, we observe that due to the independence of the
channels, the expressions R(1)

DF (β,h) and R(2)
DF (β,h) are also

independent. We can thus write the outage-constrained DF rate
in (11) as

pDF(ρ, β) = Pr
(
R

(1)
DF (β,h) ≥ ρ

)
Pr
(
R

(2)
DF (β,h) ≥ ρ

)
, p

(1)
DF (ρ, β)p

(2)
DF (ρ, β) = (1− ε1)(1− ε2). (22)

where (ε1, ε2) ∈ [0, 1] × [0, 1]. Next we notice, that the
inequality in (9) can be replaced by an equality, since pDF(ρ, β)
is non-increasing in ρ. Consequently, we rewrite (9) as

R
(out)
DF = max

ρ,β,γ

{
ρ ∈ R : p

(1)
DF (ρ, β) = 1− ε 1− γ

1− γε
∧ p(2)

DF (ρ, β) = 1− γε
}
. (23)

where we introduced γ = ε2/ε ∈ [0, 1] and substituted ε1 and
ε2 with ε 1−γ

1−γε and γε, respectively, such that (1−ε1)(1−ε2) =
1− ε.

In order to obtain p(1)
DF (ρ, β) and p(2)

DF (ρ, β), we analyze their
explicit representation, i.e.,

p
(1)
DF (ρ, β) = Pr

(
‖hSR‖22 ≥

2ρ − 1

PS(1− g(β))

)
(24)

p
(2)
DF (ρ, β) = Pr

(
[h∗SD,h

H
RD]C[hSD,h

T
RD]T ≥ 2ρ − 1

)
. (25)

The probability in (24) is given in a closed form (cf. Ap-
pendix A), as ‖hSR‖22 is distributed with scaled non-central
chi-squared distribution. On the other hand, the tail probability
of a quadratic form in normal variables is not known in a
closed form. Therefore, we propose to approximate p(2)

DF (ρ, β)
with help of one of the existing frameworks, e.g., [10], [11].
We denote the approximation with p(2),app

DF (ρ, β) ≈ p(2)
DF (ρ, β).

Consequently, we can write (23) as following

R
(out)
DF ≈ max

β,γ

{
min

{
ρ1(β, γ), ρapp

2 (β, γ)
}}

. (26)

where

ρ1(β, γ) =

{
ρ′ : p

(1)
DF (ρ′, β) = 1− ε 1− γ

1− γε

}
, (27)

ρapp
2 (β, γ) =

{
ρ′ : p

(2),app
DF (ρ′, β) = 1− γε

}
. (28)

We observe that in (26), the objective function is strictly
unimodal in both β and γ. Although, it is not clear whether
the function is unimodal jointly in both variables. In our
simulations, we thus lower-bound the solution by solving the
problem with the nested golden section search algorithm [12].

The problem in (27) can be solved, e.g., with the Newton’s
method and (28) with the bisection method.

In our simulations, we applied the approach from [10] for
approximating p(2)

DF (ρ, β). We have evaluated the precision of
the approximations by comparison with the outcome of Monte-
Carlo based simulations. The approximations turned out to be
very precise – the curves were practically indistinguishable.
Therefore, we omit plotting the comparison results in Sec-
tion IX.

VII. UPPER BOUND FOR THE CSB
In this paper, we present one approach for upper-bounding

the CSB expression in (3). Alike in [13], we loosen the CSB
expression by upper bounding C

(1)
CSB(β,h) and C

(2)
CSB(β,h) .

Next, we find the probability pLOS(ρ, µ) that

C (out)
CSB ≤ C

(out)
LOS = max

ρ
min
µ≥0
{ρ ∈ R : pLOS(ρ, µ) ≥ 1− ε} ,

(29)

where µ is an auxiliary variable and the inner minimization
over it aims on tightening the bound.

