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Abstract—Scheduling all user equipment jointly and using
a linear precoder is optimal for massive MIMO with a very
large number of base station antennas. Scheduling becomes more
important as the number of base station antennas is reduced.
We determine the regime where scheduling provides gains for
massive MIMO scenarios with linear precoding methods. We
apply semi-orthogonal user selection to massive MIMO and
propose a scheduling algorithm with smaller complexity.

I. INTRODUCTION

The capacity of multiple-input multiple-output (MIMO)
communication systems is achieved by dirty paper coding
(DPC) [1]. However linear precoding methods are often pre-
ferred because they are simpler and achieve good rates. The
performance of DPC is approached even more closely by
combining linear precoding and scheduling [2].

We refer to conventional MIMO as communication systems
where the number of base station (BS) antennas is less or
equal to the number of served user equipments (UEs). A
conventional MIMO BS serves a subset of all UEs at any
time. The scheduling algorithm selects the subset according
to an objective (e.g. maximize sum rate or fairness). Many
scheduling algorithms have been proposed [3]. A widely con-
sidered scheduling approach is semi-orthogonal user selection
(SUS) [2] that was developed for conventional MIMO.

Massive MIMO is a key idea to increase the spectral
efficiency of new mobile communication standards (e.g. 5G).
It refers to systems where the number of BS antennas exceeds
the number of served UEs. For massive MIMO with sufficient
randomness in the channel and sufficiently many BS antennas
the channels hardens [4]. This means that scheduling all UEs
and using a linear transmission scheme like zero forcing beam-
forming (ZFBF) is optimal. In this regime scheduling does
not provide gains. However scheduling improves performance
when the channels to the UEs are correlated [2] or when the
excess of BS antennas is small [5].

We analyze for a fixed number of UEs the gain of schedul-
ing with increasing numbers of BS antennas using the sub-
optimal transmission scheme ZFBF. We obtain results for un-
correlated and correlated fading channels. As expected ZFBF
and all UEs being scheduled at all time instants approaches
capacity (achieved by DPC) as the number of BS antennas
increases. In the regime of few excess BS antennas compared
to served UEs the gap to capacity is large. However this regime

is favorable for practical implementations as more antennas
mean higher cost and higher space consumption. Scheduling
helps to bridge the gap to capacity.

We apply SUS to massive MIMO and achieve a perfor-
mance close to capacity. We propose a scheduling algorithm
with smaller complexity. The simulation results show that its
performance is similar.

In [6] scheduling serves a different purpose. The idea, which
is called Joint Spatial Division and Multiplexing (JSDM), is to
partition UEs into groups based on their channel’s covariance
matrices. This allows dividing precoding into two stages. In
the pre-beamforming stage the groups are separated using
the dominant eigenvectors of each group’s channel covariance
matrix. The dimensionality of the effective channels after the
pre-beamforming stage is reduced compared to the original
channel. The precoding of the second stage combats the inter-
group interference based on the effective channels after the
first stage. The required channel state information (CSI) is
reduced as the first stage requires longterm statistical CSI only.

The works [7] and [8] on scheduling for massive MIMO
communication systems are based on JSDM. There the focus is
somewhat different to our work as the number of UEs is larger
than the number of BS antennas. The task of the scheduler is
to select UEs which form well separated groups for JSDM.
In [8] it is also shown that random beamforming [9] performs
poorly for a finite number of UEs.

In [10] a fixed number of heterogeneous UEs are scheduled
based on the norm of their instantaneous CSI. The work
targets scenarios where the excess of BS antennas to served
UEs is large in contrast to our work. The channel is then
asymptotically orthogonal and transmitting to the UEs with
the largest channel norm is optimal.

II. SYSTEM MODEL

Consider a MIMO broadcast channel (BC) with N single
antenna UEs. The number of BS antennas is M . Let M ≥ K
to obtain a massive MIMO scenario.

