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Abstract—Multipath (ML) signals reflected from the surround-
ing objects of a Global Navigation Satellite Systems (GNSS)
receiver lead to a bias in the time-delay estimation of the line-
of-sight (LOS) signal. In several cases, this bias is reflected as
errors in the pseudo-range estimation of the receiver.

In this paper, we derive a tensor-based filtering approach using
an antenna array and a compression method based on canonical
components (CC) with a bank of signal matched correlators in
order to mitigate multipath and to estimate the time-delay of
the LOS signal of a GNSS satellite. First, we resort to multi-
dimensional filtering based on the principal singular vectors of
the multi-dimensional data. In order to separate highly correlated
signal components in the multi-dimensional signal subspace
methods like forward-backward averaging (FBA), spatial smooth-
ing (SPS), and the recently developed expanded spatial smoothing
(SPS-EXP) are applied. Afterwards, time-delay estimation of the
LOS signal is performed with a simple interpolation based on the
multi-dimensional filtered cross-correlation values of the bank of
correlators. An advantage of such an approach is that no multi-
dimensional nonlinear problems need to be solved and also no
model order estimation is required.

I. INTRODUCTION

The quality of the ranging data provided by a Global
Navigation Satellite Systems (GNSS) receiver largely depends
on the synchronization error, that is, on the accuracy of the
propagation time-delay estimation of the line-of-sight (LOS)
with respect to each satellite. In case the LOS signal is
corrupted by several superimposed delayed replicas (reflective,
diffractive, or refractive multipath), the estimation of the
propagation time-delay and thus the position can be severely
degraded using state-of-the-art GNSS receivers [1], [2], [3].
Especially, for high precision and safety-critical applications,
e.g. aviation, maritime, rail, precision farming, surveying or
automotive applications, multipath mitigation is very important
in order to enable robust and reliable positioning.

Several techniques have been proposed in the literature for
solving the multipath problem in GNSS using one antenna, see
e.g. [4], [5], [6]. When using antenna arrays high resolution
parameter estimation algorithms provide high accurate results
[7], [8], [9], but they entail rather high complexity in the
parameter estimation as multi-dimensional nonlinear problems
have to be solved. Furthermore, they also require the use of
accurate model order estimation algorithms [7]. A-J van der
Veen et al in [10] uses a two-dimensional (2-D) ESPRIT-
like shift-invariance technique to separate and estimate the
phase shifts due to delay and direction-of-incidence. Tensor

algebra have been used in blind multi-user detection and
multipath estimation in [11], but resolution of highly correlated
multipath signals was not considered with respect to time-
delay estimation of the LOS signal. The considered perfor-
mance metric in [11] is bit error rate. Furthermore, tensor
formulations and low-rank modeling have been applied in
studies using multiple input multiple output (MIMO) systems
in order to resolve different propagation paths [12], [13],
but time-delay estimation of a LOS signal in case of highly
correlated multipath was not considered.

In this work, we present an approach for which no multi-
dimensional nonlinear problem needs to be solved and also no
model order estimation is required. We derive a tensor-based
filtering approach using an antenna array and a compression
method based on canonical components (CC) with a bank of
signal-matched correlators [9] in order to mitigate multipath
and to estimate the time-delay of the LOS signal. First, we
resort to multi-dimensional filtering based on the principal
singular vectors of the received data tensor. In order to separate
highly correlated signal components in the multi-dimensional
signal subspace methods like forward-backward averaging
(FBA) [14], spatial smoothing (SPS) [15], and the recently
developed expanded spatial smoothing (SPS-EXP) [16] are
applied. Afterwards, time-delay estimation of the LOS signal
is performed with a simple interpolation based on the multi-
dimensional filtered cross-correlation values of the bank of
correlators.

The proposed pre-processing schemes require that the an-
tenna array response is left centro-hermitian. In case the array
response is not left centro-hermitian, signal adaptive array
interpolation methods can be applied to transform the array
response to a centro-hermitian array response [17].

The proposed approach is capable of separating highly
correlated and even coherent signals and is approaching the
respective Cramer-Rao lower bound (CRLB) for time-delay
estimation in the compressed time domain.

The rest of this paper is organized as follows: Section II
defines the pre- and post-correlation signal model. Section III
presents the tensor-based approach for time delay estimation.
The computational complexity of each proposed algorithm is
studied in Section IV. Simulation parameters and results are
shown in Section V, and Section VI concludes the paper.