The single-antenna case has been considered in [13]. It
has been shown, that independent on the channel model,
pLOS(ρ, µ) can be described as sum of probabilities of three
disjoint events, that is,

pLOS(ρ, µ) = p(i)
LOS + p(ii)

LOS + p(iii)
LOS. (30)



For details we refer to [13]. In this paper, we provide only the
intuitive description of the events:
(i) The source-destination link is able to hold the transmis-

sion of rate ρ with probability 1− ε.
(ii) The source-destination link is not strong enough to con-

vey the desired rate. Thus, the relay is required to “help”.
(iii) The entire transmission has to be held through the relay.
The closed-form formulas for p(i)

LOS, p
(ii)
LOS, and p(iii)

LOS were
derived for the Rayleigh channel model with single-antenna
at the relay in [13].

In the upcoming sections, we provide the formulas for
p(i)

LOS, p
(ii)
LOS, and p(iii)

LOS for the Rician channel model with
single/multiple antennas present at the relay.

A. Single-antenna at the Relay

For the Rician channel model and only one antenna at the
relay, we have

p(i)
LOS = 1−F|hSD|2

(
1

PS
k0

)
(31)

p(ii)
LOS =

∫ 1
PS
k0

1
PS
k1

f|hSD|2(x)

(
1−F|hSR|2

(
1

PS
k0 − x

))
dx

(32)

p(iii)
LOS =

∫ 1
PS
k1

0

f|hSD|2(x)

(
1−F|hRD|2

(
1

PR
(k1 − PSx)

))
dx

(33)

with

k0 = 2ρ − 1 (34)

k1 =
2
ρ−log2

(
1+

PR
µ(PS+PR)

)
−log2

(
1+

PS
µ(PS+PR)

)
− 1

µ(PS + PR)
. (35)

We are not aware of closed-form expression for the expres-
sions p(ii)

LOS and p(ii)
LOS, therefore we apply numerical integration

in our simulations.

B. Multiple Antennas at the Relay

With more than one antenna at the relay terminal, the bound
for C(2)

CSB(β,h) from [13] does not hold any more. Here, we
upper bound the C(2)

CSB(β,h) expression as follows

C
(2)
CSB ≤ log2 det

(
I +

1

µ(PR + PS)
C

)
+ log2(1 + µ(PS + PR)(|hSD|2 + ‖hRD‖22))

= log2 det

(
I +

1

µ(PR + PS)
Σ

)
+ log2(1 + µ(PS + PR)(|hSD|2 + ‖hRD‖22))

≤ log2 det

(
I +

1

µ(PR + PS)

PR + PS

NR + 1
I

)
+ log2(1 + µ(PS + PR)(|hSD|2 + ‖hRD‖22))

= (NR + 1) log2

(
1 +

1

µ(NR + 1)

)
+ log2(1 + µ(PS + PR)(|hSD|2 + ‖hRD‖22)). (36)

The first inequality is a consequence of the theorem [14, Proof
of Theorem 19.2]

det(I + AB) ≤ det

(
I +

1

µtr(A)
A

)
det(I + µtr(A)B)

(37)

where µ ≥ 0 and both A and B are complex positive-
semidefinite matrices. We also exploit the fact that the eigen-
value decomposition of the positive-semidefinite matrix C can
be written as C = UΣUH, where U is a unitary matrix.

Consequently, the probabilities p(i)
LOS, p

(ii)
LOS, and p(iii)

LOS read
as

p(i)
LOS = 1−F|hSD|2

(
1

PS
k0

)
(38)

p(ii)
LOS =

∫ 1
PS
k0

1
PS
k′1

f|hSD|2(x)

(
1−F‖hSR‖22

(
1

PS
k0 − x

))
dx

(39)

p(iii)
LOS =

∫ 1
PS
k′1

0

f|hSD|2(x)

(
1−F‖hRD‖22

(
1

PR
(k′1 − PSx)

))
dx

(40)

with

k0 = 2ρ − 1 (41)

k′1 =
2
ρ−(NR+1) log2

(
1+ 1

µ(NR+1)

)
− 1

µ(PS + PR)
. (42)

We are not aware of closed-form expressions for p(ii)
LOS and

p(ii)
LOS. Therefore, we apply numerical integration in our simu-

lations.

