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Abstract—The power consumption of analog-to-digital convert-
ers (ADCs) grows linearly in the number of antennas in massive
MIMO base stations. To reduce power consumption, one-bit ADCs
can be used. It is believed that the nonlinear distortion of one-
bit ADCs makes channel estimation and symbol equalization in
such systems computationally complex and resource demanding.
In this paper, it is shown that low-complexity linear channel
estimation and symbol equalization are feasible in massive MIMO
with one-bit ADCs when the number of channel taps is large. The
effective SINR of the received symbol estimates of a maximum-
ratio combiner with estimated channel state information is 4 dB
lower in a system with one-bit ADCs than in an equivalent
unquantized system.

I. BACKGROUND AND MOTIVATION

The idea of massive MIMO (Multiple-Input Multiple-Output)
is to increase the number of antenna chains at the base station,
so that a large number of users can be served over the same
time-frequency resource. Compared to conventional systems
that exploit small numbers of antennas, there are many benefits:
increased spectral efficiency and reduced radiated power. To
reduce consumed power, however, the power consumption
of each antenna chain has to decrease. The analog-to-digital
converter (ADC) in each chain consumes a significant part
of the total power. Since the power consumption of ADCs is
proportional to the number of quantization levels, quantization
has to be made coarser. From a power efficiency point of view,
the coarsest ADCs—one-bit ADCs—are the most desirable.

It has been shown that the capacity of a single-input single-
output (SISO) system with one-bit ADCs only decreases by a
factor 2/π at low SNR compared to an unquantized system
[1]; this is also true in MIMO systems [2], [3]. It has also been
shown that the capacity of a noise-free MIMO system with
one-bit ADCs grows linearly in the number of receive antennas
[3]. In massive MIMO, it is thus theoretically possible to reach
high data rates, also with one-bit ADCs. In [2], [3], perfect
channel state knowledge at the base station was assumed. In
reality, the channel state information has to be estimated and is
never perfect, especially if the received signals are quantized
by one-bit ADCs.

Prior work has presented solutions both for equalization
and for channel estimation with one-bit ADCs, see [4]–[8]
for example. The complexity of these equalization methods,
however, becomes increasingly difficult to handle in practical
wideband scenarios, where the numbers of antennas and users
are large and where the channel is frequency-selective. The
channel estimation techniques proposed for non-sparse channels

also require long training sequences to obtain good enough
channel state knowledge. A typical mobile channel has a
coherence interval that could be only a few hundred symbols
long. Since massive MIMO is usually implemented in time-
division duplex, both the downlink and uplink have to fit in
this short interval along with the training sequences [9]. The
training sequences therefore have to be short.

In [10], we showed that the transmitted symbols can be
recovered error-free in the limit of infinitely many antennas.
In this paper, we establish capacity lower bounds for finite
number of antennas. The main contributions of this work are:
• It is proposed to use a low-complexity maximum-ratio

combiner (MRC) for symbol detection and a low-complexity
LMMSE (Linear Minimum-Mean-Square Error) technique
with short pilot sequences for channel estimation in the
massive MIMO uplink with one-bit ADCs. This implemen-
tation is the kind of architecture commonly considered for
massive MIMO with high resolution quantization [11]. The
implementation is thus feasible in terms of complexity.

• A technique similar to [12] is used to derive an analytical
expression for the rate achievable with MRC using estimated
channel state information in a massive MIMO system with
one-bit ADCs. If the quantized system and the unquantized
system have perfect channel state information, the power
loss incurred by using one-bit ADCs is equal to the 2/π ≈
−2 dB limit. If the two systems estimate the channel with
equally short training sequences, the power loss increases to
approximately −4 dB.

• It is shown that frequency-selective channels can be helpful
in massive MIMO systems with one-bit quantizers, in that
such channels improve the performance of linear detectors.

II. SYSTEM MODEL

The uplink of the massive MIMO system in Figure 1 is
considered. The base station is equipped with M antennas and
there are K single-antenna users. All signals are modeled in
complex baseband and are sampled at Nyquist-rate with perfect
synchronization.