II. SIGNAL MODEL

In the following, we define the pre- and post-correlation
signal model for a multi-antenna GNSS receiver and we
introduce a compression method based on a bank of signal
matched correlators.

A. Pre-correlation Signal Model

The complex baseband signal of one GNSS satellite with
bandwidth B that is received by an antenna array with M
sensor elements can be given as

x(t) = s(t) + n(t) =

L∑
`=1

s`(t) + n(t) (1)

where s(t) ∈ CM×1 denotes the superimposed signal replicas

s`(t) = a (φ`) γ` c(t− τ`). (2)

a (φ`) ∈ CM×1 defines the steering vector of an antenna
array with azimuth angle φ`, c(t− τ`) denotes a periodically
repeated pseudo random (PR) sequence c(t) with time-delay
τ`, chip duration Tc, and period T = NcTc with Nc ∈ N. γ`
is the complex amplitude. Additionally, we assume temporally
and spatially white complex Gaussian noise n(t) ∈ CM×1. In
the following the parameters of the line-of-sight (LOS) signal
are indicated with ` = 1 and the parameters of the non-LOS
(NLOS) signals (multipath) with ` = 2, . . . , L. We define the
signal parameter vectors

η = [Re{γ}T, Im{γ}T,φT, τT]T (3)
η` = [Re{γ`}, Im{γ`}, φ`, τ`]T (4)

with γ = [γ1, . . . , γL]T, φ = [φ1, . . . , φL]T and τ =
[τ1, . . . , τL]T. The spatial observations are collected in K
periods of the PR sequence of N time instances, thus x[(k −
1)N + n] = x(((k − 1)N + n)Ts) with n = 1, . . . , N ,
k = 1, . . . ,K, and the sampling frequency 1

Ts
= 2B. The

channel parameters are assumed constant at least during the
k-th period of the observation interval. Collecting the samples
of the k-th period of the observation interval leads to

X[k] =
[
x[(k − 1)N + 1], . . . ,x[(k − 1)N +N ]

]
∈ CM×N (5)

N[k] =
[
n[(k− 1)N + 1], . . . ,n[(k− 1)N +N ]

]
∈ CM×N (6)

S[k;η] =
[
s[(k− 1)N +1], . . . , s[(k− 1)N +N ]

]
∈ CM×N (7)

S`[k;η`] =
[
s`[(k− 1)N +1], . . . , s`[(k− 1)N +N ]

]
∈ CM×N .

(8)
Thus, the signal can be written in matrix notation as

X[k] = S[k;η] + N[k] =

L∑
`=1

S`[k;η`] + N[k]

= A[k] Γ[k] C[k] + N[k] (9)

where

A[k] = [a(φ1), . . . ,a(φ`), . . . ,a(φL)] ∈ CM×L (10)

denotes the steering matrix for the k-th period of the obser-
vation interval, while

Γ[k] = diag{γ} ∈ CL×L (11)

is a diagonal matrix whose entries are the complex amplitudes
of the signal replicas γ = [γ1, . . . , γL]T during the k-th period
of the observation interval. Furthermore,

C[k] = [c[k; τ1] · · · c[k; τ`] · · · c[k; τL]]T ∈ RL×N (12)

contains the sampled and shifted c(t) for each impinging
wavefront

c[k; τ`] = [c(((k − 1)N + 1)Ts − τ`), . . . , (13)

. . . , c(((k − 1)N +N)Ts − τ`)]T . (14)

In general ||c[k; τ`]||22 6= N for all τ`, however in many cases1

we can assume that ||c[k; τ`]||22 ≈ N, ∀τ` ∀k and if addition-
ally N ≥ Nc and N/Nc ∈ N we get c[k; τ`] = c(τ`), ∀k.
In the following we assume that the array response A[k] is
left centro-hermitian with

A[k] = ΠMA∗[k] (15)

where

ΠM =

 1

. .
.