The received signal of the k-th UE is

yk = hH
kx + zk k = 1, . . . ,K (1)

where hk is the vector of channel coefficients from the BS
to the k-th UE, x is the transmitted signal at the BS and zk



is independent proper complex thermal Gaussian noise with
variance σ2

N . [·]H denotes the complex conjugate transpose.
The antenna correlation at the BS is

hk = hi.i.d.R
1
2

BS (2)

where hi.i.d. has i.i.d. zero-mean, unit variance proper complex
Gaussian entries and RBS is the antenna correlation matrix.

We use two channel correlation models. In the uncorrelated
fading channel model the antenna correlation matrix is an
identity matrix RBS = I. We use the correlated fading channel
model from [11], where we assume that the UEs are located
at the “broadside” of the BS antenna array. The scatterers are
located around each UE with an angular spread ∆ and the
antenna spacing is λ/2.

The set of UEs scheduled is

S ⊂ {1, . . . ,K}. (3)

The received signals of the UEs scheduled in S are

y (S) = H (S)x + z (4)

where H = [h(1), . . . ,h(|S|)]
H is the collection of channel

vectors of the |S| scheduled UEs and z = [z1, . . . , z|S|]
T. For

linear precoding the transmitted signals x are

x = W (S) s (S) (5)

where W (S) = [w(1), . . . ,w(|S|)] is the matrix of the
precoding vectors and s (S) is the vector of unit variance
transmit symbols.

The BS has an average sum power constraint∑
i∈S

Pi ≤ Psum (6)

where Pi is the power allocated for the i-th UE and P is the
maximal sum power. Perfect CSI at all nodes is assumed.

A. Zero-Forcing Beamforming

For ZFBF the linear precoders are determined according to
an interference zero forcing objective. The optimal solution
given a sum power constraint is the pseudo-inverse combined
with a power allocation [12]

W (S) = H (S)
H

(H (S)H (S)
H

)−1diag(p (S)) (7)

where p = [P(1), . . . , P(|S|)] is the power allocation vector of
non-negative reals. With this choice of precoding matrix the
received signals are

y (S) = H (S)W (S) s (S) + z (8)
= diag(p (S)) s (S) + z. (9)

The rate achieved with ZFBF and schedule S is

R (S) = max
p

∑
i∈S

log (1 + Pi) (10)

s.t.
∑
i∈S

γ−1i Pi ≤ Psum (11)

where

γi =
1

‖wi‖2
. (12)

Note that the values γi depend on S. We determine the optimal
choice of p (S) by waterfilling.

III. SCHEDULING

The optimal schedule is found by exhaustive search. We
calculate the achieved sum rates of all combinations of UEs
and find the combination with the maximal sum rate

Sopt = arg max
S⊂{1,...,K}

R (S) . (13)

This approach is limited to few UEs as the number of
combinations increases exponentially with the number of UEs.
In the following we describe the original SUS algorithm and
our proposed algorithm.

A. Semi-orthogonal User Selection

The SUS algorithm [2] was designed for conventional
MIMO where the number of BS antennas is less or equal
to the number of served UEs. It finds a suboptimal user group
with the objective of maximizing the sum rate. It achieves the
same asymptotic performance as DPC [2].

The idea for selecting the user group is as follows: First
the UE with the largest channel norm is scheduled. In each
following iteration the SUS algorithm schedules the UE with
the largest orthogonal component to the subspace spanned
by the already scheduled UEs. The key novelty of the SUS
algorithm is that after each iteration the semi-orthogonality
of each unscheduled UE to the current scheduled UE is
determined. When the degree of semi-orthogonality is too
small the UE is removed from the set of unscheduled UEs.
The result of the algorithm is a set of scheduled UEs. The
channel vectors of the UEs are as orthogonal as possible to
each other and their norms are as large as possible.