In symbol duration n, base station antenna m receives:

ym[n] ,
K∑

k=1

L−1∑
`=0

√
Pkgmk[`]xk[n− `] + zm[n], (1)

where xk[n] is the zero-mean transmit signal from user k,
whose power E

[
|xk[n]|2

]
= 1, Pk is the transmit power of

user k and zm[n] ∼ CN (0, N0) is a random variable that



2

CP CP

C
o
m
b
in
e
r

CP
CP

Fig. 1. The system model of a massive MIMO uplink with one-bit ADCs.

models the thermal noise of the base station hardware. It is
assumed that zm[n] is IID over n and m and independent of
all other variables. We assume that the L-tap impulse response
{gmk[`]} of the channel between user k and antenna m can
be divided into two parts:

gmk[`] =
√
βkhmk[`]. (2)

The small-scale fading has to be estimated by the base station,
only its mean E

[
hmk[`]

]
= 0 and variance is a priori known:

E
[
|hmk[`]|2

]
=

1

L
, ∀`. (3)

The base station is assumed to know the large-scale fading βk,
which generally changes so slowly over time that an accurate
estimate easily can be obtained in most cases.

In a wideband system, the number of channel taps L can be
large—in the order of tens. For example, a system that uses
15 MHz of bandwidth over a channel with 1 µs of maximum
excess delay, which corresponds to a moderately frequency-
selective channel, has L = 15 channel taps, c.f. [13], where
the “Extended Typical Urban Model” has a maximum excess
delay of 5 µs.

Upon reception, the signals are quantized into:

qm[n] ,
1√
2
sign

(
Re(ym[n])

)
+j

1√
2
sign

(
Im(ym[n])

)
. (4)

We assume that the in-phase and quadrature signals are
separately sampled, each by identical one-bit ADCs, and that
the threshold of the quantization is zero. Other thresholds are
studied in [14], [15]. The scaling of the quantized signal is
arbitrary but chosen such that qm[n] has unit power.

The users also transmit a cyclic prefix that is L− 1 symbol
long:

xk[n] = xk[N + n], −L < n < 0, (5)

which is introduced to simplify the mathematical exposition.

III. QUANTIZATION

In this section, some properties of the quantization with
one-bit ADCs are derived. These results are used later in the
channel estimation and the rate analysis.

We define the quantization noise as

em[n] , qm[n]− ρym[n], (6)

where the scaling factor ρ is chosen to minimize the error
variance

E , E
[
|em[n]|2

]
. (7)

The error variance is minimized by the Wiener solution:

ρ =
E
[
y∗m[n]qm[n]

]
E
[
|ym[n]|2

] . (8)

Note that the distribution of em[n] depends on the distribu-
tion of the received signal ym[n] in a nonlinear way, see (6),
and that em[n] is uncorrelated to ym[n] due to the choice of
ρ (the orthogonality principle). Because em[n] later is treated
as additional noise and any information about the symbol that
it might contain is discarded, it is referred to as quantization
noise.

In the next step, we define the “expected received power
given all transmit signals” and the “average received power”:

Prx[n] , E
[
|ym[n]|2

∣∣ {xk[n]}
]

= N0 +
1

L

K∑
k=1

L−1∑
`=0

βkPk

∣∣xk[n− `]
∣∣2, (9)

P̄rx , E
[
|ym[n]|2

]
= N0 +

K∑
k=1

βkPk. (10)

When the number of channel taps L in (9) is large, the two
powers Prx[n] and P̄rx are close to equal. The law of large
numbers applied to the inner sum in (9) gives

Prx[n]
a.s.−−→ P̄rx, L → ∞, ∀n. (11)

Because of the cyclic prefix, the block length N cannot be
shorter than L. We therefore assume that N grows together
with L in (11). As we will see later, the convergence can be
fast and the left-hand side in (11) is close to its limit also for
L much smaller than usual block sizes.

Remark 1: Note that the number of terms in (9) is
KL. Therefore, the relative difference between the expected
received power given all transmit signals and its mean
|Prx[n]− P̄rx|/Prx[n] can become small, not only with increas-
ing L, but also with increasing number of users K. This
happens if there is no dominating user, i.e., some index k for
which βkPk � βk′Pk′ for all k′ 6= k. Note that by doing power
control such that Pk is chosen proportional to 1

βk
, dominating

users can be avoided. The expected received power given
all transmit signals is thus close to its average also in some
narrowband systems with a large number of users.