1

 ∈ RM×M . (16)

B. Post-correlation Signal Model

A Fisher Information preserving compression applying a
bank of Q correlators at the output of each antenna is used.
We follow a canonical component (CC) method where the
information about the signal parameters are extracted from the
received signal by correlating with several delayed replicas of
the signal with relative delays associated to a regular grid [9].
Thus, the signal at the output of the q-th correlator of the
bank of correlators at the output of each antenna element with
q = 1, . . . , Q can be written

yq[k] = X[k](c[k;κq])
∗ ∈ CM×1 (17)

where κq denotes the time-delay for the correlator tap q. We
can define the output signal of the bank of correlators by

Y[k] = [y1[k], . . . ,yq[k], . . . ,yQ[k]] = X[k]Q[k] ∈ CM×Q

(18)
and the compression matrix

Q[k] = [c[k;κ1], . . . , c[k;κq], . . . , c[k;κQ]] ∈ RN×Q. (19)

Thus, we can write

Y[k] = A[k]Γ[k]C[k]Q[k] + N[k]Q[k]. (20)

The so-called thin singular value decomposition (SVD) or also
called economy size SVD of Q[k] in case Q � N is given
by Q[k] = UΣVH, where the columns of U ∈ CN×Q and
V ∈ CQ×Q only refer to the non-zero singular values and thus
all diagonal elements of Σ ∈ CQ×Q are larger than zero. We

1e.g. in case of GPS C/A PR sequences with bandwidth B ≥ 1.023 MHz.



define the compression matrix Qω[k], with QH
ω [k]Qω[k] = IQ,

that preserves the input noise properties at the output of the
bank of correlators using the thin SVD as follows:

Qω[k] = Q[k](ΣVH)−1 = U ∈ CN×Q (21)

Here, IQ denotes a Q×Q identity matrix.
In the following, we assume that the time-delays τ` , the

azimuth angles φ` and thus also the compression matrix Qω[k]
are constant with respect to K periods. This is a reasonable
assumption for GNSS e.g. for moving users in an urban city
center where the average life span of echoes is approximately
1 m [18]. Life span refers to the motion distance across which
a multipath signal is observable, i.e. active. In the latter case,
for an observation time of 30 ms (K = 30 for a GPS C/A
signal with N = 2046 and B = 1.023 MHz), a maximum
velocity of 100 km/h, and a spatial resolution of c/B ≈ 293
m, the multipath time-delays can be assumed constant, where c
denotes the speed of light. The time-delay of the LOS signal
τ1 in general can be assumed constant for an even longer
observation time. Also the azimuth angles of LOS and NLOS
signals φ` can be assumed constant for such an observation
time.

Thus, we can write

Ȳ[k] = AΓ[k]CQω + N[k]Qω (22)
= AΓ[k]CQω + Nω[k] ∈ CM×Q. (23)

Applying the vec-operator on matrix Ȳ[k], we get

ỹ[k] = vec{Ȳ[k]} = vec{AΓ[k]CQω}︸ ︷︷ ︸
=s̃[k]

+ vec{Nω[k]}︸ ︷︷ ︸
=ñ[k]

= ((CQω)T �A)γ[k] + ñ[k] ∈ CMQ×1 (24)

where � denotes the Khatri-Rao product. Collecting the data
samples during K periods, we obtain

Ỹ = ((CQω)T �A)Γ̃︸ ︷︷ ︸
=S̃

+Ñ ∈ CMQ×K (25)

with

Ỹ = [ỹ[1], . . . , ỹ[k], . . . , ỹ[K]] (26)

=



y1[1], . . . ,y1[k], . . . ,y1[K]
...

yq[1], . . . ,yq[k], . . . ,yq[K]
...

yQ[1], . . . ,yQ[k], . . . ,yQ[K]

 (27)

S̃ = [s̃[1], . . . , s̃[k], . . . , s̃[K]] ∈ CMQ×K (28)
Ñ = [ñ[1], . . . , ñ[k], . . . , ñ[K]] ∈ CMQ×K (29)
Γ̃ = [γ[1], . . . ,γ[k], . . . ,γ[K]] ∈ CL×K . (30)

We define the tensor S ∈ CK×Q×M collecting the signal data
and a tensor N ∈ CK×Q×M collecting the white noise data,

respectively. The three different matrix unfoldings of the tensor
S can be expressed as [19]

[S](1) = Γ̃
T

((CQω)T �A)T ∈ CK×QM (31)

[S](2) = (CQω)T(A � Γ̃
T

)T ∈ CQ×MK (32)

[S](3) = A(Γ̃
T � (CQω)T)T ∈ CM×KQ. (33)

Finally, we can write the tensor signal model

Y = S + N ∈ CK×Q×M . (34)

It is instructive to mention that the signal tensor S follows a
third-order Parallel Factors (PARAFAC) decomposition [19],
[20] with matrix factors Γ̃

T
, (CQω)T , and A.