The steps to find a suboptimal user group are [2]:
Step 1: Initialization:

T1 = {1, . . . ,K} (14)
i = 1 (15)
S = ∅. (16)

Step 2: For each UE k ∈ Ti, calculate gk, the component of
hk orthogonal to the subspace spanned by {g(1), . . . ,g(i−1)}:

gk = hk −
i−1∑
j=1

hkg
∗
(j)

‖g(j)‖2
g(j). (17)

When i = 1, this implies g(k) = h(k).
Step 3: Select the i-th UE as follows:

π(i) = arg max
k∈Ti
‖gk‖ (18)

S ← S ∪ {π(i)} (19)
h(i) = hπ(i) (20)
g(i) = gπ(i). (21)



Step 4: If |S| < min{M,K}, then calculate Ti+1, the set of
UE semi-orthogonal to g(i):

Ti+1 =

{
k ∈ Ti, k 6= π(i) |

|hkg∗(i)|
‖hk‖‖g(i)‖

< α

}
(22)

i← i+ 1 (23)

where α is a small positive constant. If the set Ti+1 is
nonempty and the cardinality of S fullfills |S| < min{M,K},
then go to Step 2. Otherwise the algorithm terminates.

The variable α characterizes the degree of required semi-
orthogonality between two channel vectors. For smaller α
more UEs are removed. The optimal α is determined with
numerical simulations.

B. Massive MIMO Pair-wise SUS Algorithm

The SUS algorithm presented in the previous section starts
with an empty set of scheduled UEs and adds a UE in every
step. A natural question is whether one can improve the
performance and/or the complexity by initializing the set of
scheduled UEs as all UEs for a massive MIMO scenario.

We propose an approach that we call massive MIMO
pair-wise semi-orthogonal user selection (pair-wise SUS).
The first schedule is all UEs. At each iteration the scheduling
algorithm finds the UE pair with the smallest degree of
orthogonality. From this pair the UE with the smaller channel
vector norm is removed. This continues until the degrees
of orthogonality between the remaining UEs are large enough.

The steps of the pair-wise SUS algorithm are:
Step 1: Initialization:

S0 = {1, . . . ,K} (24)
i = 1. (25)

Step 2: Determine and store the degrees of orthogonality βk,j
between all UE channel pairs j 6= k:

βk,j =
|hkh∗j |
‖hk‖‖hj‖

. (26)

Note that βk,j = βj,k.
Step 3: Find pair Pi of the UEs scheduled at the i-iteration
Si with the smallest degree of orthogonality:

Pi = {k, j} = arg max
k,j∈Si

βk,j . (27)

If βPi
< βmin the algorithm terminates.

Step 4: Select the i-th UE to be eliminated as follows:

π(i) = arg min
r∈Pi

‖hr‖ (28)

Si+1 = {k ∈ Si | k 6= π(i)} (29)
i← i+ 1. (30)

If |Si| > 1 go to Step 3.

The value βmin is a small positive constant. It characterizes
the allowed degree of semi-orthogonality between two channel

vectors. For smaller βmin more UEs are removed. The optimal
βmin is determined with numerical simulations.

Note that removing a UE based on the orthogonality to
individual other UEs is usually suboptimal when maximizing
the sum rate.

C. Complexity Analysis

The complexity of the two algorithms differs only in the
selection of the scheduled UEs, while the complexity of the
zero-forcing beamforming is one |S|×|S| matrix inversion and
one water filling over |S| UEs. This is rather small compared
to the user scheduling [2]. We compare the required number
of multiplications for the two scheduling algorithms.

In [2] the complexity of the SUS algorithm is found to be
upperbounded by

CSUS ≤ (Cmm + Cvn + Cip)

K∑
i=1

|Ti| (31)

where Cmm is the complexity of one M × (M ×M) vector-
matrix multiplication in step 2 of the SUS algorithm, Cvn is
the complexity of one vector 2-norm in step 3 and Cip is
the complexity of one normalized inner-product in step 4. We
bound

K ≤
K∑
i=1

|Ti| ≤ K2. (32)

The complexity of the pair-wise SUS algorithm is upper
bounded by

CSUS ≤ Cip
K(K − 1)

2
+ CvnK. (33)

In step 2 of the pair-wise SUS algorithm a normalized inner-
product calculation is required for each UE pair. Recall that
step 2 is executed once and that the calculation is invariant
to permutation of the UE pair. Hence the number of required
normalized inner-product calculations is K(K − 1)/2. The
number of vector 2-norm calculations in step 3 is upper
bounded by K.