The next lemma gives the scaling factor and the variance of
the quantization noise.

Lemma 1: If the fading is IID Rayleigh, i.e., hmk[`] ∼
CN (0, 1

L ) for all m, k and `, then the scaling factor defined
in (8) is given by

ρ =

√
2

π

E
[√

Prx[n]
]

P̄rx
, (12)

and the quantization noise has the variance

E = 1− ρ2P̄rx. (13)

In a wideband system, the scaling factor approaches

ρ →
√

2

πP̄rx
, L → ∞ (14)
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and the variance of the quantization noise approaches

E → 1− 2

π
, L → ∞. (15)

Proof: The proof can be found in [16] and is omitted here
for conciseness.

If Prx[n] were constant, the error variance in (15) would
equal its limit. That is the reason this limit coincides with the
mean-squared quantization error of a one-bit ADC in [17] and
what is called the distortion factor of one-bit ADCs in [12].

The following corollary to Lemma 1 gives the limit of the
relative quantization noise variance, which is defined as

Q ,
E

|ρ|2
. (16)

Corollary 1: The relative quantization noise variance in a
wideband system approaches

Q → Q′ , P̄rx

(π
2
− 1
)
, L → ∞. (17)

Note that the relative quantization noise variance Q ≥ Q′ is
always greater than its limit, because Jensen’s inequality says
that ρ ≤

√
2

πP̄rx
is smaller than its limit for all L, since the

square root is concave. This means that there is less quantization
noise in a wideband system, where the number of taps L is
large, than in a narrowband system.

To later be able to compare the quantized and unquantized
systems, we note that the analyses in the following sections
of the paper also can be applied to the unquantized system. If
there is no quantization, the variance of the quantization error
E = 0 and thus the relative quantization noise Q = Q′ = 0.

IV. CHANNEL ESTIMATION

During the training period, user k transmits an N = Np
symbol long pilot sequence, and the base station performs
LMMSE channel estimation. The frequency-domain pilot signal
of user k is xk[ν] , 1√

Np

∑Np−1
n=0 xk[n]e

−j2πnν/Np , which is
chosen as

xk[ν] =

{
0, (ν mod K) + 1 6= k√
Kejθk[ν

′], (ν mod K) + 1 = k
, (18)

where the integer index ν′ , ν−k+1
K ∈ [0,

Np

K − 1] and θk[ν
′]

is a phase that is known to the base station.
We denote the Fourier transform of the quantized signal by:

qm[ν] ,
1√
Np

Np−1∑
n=0

qm[n]e−j2πnν/Np . (19)

Analogously, ym[ν], em[ν] and zm[ν] denote the Fourier
transform of ym[n], em[n] and zm[n] respectively. Note that
zm[n] ∼ CN (0, N0) is IID because the transform is unitary.
The Fourier transform of the channel impulse response is scaled
differently,

hmk[ν] ,
L−1∑
`=0

hmk[`]e
−j2π`ν/Np , (20)

so that the received signal in the frequency domain can be
written as:

ym[ν] =

K∑
k=1

√
βkPkhmk[`]xk[ν] + zm[ν]. (21)

By (6), the frequency-domain received quantized signal is

qm[ν] = ρym[n] + em[n] (22)

= ρ
( K∑
k=1

√
βkPkhmk[ν]xk[ν] + zm[ν]

)
+ em[ν] (23)

= ρ
√

βk′Pk′Khmk′ [ν]ejθk′ [ ν−k′+1
K ] + ρzm[ν] + em[ν],

(24)

where k′ , (ν mod K)+1 in the last step is the index of the
user whose transmit signal is nonzero at tone ν. The sequence
{qm[νK + k− 1], ν = 0, . . . ,

Np

K − 1} is thus a phase-rotated
and noisy version of the frequency-domain channel of user
k, sampled with period K. Because the channel only has L
time-domain taps, an observation of the channel tap hmk[`]
can be made if the sampling period K ≥ Np