III. PROPOSED TENSOR-BASED APPROACH FOR
TIME-DELAY ESTIMATION

In this section, we present different algorithms that use
multi-linear algebra in order to estimate the time-delay of the
LOS signal while mitigating the effect of the NLOS signals
(multipath). In the following, we assume that the receive power
of the LOS signal is larger than those of the NLOS signals.

A. Multi-dimensional Filtering using High Order Singular
Value Decomposition (HOSVD)

Applying HOSVD on our signal model, we can write [19]

Y = R×1 U(1) ×2 U(2) ×3 U(3) (35)

with the data tensor Y and the core tensor R ∈ CK×Q×M ,
and the unitary matrices U(1) ∈ CK×K , U(2) ∈ CQ×Q, and
U(3) ∈ CM×M . Here, the operator ×n denotes the so-called
n-mode product of a tensor by a matrix [19]. Based on the
core tensor R ordering properties, we find that the n-mode
singular vectors u

(n)
i are ordered in the unitary matrices U(n)

in a decreasing order of the magnitude of its corresponding
singular values. Therefore, we can now define the vector q as

q =

((
Y ×1

(
u
(1)
1

)H
×3

(
u
(3)
1

)H)
ΣVH

)T

∈ CQ×1 (36)

where q represents the multi-dimensionally filtered cross-
correlation values at each tap of the correlator bank.

Based on q and a cubic spline interpolation using the
absolute value of its entries, we can derive the cost function
F (τ) and then estimate the time-delay of the LOS signal by
solving the problem

τ̂1 = arg max
τ
{F (τ)}. (37)

B. Multi-dimensional Filtering using HOSVD with Forward
Backward Averaging (FBA)

In general, LOS and NLOS signals are highly correlated
in case of GNSS. If a left centro-hermitian sensor array is
assumed, the separation of LOS and NLOS signals by an
adaptive multi-dimensional filtering as given in (36) can be
improved using FBA [14].

The extended 3-mode unfolding of Y can be given as

Z =
[

[Y ](3) ΠM [Y ]∗(3)ΠKQ

]
∈ CM×2KQ. (38)



We define the new tensor YFBA ∈ C2K×Q×M such that

[YFBA](3) = Z (39)

By applying HOSVD on YFBA,

YFBA = RFBA ×1 U
(1)
FBA ×2 U

(2)
FBA ×3 U

(3)
FBA (40)

we can select the first columns of U
(3)
FBA and U

(1)
FBA, u

(3)
1,FBA ∈

CM×1 and u
(1)
1,FBA ∈ C2K×1 respectively. Consequently, we

can use u
(3)
1,FBA instead of u

(3)
1 and u

(1)
1,FBA instead of u

(1)
1 in

(36) in order to derive an improved space-time filtered vector
of cross-correlations denoted as qFBA.

C. Multi-dimensional Filtering using HOSVD with Spatial
Smoothing (SPS)

SPS [15] is another pre-processing scheme that can be
used to de-correlate the impinging wavefronts in case of a
left centro-hermitian or Vandermonde sensor array. To this
end, a uniform linear array (ULA) with M sensors can be
divided into Ls subarrays, each containing Ms = M −Ls+ 1
sensor elements. The selection matrix corresponding to the
`s-th subarray with `s = 1, . . . , Ls can be defined as

J
(M)
`s

= [ 0Ms×`s−1 IMs 0Ms×Ls−`s ] ∈ RMs×M . (41)

Therefore, the spatially smoothed extended 3-mode unfolding
of Y is given by

W =
[

J
(M)
1 [Y](3) · · ·J(M)

`s
[Y](3) · · ·J(M)

Ls
[Y](3)

]
∈ CMs×KQLs .

(42)
We define the new tensor YSPS ∈ CLsK×Q×Ms such that

[YSPS](3) = W. (43)

By applying HOSVD on YSPS,

YSPS = RSPS ×1 U
(1)
SPS ×2 U

(2)
SPS ×3 U

(3)
SPS (44)

we can get u
(3)
1,SPS ∈ CMs×1 and u

(1)
1,SPS ∈ CLsK×1.