The bound (32) is usually closer to the lower bound
[2]. Hence the number of inner products is larger for the
pair-wise SUS algorithm. On the other no vector-matrix mul-
tiplications are required for the pair-wise SUS algorithm. As
the number of BS antennas M is larger than the number of
UEs K we conclude that the complexity of the pair-wise SUS
algorithm is smaller than the SUS algorithm.

IV. SIMULATION RESULTS

Consider a communication system with 10 UEs and one BS.
The number of BS antennas is varied between 10 and 100. The
SNR is 10 dB. In this SNR regime maximum ratio transmission
(MRT) is outperfomed by ZFBF. We average over 500 channel
realizations. The capacity is obtained as in [1].
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Fig. 1. Sum rate as a function of α for M BS antennas, i.i.d. channel
coefficients, 10 UEs and an SNR of 10 dB. Note that the y-axis is logarithmic.
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Fig. 2. Capacity and suboptimal linear precoding rates for i.i.d. channel
coefficients, 10 UEs and an SNR of 10 dB. Note that the x-axis is logarithmic.

A. Uncorrelated Channel Fading

For uncorrelated fading the channel coefficients are i.i.d.
zero-mean circularly symmetric complex Gaussian random
variables. The optimal degree of required semi-orthogonality
α and βmin used in the two algorithms are determined numeri-
cally as in Figure 1. The optimal degrees of semi-orthogonality
are almost the same for both algorithms. Note that we have to
determine the optimal values for each parameter set.

Figure 2 shows the sum-rate versus the number of BS
antennas. The gap between optimal scheduling and capacity
for a small number of BS antennas is due to suboptimal
ZFBF precoding. As the number of BS antennas increases the
gap vanishes. For more than twice as many BS antennas as
served UEs all scheduling algorithms perform the same. Here
scheduling all UEs is optimal. Hence scheduling helps save
costs by operating efficiently in the regime of less than twice
as many BS antennas as served UEs.

Figure 3 shows the sum rates for the different scheduling
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Fig. 3. Comparison of scheduling algorithms for i.i.d. channel coefficients,
10 UEs and an SNR of 10 dB. Note that the x-axis is linear.

10 15 20 25 30 35

20

30

40

Number of BS antennas

Su
m

ra
te

[b
it]

all UEs scheduled
SUS
pair-wise SUS
optimal scheduling
Capacity

Fig. 4. Comparison of scheduling algorithms for correlated fading with an
angular spread of ∆ = 30◦, 10 UEs and an SNR of 10 dB. Note that the
x-axis is linear.

algorithms for the regime between 10 and 20 BS antennas.
All presented scheduling algorithms achieve a performance
close to optimal scheduling. The gap between the proposed
algorithm and SUS is small.

B. Correlated Channel Fading

We assume a correlated fading as in [11] with an angular
spread ∆ = 30. The optimal α and βmin are again determined
numerically for each parameter set. Here again the suboptimal
ZFBF precoding approaches capacity with increasing number
of BS antennas. In Figure 4 the sum rate is shown for the
for the regime between 10 and 35 BS antennas. Note that
with increasing M the suboptimal ZFBF precoding approaches
capacity. For this correlated scenario 3.5-times as many BS
antennas as served UEs are required for scheduling all UEs
to be optimal. Again scheduling helps to bridge the gap. Both
scheduling algorithms perform similarly.



V. CONCLUSIONS

We compared the performance of the SUS algorithm, the
proposed algorithm, optimal scheduling, and capacity in a
massive MIMO scenario. We show that for a smaller excess
of BS antennas to served UEs, scheduling provides gains
over scheduling all UEs. The proposed scheduling algorithm
performs similar as SUS, while its complexity is smaller.
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