L according to the
sampling theorem. By performing an inverse transform on the
received samples that belong to user k, we obtain

h′
mk[`]

,

√
K

Np

Np
K −1∑
ν=0

qm[νK + k − 1]ej2π`(νK+k−1)/Npe−jθk[ν]

(25)

= ρ
√

βkPkK

√
K

Np

Np
K −1∑
ν=0

hmk[νK+k−1]ej2π`(νK+k−1)/Np

+ ρ

√
K

Np

Np
K −1∑
ν=0

zm[νK+k−1]ej2π`(νK+k−1)/Npe−jθk[ν]

︸ ︷︷ ︸
,z′

mk[`]

+

√
K

Np

Np
K −1∑
ν=0

em[νK+k−1]ej2π`(νK+k−1)/Npe−jθk[ν]

︸ ︷︷ ︸
,e′mk[`]

(26)

= ρ
√

βkPkNphmk[`] + ρz′mk[`] + e′mk[`]. (27)

In the first step (25), qm[ν] is replaced by the expression in (24).
Then, in (26), we identify the first sum as the inverse transform
of the channel spectrum. We note that the Fourier transform
is unitary and therefore z′mk[`] ∼ CN (0, N0) is independent
across m, k, ` and E

[
|e′mk[`]|2

]
= E

[
|e′

mk[`]|2
]
= E.

The LMMSE estimate of the channel is thus

ĥmk[`] , h′
mk[`]

E
[
h∗
mk[`]h

′
mk[`]

]∗
E
[
|h′

mk[`]|2
] (28)

= h′
mk[`]

ρ
√
βkPkNp

ρ2βkPkNp + L(ρ2N0 + E)
. (29)

The variance of the estimate is

E
[
|ĥmk[`]|2

]
= φk

1

L
, (30)
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where the channel quality factor is

φk ,
βkPkNp

βkPkNp + L(N0 +Q)
. (31)

The estimation error εmk[`] , hmk[`]− ĥmk[`] is uncorrelated
to the channel estimate and has variance

E
[
|εmk[`]|2

]
=
(
1− φk

) 1
L
. (32)

Note that we can write the channel in terms of its estimate:

hmk[`] = ĥmk[`] + εmk[`]. (33)

When L is large, the difference in channel quality between the
quantized and unquantized systems when Np is the same in
both systems is

∆ ,
φk

∣∣
Q=0

φk

∣∣
Q=P̄rx(

π
2 −1)

= 1 +
N0 +

∑K
k′=1 βk′Pk′

N0 + βkPkNp/L

(π
2
− 1
)
.

(34)

Note that this ratio is decreasing in Np and that ∆ → 1 as
Np → ∞. If Np = KL and βkPk = P for all k, for some
power P , then

∆ =
π

2
≈ 2 dB. (35)

Remark 2: The phases θk[ν] of the pilot symbols are used
to distribute the energy of the pilot sequences over time. For
example, the choice θk[ν] = 0, ∀k, ν, results in pilot signals
whose energy is not evenly distributed:

xk[n] =

{√
Np

K , if n = ν
Np

K + k − 1, ν ∈ Z
0, otherwise

. (36)

The same training signal is transmitted every Np

K -th symbol
duration, which conveys little new information for channel
estimation. Drawing the phases θk[ν] from a uniform dis-
tribution on the interval [0, 2π) works in most cases when
hmk[`] ∼ CN (0, 1

L ) IID, except when Np = KL and, at the
same time, either K, L

K are prime numbers or L, K
L are

prime numbers. Then the (noise-free) received signal becomes
periodic and little new information is gained by multiple copies
of the same received signal. In this case, the error variance
becomes larger than predicted by (32).

V. UPLINK DATA TRANSMISSION

In this section, the uplink data transmission is studied for one
block of N = Nd symbols. Practical detection with maximum-
ratio combining (MRC) based on the estimated channel is
presented and applied to the massive MIMO system with one-
bit ADCs. The distribution of the symbol estimation error due to
quantization and how it affects OFDM is also analyzed. Finally,
the performance is evaluated by deriving an achievable rate
for the system.