Consequently, we can calculate the new correlation vector
qSPS using

qSPS =

((
YSPS ×1

(
u
(1)
1,SPS

)H
×3

(
u
(3)
1,SPS

)H)
ΣVH

)T

.

(45)
After cubic spline interpolation based on the absolute value
of the entries of qSPS, the estimation of the time-delay of the
LOS signal is obtained by solving problem (37).

D. Multi-dimensional Filtering using HOSVD with FBA and
SPS

For this algorithm, the two pre-processing algorithms dis-
cussed earlier, FBA and SPS, are applied. Therefore, the
forward-backward averaged and spatially smoothed extended
3-mode unfolding of Y is given by

E = [ J1Z · · ·JlZ · · ·JLZ ] ∈ CMs×2LsKQ (46)

where Z is defined in (38).
We define the new tensor YFBA+SPS ∈ C2LsK×Q×Ms .

The estimate for τ1 is derived following the same procedure
following (44) and (45).

E. Multi-dimensional Filtering using HOSVD with Expanded
Spatial Smoothing (SPS-EXP)

The idea of expanded spatial smoothing (SPS-EXP) recently
proposed in [16] is to use a fourth dimension for the subarrays
instead of accumulating the spatially smoothed extended data
in the time dimension.

We define the 4-th order tensor YSPS−EXP ∈
CK×Q×Ms×Ls using

[YSPS−EXP](3) =
[

J
(M)
1 [Y](3) · · ·J(M)

`s
[Y](3) · · ·J(M)

Ls
[Y](3)

]
.

(47)
By applying HOSVD on YSPS−EXP, we can get the singular
vectors corresponding to the strongest singular values of
the SVDs of the unfoldings in K,Ms and Ls dimensions.
Thus, we can calculate an extended spatially smoothed multi-
dimensionally filtered cross-correlation vector as

qSPS−EXP =((
YSPS−EXP ×1

(
u
(1)
1,SPS−EXP

)H
×3(

u
(3)
1,SPS−EXP

)H
×4

(
u
(4)
1,SPS−EXP

)H)
ΣVH

)T

.

(48)

After spline interpolation based on the absolute value of the
entries of qSPS−EXP estimation of the time-delay of the LOS
signal can be performed as given in (37).

F. Two dimensional Filtering using Simple Matrix Approach
(MA) with FBA and SPS

In order to estimate the time-delay of the LOS signal
without using the tensor approach we can refer to a simple
matrix approach described below.

Having our signal model in (34), we can smooth the
collected data in (22) and we can write

YMA =
1

K

K∑
k=1

Ȳ[k]. (49)

YMA represents the average of the data taken over the
snapshot dimension K. In a next step one can extend
the data using the two pre-processing algorithms FBA and
SPS to obtain the forward-backward averaged and spatially
smoothed data. Afterwards, we apply the thin SVD on
YMA+FBA+SPS ∈ CMs×2QLs to get the principal singu-
lar vector, uMA+FBA+SPS ∈ CMs×1, corresponding to the
strongest singular value. The principal singular vector is used
to filter the data in the spatial domain to finally obtain the
vector qMA+FBA+SPS ∈ CQ×1 following

qMA+FBA+SPS =
(
uH
MA+FBA+SPS

(
J1ȲMA

) (
ΣVH

))T
. (50)

After cubic spline interpolation based on the absolute value of
the entries of qMA+FBA+SPS, the estimation of the time-delay
of the LOS signal is obtained by solving problem (37).



IV. COMPLEXITY EVALUATION

The computational complexity (in terms of FLoating point
OPeration (flop) counts) of the multiplication of two complex
matrices, A ∈ CM×N and B ∈ CN×L, is assumed to be
O(MNL) [21].

Since we need only the principal singular vector correspond-
ing to the strongest singular value, we can apply simplified
methods instead of a full SVD. According to [22][23], the nu-
merical complexity obtaining the d strongest singular vectors
(in our case d=1) from applying thin SVD on A ∈ CM×N , is
given by O(MN).

We will assume that the unfolding (going from tensor rep-
resentation to matrix representation) and the inverse-unfolding
(building a tensor from its matrix unfolding) are not considered
in the computational complexity since both functions are only
about data representation rather than operating on the data.
Therefore, in this assessment we will ignore any complexity
related to unfolding and inverse-unfolding. In addition, this
assessment will focus only on the mathematical steps that are
different from one algorithm to another. So it is more about the
relative complexity difference between the different algorithms
rather than the absolute complexity of each algorithm. Thus,
we will ignore the de-whitening stage where we need to
multiply the solution vector by ΣVH. Following the above
reasoning the complexity for each algorithm is listed in Table I.