VIII. LARGE NUMBER OF ANTENNAS AT THE RELAY

In this section, we assume a large number of antennas
at the relay. By means of the Law of Large Numbers, we
approximate the squared channel as follows

‖hRD‖22 ≈ ‖h̄RD‖22 + ‖ĥRD‖22 ≈ NRσ
2
hRD

(43)

‖hSR‖22 ≈ ‖h̄SR‖22 + ‖ĥSR‖22 ≈ NRσ
2
hSR
. (44)

Consequently, the formulation of R(1)
DF in (6) can be approxi-

mated with a deterministic expression

R
(1)
DF (β) ≈ log2

(
1 + (1− g(β))NRσ

2
hSR
PS
)
. (45)

As long as we assume coherent transmission, i.e., β > 0, the
approximations proposed in (43) and (44) are not applicable
to the expression R(2)

DF in (7). Although, for the special case of
β = 0 and RR = PR

NR
I, the outage CSB expression in (10) and

the DF outage rate in (9) are given in closed-forms as follows

C
(out)
CSB ≈ log2

(
1 + PSF−1

|hSD|2(ε)

+ min
{
PSNRσ

2
hSR
, PRσ

2
hRD

})
(46)

R
(out)
DF ≈ log2

(
1 + min

{
PSNRσ

2
hSR
,

PRσ
2
hRD

+ PSF−1
|hSD|2(ε)

})
. (47)
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Fig. 2. Gain of source-relay cooperation with respect to the source-relay
distance and the Rician K-factor for ε = 0.25

This approximation is valid primarily for low values of the K-
factor, i.e., when the channel’s mean does not dominate. The
channel is then “close” to Rayleigh for which non-coherent
transmission is optimal [8].

We also note that for a sufficiently large number of relay
antennas, the expressions in (46) and (47) are with high
probability equal, i.e.,

C
(out)
CSB ≈ R

(out)
DF ≈ log2

(
1 + PRσ

2
hRD

+ PSF−1
|hSD|2(ε)

)
. (48)

Therefore, as the upper and lower bound for the capacity
are equal, this expression is the approximation of the channels’
capacity in this special case. This case relates to the situation
when (with high probability) the limiting factor for CCSB and
RDF is C

(2)
CSB and R

(2)
DF , respectively. Those expressions are

equal [cf. (7)].

IX. SIMULATION RESULTS

In our simulations, we evaluate the ε−outage-constrained
DF rate for various setups. For the simulations, we use the
line network model [8]. This means, that σ2

h = d−α, where
d is the distance between the respective terminals and we set
arbitrarily α = 4. For our simulations, we set the required
outage probability ε to ε = 0.25.

Our Monte-Carlo simulations for single-antenna relay agree
with our suggestions from Section IV. In Fig. 2, we show a 3D
plot with the source-relay distance on the x-axis, the Rician
K-factor on the y-axis and the benefit from cooperation on
the z-axis. We define the cooperation gain as follows

CG =
Rcoh(ε)−Rnon-coh(ε)

Rperf. CSI(ε)−Rnon-coh(ε)
(49)

where the ε-outage-constrained DF rate is denoted by R and he
subscripts refer to different choices of the variables β and rSR
(cf. Section IV). We see that for each relay position, decreasing
K results in a decrease of the cooperation gain. We also see,
that for large distances between the source and the relay, i.e.,
dSR > 0.5, we get no benefit from cooperation. This is because
the first rate expression in (11) becomes the main limiting
factor in this region.

For single-antenna at the relay, Figures 3, 4, and 5 give an
insight into the results for three values of the Rician K-factor,
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Fig. 3. Outage-constrained DF rates for source and single-antenna relay
cooperating as well as for the non-coherent transmission.K = 0.25, ε = 0.25

i.e., K ∈ {0.25, 1, 4}. We compare the outage-constrained
DF rates when only the channel statistics are available at the
transmitters [and rSR is as in (15)] with two extreme cases.
The first one assumes perfect CSI at the transmitters and, thus,
rSR as in (14). In the second one, non-coherent source-relay
transmission is applied. Similarly as in Fig. 2, we see that
gains from cooperation are possible only when the relay is
close to the source, i.e., dSR ≤ 0.5. Moreover, the transmission
profits from the knowledge of the channel statistics only if the
channel mean is sufficiently strong, i.e., for higher values of
K.