A. Maximum-Ratio Combining

In the maximum-ratio combiner, the received quantized
signals are filtered by the filter, whose impulse response is the
time-reversed and conjugated channel impulse response:

W[`] =
1√
M

D
− 1

2

φ Ĥ
H
[−`], (37)

where Ĥ[`] is the matrix with ĥmk[`] on its (m, k)-th position.
The scaling by Dφ , diag(φ1, . . . , φK) is done for conve-
nience, such that each row of the combiner matrix has energy
1
L . The output estimates of the transmit signal are given by

x̂[n] ,

 x̂1[n]
...

x̂K [n]

 =

0∑
`=−L+1

W[`]q
[
[n− `]Nd

]
, (38)

where [x]Nd , x mod Nd, and q[n] , (q1[n], . . . , qM [n])T.

B. Estimation Error Due to Quantization

In this section, we assume that the channel taps are
uncorrelated to each other to be able to use the Gram-Schmidt
process to partition the quantization noise into a sum of terms,
in which each term is correlated to a specific channel tap. By
doing that, we show that the estimation error due to quantization
consists of two parts: one radial distortion and one circularly
symmetric. In a wideband system however, the radial distortion
is negligible.

If {hmk[`]} is a set of uncorrelated variables, using the
Gram-Schmidt process, the quantization noise can be written
as follows:

em[n] =

K∑
k=1

L−1∑
`=0

E
[
h∗
mk[`]em[n]

∣∣ {xk[n]}
]

E
[
|hmk[`]|2

] hmk[`] + dm[n],

(39)

where dm[n] is the residual error that is uncorrelated to all
{hmk[`]} conditioned on {xk[n]}. The following lemma gives
the coefficients in this sum.

Lemma 2: If hmk[`] ∼ CN (0, 1
L ), the normalized conditional

correlation

E
[
h∗
mk[`]em[n]

∣∣ {xk[n]}
]

E
[
|hmk[`]|2

] =

√
2

π
xk[n− `]τ [n] (40)

a.s.−−→ 0, L → ∞, (41)

where

τ [n] ,

√
Prx[n]

Prx[n]
−

E
[√

Prx[n]
]

P̄rx
. (42)

Proof: The proof can be found in [16] and is omitted here
for conciseness.

The quantization noise now becomes:

em[n] =

√
2

π
τ [n]ȳm[n] + dm[n], (43)

where the noise-free received signal is

ȳm[n] ,
K∑

k=1

L−1∑
`=0

hmk[`]xk[n− `]. (44)
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By using (6) to write qm[n] = ρym[n] + em[n], the symbol
estimate of the receive combiner in (38) can be written as:

x̂k[n] =

M∑
m=1

0∑
`=−L+1

wkm[`]
(
ρym[n− `] + em[n− `]

)
.

(45)

Thus, we define the error due to quantization as

e′k[n] ,
M∑

m=1

0∑
`=−L+1

wkm[`]em[n− `] (46)

=

√
2

π

M∑
m=1

0∑
`=−L+1

wkm[`]τ [n− `]ȳm[n− `]

+

M∑
m=1

0∑
`=−L+1

wkm[`]dm[n−`] (47)

Because the first term in (47) contains the noise-free received
signal ȳm[n], it results in a radial distortion, i.e., error that
contains a term that is proportional to the transmit signal xk[n]
or the negative transmit signal −xk[n] (depending on the sign
of τ [n]). When the number of channel taps goes to infinity, two
things happen. Firstly, the radial distortion that contains τ [n]
vanishes because τ [n] → 0 as L → ∞ according to Lemma 2.
Secondly, because the number of terms in the second sum
in (47) grows with L, the sum converges in distribution to
a Gaussian random variable according to the central limit
theorem, the variance of which is

E
[
|e′k[n]|2

]
→ E

[
|dm[n]|2

]
= E, L → ∞. (48)

Thus,

e′k[n]
dist.−−→ CN (0, E), L → ∞. (49)

C. Achievable Rate

An achievable rate for the uplink of the massive MIMO
system with one-bit ADCs is given. The limit of the achievable
rate, when the number of channel taps L grows large, is then
derived in closed form. In a numerical study, it is seen that this
limit closely approximates the achievable rate of a wideband
system also with practical values of L.