Table I
NUMERICAL COMPLEXITY OF THE ALGORITHMS

Algorithm Complexity

MA+FBA+SPS O
(

(M)KQ
)

HOSVD O
(

3(M)KQ
)

HOSVD+FBA O
(

3(2M)KQ
)

HOSVD+SPS O
(

3(MsLs)KQ
)

HOSVD+SPS-EXP O
(

4(MsLs)KQ
)

HOSVD+FBA+SPS O
(

3(2MsLs)KQ
)

We can observe that the numerical complexity of
the MA+FBA+SPS with respect to HOSVD is O( 1

3 ).
HOSVD+FBA has double the complexity than the simple
HOSVD. Based on our model, when dividing the ULA
into different subarrays, some specific sensor elements from
the original array will be used many times in the different
subarrays, therefore the product MsLs representing the total
number of sensor elements used in all subarrays is bigger than
twice the number of ULA sensor elements M . This makes
HOSVD+SPS computationally slightly more expensive than
the HOSVD+FBA with a ratio of O(MsLs

2M ≈ 1.25). The com-
putational complexity of HOSVD+SPS-EXP is even higher
than the complexity of HOSVD+SPS. The computational
complexity of HOSVD+FBA+SPS is twice the computational
complexity of HOSVD+SPS. The complexity ratio between
HOSVD with and without SPS is given by O(MsLs).

V. SIMULATIONS

We assume a left centro-hermitian ULA with M = 8
isotropic sensor elements with half-wavelength spacing (∆ =
λ/2). The received signal is a GPS C/A signal with bandwidth
B = 1.023 MHz and carrier frequency fc = 1575.42 MHz.
We consider a two-path scenario with a LOS and one NLOS
signal (L = 2). For the SPS and SPS-EXP, we assume that
the ULA is divided into Ls = 5 subarrays, each containing
Ms = 4 sensor elements. The number of samples taken
within one observation period k is N = 2046. The number
of observation periods K = 30 and we assume that all the
channel parameters are constant over K. The azimuth angle
difference between LOS and NLOS signal is ∆φ = 60◦.
The signal phase for LOS and NLOS signals, denoted by
arg{γ1} and arg{γ2}, are assumed independent and identi-
cally distributed (i.i.d.) for each Monte Carlo simulation and
drawn from a uniform distribution [0, 2π[. We performed 2000
Monte Carlo simulations to derive the root mean square error
of the time-delay of the LOS signal RMSE(τ1). The number
of correlators in the bank is Q = 11. The carrier to noise
density ratio is C/N0 = 48 dB-Hz. Thus, the pre-correlation
SNR approximately is −15 dB, and the post-correlation SNR
approximately is 15 dB. The signal to multipath ratio SMR
= 5 dB. The square root of the expectation of the Cramer-
Rao Lower Bound (CRLB) of the time-delay of the LOS
signal with respect to the random signal phases arg{γ1}
and arg{γ2} denoted by

√
E[CRLB(τ1)] is derived to be

used as a lower bound for comparison of the performance of
the proposed multi-dimensional filters and subsequent time-
delay estimation. The time-delay difference between LOS and
NLOS signal is normalized by Tc and is denoted by ∆τ/Tc.
The RMSE(τ1) for the different methods presented above,
HOSVD, HOSVD+FBA, HOSVD+SPS, HOSVD+FBA+SPS,
and HOSVD+SPS-EXP as well as MA, the simple matrix
approach with FBA and SPS denoted by MA+FBA+SPS and√

E[CRLB(τ1)] are presented in Figure 1. For all tensor
approaches, the error is maximum when ∆τ/Tc ≈ [0.2− 0.5].
In fact, this is due to the superposition of the the LOS
and NLOS signal and to the properties of their respective
autocorrelation functions. The maximal

√
E[CRLB(τ1)], ap-

proximately reaching 18 m in ranging error, is obtained
when using HOSVD algorithm without any pre-processing
algorithm. When ∆τ/Tc > 1, the multipath is one chip
duration (around 300 m) later than the LOS, and thus its
effect is considered to be small. The introduction of the
FBA decreases the error from 18 m to around 12 m. The
HOSVD+SPS, HOSVD+SPS-EXP, and HOSVD+FBA+SPS
all have similar performance and show substantially better
time-delay estimation of the LOS signal, with a maximum
error of around 1.8 m.