For multiple antennas at the relay (NR > 1) and for high
values of the Ricean K-factor, we expect that the system
achieves better performance with rank–one RR as in (19)
since the channel mean is “close” to the channel itself. In
contrast, for low values of K, we expect better results with
the scaled identity RR in (20). Figures 6, 7, and 8 agree with
this suggestion. We also observe that the transmission profits
from cooperation depending on the value of K similarly to
the single-antenna setup. Moreover, compared to the single-
antenna setup, the cooperation helps in the transmission for a
larger range of dSR, i.e., even for dSR = 0.5.

In all the figures, we also plot the loosened CSB (cf.
Section VII). As expected [13], it is loose if dSR < 0.5 and
tight otherwise. It is tighter for multiple antennas at the relay
compared to the single-antenna case.

Figs. 9 and 10 give an additional insight into the impact of
the β parameter on the outage-constrained DF rate. In Fig. 9,
the outage-constrained DF rates for different values of β and
different positions of the relay are presented. As expected (and
explicitly shown in Fig. 10), the optimal value of β decreases
with the distance between the source and the relay. From the
shape of the curves in Fig. 9, we can also draw the conclusion,
that inaccuracies in the choice of optimal β does not affect
severely the outage-constrained rates.

X. CONCLUSIONS

We analyzed the influence of the source-relay cooperation
on the outage-constrained capacity of the relay channel. The
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Fig. 4. Outage-constrained DF rates for source and single-antenna relay
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Fig. 5. Outage-constrained DF rates for source and single-antenna relay
cooperating as well as for the non-coherent transmission. K = 4, ε = 0.25
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Fig. 6. Outage-constrained DF rates for source and (multi-antenna) re-
lay cooperating as well as for the non-coherent transmission. K =
0.25, ε = 0.25, NR = 4

study has considered the Rician channel and multiple antennas
at the relay terminal. We have identified setups where the
source-relay cooperation provides particularly high gains. We
have also proposed and evaluated heuristic ways of con-
structing the rSR vector carrying specifics of the source-relay
cooperation, as well as the relay covariance matrix RR.

Additionally, we have extended the upper bound for the
CSB, namely loosened CSB (cf. [13]) to the Rician channel
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Fig. 7. Outage-constrained DF rates for source and (multi-antenna) re-
lay cooperating as well as for the non-coherent transmission. K =
1, ε = 0.25, NR = 4
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Fig. 8. Outage-constrained DF rates for source and (multi-antenna) re-
lay cooperating as well as for the non-coherent transmission. K =
4, ε = 0.25, NR = 4

0 0.2 0.4 0.6 0.8 1
0

2

4

6

β

O
ut

ag
e

co
ns

tr
ai

ne
d

D
F

ra
te

[b
it/

c.
u.

]

dSR=0.1
dSR=0.3
dSR=0.5
dSR=0.9

Fig. 9. Outage-constrained DF rates for different degrees of cooperation (β)
for various relay positions. K = 1, ε = 0.25, NR = 1

model and multiple antennas at the relay terminal. More-
over, we provided analytical approximations for the outage-
constrained DF rates.

Finally, we have analyzed the setup with very high number
of antennas at the relay terminal.

APPENDIX

A. PDF’s and CDF’s of the Squared Channel 2-Norms

For the Rician channel model, the PDF’s and CDF’s of
the random variables ‖hSR‖22, ‖hRD‖22, and |hSD|2 have closed
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Fig. 10. The optimal choice of β dependent on the relay position. K =
1, ε = 0.25, NR = 1

form representations. Omitting the subscripts referring to the
links, they can be expressed with the PDF’s and CDF’s for
the non-central chi-squared distribution as follows

f‖h‖22(x) =
2

σ2
ĥ

fχ2
2l(h)

(λ)

(
2

σ2
ĥ

x

)
, (50)

F‖h‖22(y) = Fχ2
2l(h)

(λ)

(
2

σ2
ĥ

y

)
(51)

where the non-centrality parameter reads as λ = 2‖h̄‖22/σ2
ĥ

and l(h) denotes the length of the channel vector.
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