Using the orthogonality principle, the estimate x̂k[ν] can be
written as a sum of two terms

x̂k[n] = axk[n] + ζk[n], (50)

where ζk[n] is the residual error. By choosing the factor
a , E

[
x∗
k[n]x̂k[n]

]
, the variance of the error ζk[n] is minimized

and the error becomes uncorrelated to the transmit signal xk[n].
The variance of the error term is then

E
[
|ζk[n]|2

]
= E

[
|x̂k[n]|2

]
−
∣∣E[x∗

k[n]x̂k[n]
]∣∣2. (51)

In [18], it was shown that uncorrelated noise with a Gaussian
distribution minimizes the mutual information I(xk[n]; x̂k[n])
among all distributions. By assuming that the noise term is
Gaussian, we obtain the achievable rate (in bits)

Rk = log2

(
1 +

∣∣E[x∗
k[n]x̂k[n]

]∣∣2
E
[
|x̂k[n]|2

]
−
∣∣E[x∗

k[n]x̂k[n]
]∣∣2
)

(52)

for user k.
The following theorem gives the limit of the achievable rate

Rk for MRC as the number of channel taps goes to infinity.
Theorem 1: When the small-scale fading coefficients are IID

and hmk[`] ∼ CN
(
0, 1

L

)
, the achievable rate Rk in (52) for

MRC approaches

Rk → R′
k, L → ∞, (53)

where

R′
k , log2

(
1 +

2

π

φkβkPkM

N0 +
∑K

k′=1 βk′Pk′

)
. (54)

Proof: See the Appendix.
In the same way as in Theorem 1, an achievable rate for

the unquantized MRC system can be obtained:

R0 = log2

(
1 +

φkβkPkM

N0 +
∑K

k′=1 βk′Pk′

)
(55)

Note that the rate of the unquantized system is achievable for
all L.

Remark 3: When the pilot length Np = KL and βkPk = P
is the same for all k, the SINR in (55) of the unquantized MRC
system is

π

2

φk

∣∣
Q=0

φk

∣∣
Q=P̄rx(

π
2 −1)

=
π2

4
≈ 4 dB (56)

higher than the SINR in (54) of the quantized system, inde-
pendently of transmit power Pk. With perfect channel state
information φk

∣∣
Q=P̄rx(

π
2 −1)

= φk

∣∣
Q=0

= 1, the difference is
π
2 ≈ 2 dB. This performance degradation coincides with earlier
results that show that the capacity of a SISO channel [1] and a
MIMO channel [2] decreases by a factor 2

π at low SNR with one-
bit ADCs and perfect channel state information. Quantization
thus leads to a twofold SINR degradation: the MRC symbol
estimates suffer from a π

2 degradation from quantization noise
and an additional degradation due to the π

2 lower channel
quality φk observed in (35).

To evaluate the derived achievable rate, we perform Monte-
Carlo simulations to obtain Rk numerically for Gaussian
transmit signals xk[n] ∼ CN (0, 1). The result is shown in
Figure 2, where it can be seen that the rate Rk is close to
its limit R′

k when the number of channel taps L ≥ 5, which
corresponds to a moderately frequency-selective channel. When
the number of users is large, the convergence is immediate
and Rk is a good approximation of Rk for all L. This was
observed in Remark 1.

VI. CONCLUSION

We have showed that it is possible to use low-complexity
linear receivers and channel estimators in a massive MIMO
system even with one-bit ADCs when the channel is frequency
selective. In a wideband system, where the number of channel
taps is large, and where the received power from each user is
the same, the effective SINR of MRC decreases by π2

4 ≈ 4 dB
as compared to the equivalent unquantized case. This SINR
degradation is independent of the number of users and the
transmit power.
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Fig. 2. The achievable rate Rk marked and its limit R′
k drawn with a

solid line for a system with 128 antennas that serves 5 and 30 users over an
L-tap channel with Rayleigh fading taps. The dotted line shows the rate of the
unquantized system. The channel is estimated with Np = KL pilot symbols.
The rate Rk was computed for 500 channel realizations, during each of which
10000 Gaussian distributed symbols per user were sent.