When the LOS and the multipath signal are strongly corre-
lated, i.e. ∆τ/Tc ≈ [0− 0.2], the decomposition of the ULA
into smaller subarrays (in all algorithms using SPS extension)
helps to decrease the error to a maximum of 1.8 m by spatial
de-correlation of the signals. However, when the LOS and the
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Figure 1. RMSE of the LOS time delay estimation obtained using different
algorithms in a constant channel environment

multipath signal are weakly correlated i.e. ∆τ/Tc ≈ [0.8− 1],
SPS performance is worse than HOSVD or HOSVD+FBA.

The similar performance behavior that is shown by all
algorithms using SPS is due to the fact that SPS de-correlates
the impinging wavefronts in the spatial domain, and also
extends the time dimension K using a decomposition into
subarrays. For the HOSVD+SPS and HOSVD+SPS-EXP, the
subarrays dimension Ls is appended to the snapshot dimension
K and to another fourth dimension respectively. Since in
both algorithms we apply the smoothing over the different
dimensions containing all the data, the performance between
these two algorithms is very similar. HOSVD+FBA+SPS is
not providing much benefit compared to HOSVD+SPS due
to the fact that we are using only one multipath component
besides the LOS signal. All the subarrays are used to de-
correlate one signal from the LOS signal. The introduction
of more than one multipath may show different behavior for
this algorithm, where HOSVD+FBA may introduce more gain
in the estimation.

The RMSE(τ1) obtained by the simple MA is converging
to the same results obtained from the 3D approach using only
the simple HOSVD. MA+FBA+SPS takes benefit of SPS to
de-correlate the LOS and the multipath components when
they are highly correlated by using the different sensors in
the introduced subarrays. However, it hen loses the benefit
of having M = 8 sensors when it uses only Ms = 4
sensors in each subarray. The multi-dimensionally filtered
cross-correlation values in qMA+FBA+SPS are obtained from
the operation on half of the data collected,

(
J1ȲMA

)
, and not

all the data ȲMA.
The difference in azimuth angle between LOS and multipath

signal has an effect on the LOS time-delay estimation. Figure 2
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Figure 2. RMSE of the LOS time delay estimation obtained using different
algorithms in a constant channel environment with SMR = 5 dB and different
∆φ

shows results for four different algorithms with different ∆φ.
The worst maximal error values for each algorithm are ob-
tained when ∆φ = 45◦. The smallest error for SPS is obtained
when ∆φ = 30◦ (the case in which the array steering vectors
for the LOS and multipath signal are spatially orthogonal).
For the HOSVD, HOSVD+FBA and HOSVD+SPS-EXP, the
lowest maximal error is obtained when ∆φ = 60◦.

VI. CONCLUSION

In this paper, we derived a tensor-based filtering approach
using an antenna array and a compression method based on CC
with a bank of signal matched correlators in order to mitigate
multipath and to estimate the time-delay of the LOS signal
of a GNSS satellite. First, we resort to multi-dimensional
filtering based on the principal singular vectors of the multi-
dimensional data. In order to separate highly correlated signal
components in the multi-dimensional signal subspace, methods
like FBA, SPS, and the recently developed SPS-EXP are
applied. Afterwards, time-delay estimation of the LOS signal
is performed with a simple interpolation based on the multi-
dimensional filtered cross-correlation values of the bank of
correlators. In addition, the performance of the algorithms
was assessed. A simulation based comparison between the
tensor approach and a simple proposed 2-D matrix approach
was included in order to show the benefits of using a three-
dimensional approach. Finally, the computational complexity
of each proposed algorithm was studied in details.

One advantage of the presented tensor-based approach is
that no multi-dimensional nonlinear problems need to be
solved. In addition, no model order estimation is required.
Based on our work, the multi-linear model is a very good



tool to perform parameter estimation without the need to have
knowledge about all other parameters in a given model. The
proposed approach is flexible in terms of its extensibility to
add more dimensions which can be of interest (for example
different GNSS frequency bands). In terms of performance, the
presented approaches based on the HOSVD showed very good
results in terms of accuracy with the cost of higher complexity
with respect to other simpler lower dimensional approaches
assessed in this work.
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