APPENDIX
OUTLINE OF PROOF OF THEOREM 1

To evaluate the achievable rate in (52), the MRC estimate
x̂k[n] is partitioned into components that are uncorrelated to
the transmit signal xk[n]. By using (33), the received signal
can be rewritten as follows

ym[n] =

K∑
k=1

√
φkβkPkȳmk[n] + um[n] + zm[n], (57)

where

ȳmk[n] ,
L−1∑
`=0

1√
φk

ĥmk[`]xk[n− `], (58)

um[n] ,
K∑

k=1

L−1∑
`=0

√
βkPkεmk[`]xk[n− `]. (59)

Using (57), the symbol estimate in (45) becomes:

x̂k[n] =

M∑
m=1

0∑
`=−L+1

wkm[`]

(
ρ

K∑
k′=1

√
φk′βk′Pk′ ȳmk′ [n− `]

+ ρum[n− `] + ρzm[n− `] + em[n− `]

)
(60)

= ρ

K∑
k′=1

√
φk′βk′Pk′ x̂′

kk′ [n] + ρu′
k[n] + ρz′k[n] + e′k[n],

(61)

where

x̂′
kk′ [n] ,

M∑
m=1

0∑
`=−L+1

wkm[`]ȳmk′ [n− `] (62)

u′
k[n] ,

M∑
m=1

0∑
`=−L+1

wkm[`]um[n− `]; (63)

the terms z′k[n] and e′k[n] are defined analogously to u′
k[n].

The terms x̂′
kk′ [n] can further be split up in a part that is

correlated to the transmit signal and a part that is not:

x̂′
kk′ [n] = αkk′xk[n] + ikk′ [n], (64)

where αkk′ = E
[
x∗
k[n]x̂

′
kk′ [n]

]
and ikk′ [n] is the interference

that is uncorrelated to xk[n]. It is seen that αkk′ = 0 for
all k′ 6= k, i.e., only the term x̂′

kk[n] is correlated to the
transmit signal xk[n]. We denote the gain Gk , |αkk|2 and
the interference variance Ikk′ , E

[
|ikk′ [n]|2

]
. To derive Gk

and Ikk′ the second moments of the channel coefficients have
to be evaluated. It was done in [19], [20] for an IID Rayleigh
fading channel hmk[`] ∼ CN (0, 1

L ):

Gk = M, Ikk′ = 1. (65)

The estimated signal can thus be written as the sum of the
following terms:

x̂k[n] = ρ

K∑
k′=1

√
φk′βk′Pk′

(
αkk′xk[n] + ikk′ [n]

)
+ ρu′

k[n] + ρz′k[n] + e′k[n]. (66)

It can be shown that each term in this sum is uncorrelated to
the other terms. Most correlations are easy to show, except the
correlation between the error due to quantization e′k[n] and the
transmit signal xk[n]. This step can be found in [16] and is
omitted for conciseness.

The variances of u′
k[n] and z′k[n] are given by

E
[
|u′

k[n]|2
]
= E

[
|um[n]|2

]
=

K∑
k′=1

βk′Pk′
(
1− φk′

)
, (67)

E
[
|z′k[n]|2

]
= E

[
|zm[n]|2

]
= N0, (68)

By evaluating the expectations in the rate expression in (52),
we obtain∣∣E[x∗

k[n]xk[n]
]∣∣2 → ρ2φkβkPkGk, (69)

E
[
|x̂k[n]|2

]
→ ρ2

(
φkβkPkGk

+

K∑
k′=1

(
φkβkPkIkk′ + βk′Pk′(1−φk′)

)
+N0 +Q′

)
, (70)

as L → ∞. Here we used Corollary 1. Letting the number of
channel taps L → ∞ thus results in the rate

R′
k = log2(1 + SINRk), (71)

where

SINRk =
φkβkPkGk

K∑
k′=1

(
φkβkPkIkk′+βk′Pk′(1−φk′)

)
+N0+Q′

. (72)

By letting Ikk′ = 1 and Gk = M as in (65) and using
Corollary 1 and (10), we obtain (54).
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